
Partial Wave Analysis on Graphics
Cards:

The GPUPWA package

Niklaus Berger

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 2

Outline

● Partial Wave Analysis as a computational problem
● Computing on Graphics Processors
● The GPUPWA framework

– Design considerations and goals
– Achievements and capabilities
– To do list

● An example analysis: J/ψ→γKK: a walk through the
code

● Advanced features
● Discussion

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 3

PWA as a computational problem

● Look at a defined decay channel, e.g. J/ψ→γKK
● Construct a model of the decay in the form of a partial wave

decomposition, i.e. a coherent sum over partial waves
● The model will predict the intensity (number of events) I for every

point in phase space Ω:

where the Vα are the unknown production amplitudes (strength and
phase of a partial wave)
the Aα are the decay amplitudes, including resonance shape (Breit-
Wigner etc.) and angular structure

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 4

PWA as a computational problem

● We want to determine the Vα by a fit of the model to the data

● Need to construct a Likelihood
● Most straightforward (and computationally most expensive): Event by

event likelihood (see 刘北江 s talk for alternatives)

where n is the number of events and η(Ω) the reconstruction
efficiency as a point Ω in phase space

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 5

PWA as a computational problem

● How to solve the integral?
● Monte Carlo integration! Can also take into account efficiency η(Ω) by

summing only over reconstructed MC events
● Generate lots of events evenly in phase space. Then:

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 6

PWA as a computational problem

● Take the negative logarithm of the Likelihood:

● This is what we want to minimize in the fit

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 7

PWA as a computational problem

● This needs to be evaluated for every iteration of the fit
● Optimize for speed:

Precalculate and cache as much as possible
● If the decay amplitudes are left constant in the fit, we can cache the

followoing:

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 8

PWA as a computational problem

● This leaves us with the following calculations per iteration:

– (Nwave)2 for the Monte Carlo part

– (Nwave)2 · Ndata for the data part

● If Nwave and Ndata are “big”, this can still be a lot

● For many fitters, we also want to calculate derivatives of the likelihood
with regard to fit parameters

● If we allow the decay amplitudes to change, it becomes even worse

● We either have to reduce Ndata (e.g. by using bins) or calculate very
fast

● Here we choose fast calculation

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 9

Computing on GPUs

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 10

GPUs

● Modern computer games need very powerful hardware to render
game scenes in real-time – Graphics Processing Units (GPUs)

● This hardware is cheap because there is a large market
● The capabilities of the hardware increase faster than for CPUs

because gamers always want the latest and best

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 11

Computing on GPUs

● GPUs can also be used for other things than games: General
Purpose Computing on GPUs (GPGPU)

● Keep in mind that GPU architecture is very different from CPU
architecture:
CPU GPU

1-4 cores Up to 1000 cores

Core can do lots of different things Core does floating point calculation

Architecture optimized for predicting
branches in the code

Architecture optimized for running short
programs without branches

Memory access fast because of multi-
level cache

Memory access fast because of high
bandwith

Low latency, low throughput High latency, high throughput

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 12

Computing on GPUs

● Partial wave analysis is very well suited for GPU computing:
– Lots of events: can keep many cores busy
– No branches in the calculation of the likelihood
– Result of the calculation is a single number: not much

bandwith between GPU and CPU needed
– Access to lookup table similar to access to game textures
– Use lots of four-vectors, corresponds to 3 colours and

transparency
● GPUs are much faster for PWA than CPUs
● Writing GPU code is not as easy as C or FORTRAN

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 13

GPU Code

● Code for the GPU implements parallel computing
● Instead of a for loop, treating events sequentially, we have:

– A kernel, specifying the operations on one event
– Streams of event data

● Stream computing model

● Currently we use the ATI Brook+ stream computing language
● We want to change to the platform independent OpenCL as soon as

possible
● You, as a user, should not have to care about this...

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 14

The GPUPWA framework

Why a framework?
● Allow easy access to the power of GPUs for all of you
● Develop a shared code base for partial wave analysis

– More users = more testers; more robust code
– Write the same code only once
– Make mistakes only once
– Share improvements and extensions
– Share conventions, formats etc.

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 15

Some Design Considerations

● Allow the user to write C++ (no GPU specific code)

Write Object-Oriented code,
not just a FORTRAN translation

● Encourage declarative user code

You should state what you want the code to do,
implementation details handled by the framework

● If you want to change or add to the framework, do it the OO way

Create derived classes, do not change the original code

● GPUPWA should also serve as an example for documentation

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 16

Functionality provided (v1.7)

● Covariant Tensor formalism with tensors up to rank 4
● Handling of in- and output files
● Handling of fit parameters
● MC Integration
● Fits with Minuit and Fumili, including analytical gradients and

hessians in the Fumili approximation if needed
● Fits with free resonance parameters with Minuit
● Plotting of projections

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 17

Functionality not yet provided

● Gradients and Hessian in fits with free resonance parameters
● Decay chains (multiple Breit-Wigners in one partial wave)
● Interface with external amplitude calculators (e.g. FDC), possible

through text files
● Interface with BOSS to generate MC (will need some help from the

BOSS side)

● New things that might come up this week

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 18

Performance

● Best optimized part is the likelihood, gradient and Hessian calculation
in the fit: factor 150+ over FORTRAN version

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 19

Scaling

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 20

Scaling

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 21

Performance Limitations

● Some things cannot be made much faster (reading and writing files,
data transfers between GPU and CPU...)

● Some can (and will, if I find the time)
● Main limitation currently is not speed but memory (but much better

than early GPUPWA versions)
– MC samples can be arbitrarily big
– Data lookup table has to fit into GPU memory (0.5 or 1 GB)
– For fits with free resonance parameters, both data and MC

lookup tables have to fit into GPU memory
● Plotting is also memory-sensitive, but can be done with a subset of

the MC

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 22

Short Break

● GPUs can do fast PWA
● You can easily use GPUs for PWA with GPUPWA

● That was all a bit general: we will have take a walk through some
code next

● Are there any general questions?

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 23

An example analysis

● We discuss the J/ψ→γKK analysis
● You also get this code when you check out GPUPWA from CVS

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 24

Introduction

/// GammaKK.cpp : Example partial wave analysis
/**
Example analysis for the channel J/psi -> gamma KK
Created by Liu Beijiang and Nik Berger
For Questions, please contact nberger@ihep.ac.cn
**/

// Include some headers from the GPUPWA package
// -> should we reduce this to a single header?
#include "../GPUPWA/GPUStreamTensor.h"
...
#include "../GPUPWA/GPUChi2FitConstraint.h"

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 25

More Headers

// We also need some stuff from root
#include "TFile.h"
#include "TRandom3.h"

// And some general C/C++ stuff
#include <ctime>
#include <iomanip>
#include <fstream>
#include <iostream>
#include <string>

using std::cout;
using std::endl;

// Switch on plotting
#define PLOT

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 26

And here we go

// Main program, can be called without any arguments
int main(int argc, char* argv[])
{
 // We will want to do some timing measurements, thus start the clock
 clock_t start = clock();

 // Say Hello to our user
 cout << "Gamma KK partial wave analysis huaning ni!" << endl;

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 27

Reading resonance parameters

 // First, we read masses and widths of resonances from a configuration file
 ConfigFile resconfig("res.inp");
 // Values can be read from the file by name
 ResCfg res_f2;
 resconfig.readInto(res_f2 , "f2");
 cout << "f2 mass width " << res_f2 << endl;
 ResCfg res_f0;
 resconfig.readInto(res_f0 , "f0");
 cout << "f0 mass width " << res_f0 << endl;

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 28

Reading amplitude parameters

 /* And now we read the inital values, error estimates and limits of the fit
 parameters from another configuration file */
 ConfigFile paraconfig("para.inp");
 ParaCfg mag_f0,phase_f0;
 ParaCfg mag_f20,phase_f20, mag_f21,phase_f21,mag_f22,phase_f22;
 ParaCfg mag_bg;

 paraconfig.readInto(mag_f0, "f0_mag");
 paraconfig.readInto(phase_f0, "f0_phase");
 cout << "f0 mag " << mag_f0 << endl;
 cout << "f0 phase " << phase_f0 << endl;

 ...

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 29

Creating the PWA Object

 /* Here we start: Create a GPU Partial Wave Analysis Object,
in this case we are looking at a radiative decay to mesons,

 so it is a Radiative Meson Partial Wave Analysis. The type of the
analysis determines the Rank of the orbital Tensors

 and the contraction of amplitudes. As parameters we give a name and
the number of file types we want to use (in this case 2, namely data and the
phase space Monte Carlo. If you need additional input, e.g.
different MC for systematic studies, increase that number */

 GPURadiativeMesonsPartialWaveAnalysis * myanalysis =
new GPURadiativeMesonsPartialWaveAnalysis("Gamma KK Analysis",2);

 // For now we will store and use MC at index 1
 myanalysis->SetMCIndex(1);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 30

Introduction to the tensor formalism

// Next we will start building up the partial wave amplitudes from the particle
momenta

 /* Convention used: Vectors (lower index) start in small letters, Covectors
(upper index) with capitals

 For Tensors, the indices are given (T_mn), again capitals for upper indices,
small letters for lower indices

 The metric Tensor stays the same, so is always called g */

 /* Note that all the following statements will not read files or perform
calculations. They merey set up a framework such

 that as soon as some calculated quantity is needed, it can be computed using
the power of the GPU */

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 31

Input vectors

 // Input: Four vectors of the two Kaons
 /* Here we create two GPUStreamInputRootFileVectors. The constructor

takes the following arguments: The GPUPartialWaveAnalysis
 they will be used in. This is needed for the caching mechanism to work.

Then we give the name of the root file for the data,
 the name of the root tree and the names of the branches in the tree

conatining the momentum compnents and the energy.
 Alternatively, text files can be used*/
 GPUStreamInputRootFileVector & k_plus =

* new GPUStreamInputRootFileVector(myanalysis,
"data/zeroplustwoplus_data_50k_01.root",
"t","px1","py1","pz1","E1");

 GPUStreamInputRootFileVector & k_minus =
* new GPUStreamInputRootFileVector(myanalysis,
"data/zeroplustwoplus_data_50k_01.root",
"t","px2","py2","pz2","E2");

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 32

More input files

 /* Add the filenames for the MC information (it is assumed it is saved at the
same location in the trees as for the data).

 If you have additional files e.g. for systematics, just add them with a
higher index */

 k_plus.SetFilename("data/zeroplustwoplus_phsp_50k_01.root",1);
 k_minus.SetFilename("data/zeroplustwoplus_phsp_50k_01.root",1);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 33

Some bookkeeping...

/* We can use weights for the data events, e.g. to do a background subtraction.
Here we just set the weights to 1 for all data used*/

 myanalysis->SetEventWeights(1);

 // Set the number of generated MC events;
 // this is just a normalisation constant

 // - here we assume that all MC events have been accepted
 myanalysis->SetNumberMCGen(myanalysis->GetNumberMCAcc());

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 34

Some constant vectors

 // Let's do some calculations

 // First some constant ingredients: The metric Tensor g_mu_nu
 // (we use a -1,-1,-1,1 metric)

 GPUMetricTensor & g = * new GPUMetricTensor();

 // And the four-vector of the J/psi...
 float4 f_jpsi(0.0f,0.0f,0.0f,3.0969f);
 // ... in covariant ...
 GPUConstVector & jpsi = * new GPUConstVector(f_jpsi);
 // and contravariant form - in this case, the two vectors should be identical ...
 GPUConstVector & Jpsi = moveindex(jpsi);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 35

And some vector operations

 // Four-Vector of the intermediate resonance x
 GPUStreamVector & x = k_plus + k_minus;

 // the rest of the momentum and energy is in the photon
 GPUStreamVector & gamma = jpsi - x;
 // and again the contravariant form
 GPUStreamVector & Gamma = moveindex(gamma);

 // We use the '|' charcter to denote contratctions - in the case of
 // 4-vectors such as here, this is the scalar product

 GPUStreamScalar & x2 = x|x;
 // ... and the square root of it is the mass of the intermediate state
 GPUStreamScalar & mX = sqrt(x2);
 // and here we contract the gamma and x four-vectors
 GPUStreamScalar & xgamma = x|gamma;

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 36

Photon polarisation

 // Prepare the g_perp_perp Tensor used in the contratctions
 GPUStreamTensor2 & gPerpPerp_mn =

g - (gamma%x +x%gamma)/(xgamma) +
x2/(xgamma|xgamma)*(gamma%gamma);

 // As this is needed in the contractions, we should tell the analysis object
 myanalysis->SetGPerpStream(&gPerpPerp_mn);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 37

Orbital Tensor Generators

 /* Next we create two GPUOrbitalTensors objects. As it is rather tedious to
calculate orbital tensors from the momenta, we do this for you. Again, you
need to give the analysis object in order for the caching to work and in
addition the four-momenta of the mother- and the two daughter particles.

 Here we expect the lower index (covariant) vectors*/

 // Orbital tensors for x -> K+K-
 GPUOrbitalTensors xorbitals(myanalysis, x, k_plus, k_minus);

 // Orbital tensors for J/psi -> gamma x
 GPUOrbitalTensors & jpsiorbitals =

* new GPUOrbitalTensors(myanalysis, jpsi, gamma, x);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 38

Orbital Tensors

// Orbital tensors; for f0 we just have the metric tensor
 /* Here we have to cheat a little in order to create a stream object (with a

value for every event) from the constant metric tensor - so we just create a
stream that is one for all events...*/

 GPUStreamScalar & one = *new GPUStreamScalar(myanalysis,1.0f);
 GPUStreamTensor2 & Orbital_f0_MN = g * one;

 // Orbital tensors: three independent ones for f2s
 // Here we get the orbital tensor from the xorbitals object
 GPUStreamTensor2 & t2_mn = xorbitals.Spin2OrbitalTensor();
 // And do some index lowering and raising gymnastics
 GPUStreamTensor2 & t2_MN = moveindices(t2_mn);
 GPUStreamTensor2 & t2_mN = movelastindex(t2_mn);
 GPUStreamTensor2 & t2_Nm = trans(t2_mN);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 39

And more orbital stuff

 // The orbital tensor object also conveniently provides barrier factors
 GPUStreamScalar & B2_psi_gamma_f2 = jpsiorbitals.Barrier2();

 // so we end up with the complete orbital part of the amplitudes
 GPUStreamTensor2 & Orbital_f2_0_MN = t2_mn;
 GPUStreamTensor2 & Orbital_f2_1_MN =

-g * (((Jpsi%Jpsi)|t2_mn)* B2_psi_gamma_f2);
 GPUStreamTensor2 & Orbital_f2_2_MN =

(Gamma % (t2_Nm|jpsi))* B2_psi_gamma_f2;
 /* The '%' charcter denotes the outer product of two tensors - you can

find the complete catalogue of permitted operations on the GPUPWA
Wiki*/

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 40

Propagators

 /* Next we create the propagators, here assumed to have a Breit-Wigner
form. Arguments are the mass squared at which it is to be evaluated and
the resonance mass and width (here taken in a single object from the
configuration file).*/

 GPUPropagatorBreitWigner & propagator1 =
* new GPUPropagatorBreitWigner(x2,res_f2);

 GPUPropagatorBreitWigner & propagator2 =
* new GPUPropagatorBreitWigner(x2,res_f0);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 41

Partial Waves

 // And now we build up partial waves from the orbital an propagator parts, the
 // third argument names the wave

 // A scalar
 GPUTensorPartialWave & wave0 =

* new GPUTensorPartialWave(Orbital_f0_MN,propagator2,"wave0");

 // And a 2+ resonance, with three waves.
 GPUTensorPartialWave & wave1 =

* new GPUTensorPartialWave(Orbital_f2_0_MN,propagator1,"wave1");

 GPUTensorPartialWave & wave2 =
* new GPUTensorPartialWave(Orbital_f2_1_MN,propagator1,"wave2");

 GPUTensorPartialWave & wave3 =
* new GPUTensorPartialWave(Orbital_f2_2_MN,propagator1,"wave3");

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 42

Adding waves to the analysis

 /* Add the waves to the partial wave analysis; for every wave added, four
parameters (magnitude, phase, mass, width) are added to the list of fit
parameters */

 myanalysis->GetWaves()->AddPartialWave(wave1);
 myanalysis->GetWaves()->AddPartialWave(wave2);
 myanalysis->GetWaves()->AddPartialWave(wave3);
 myanalysis->GetWaves()->AddPartialWave(wave0);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 43

Initial parameters...

 /* Now we set the initial values, error estimates and limits of the parameters
 from the configuration file. If the value of the error estimate is negative,
 the parameter will be fixed. Limits with a value of 999 will be ignored, i.e.
 the parameter will be considered free in that direction
 The 0th parameter is always the magnitude of the phase-space background*/
 myanalysis->SetParameter(0,mag_bg);

 /* Magnitude and phase parameters for the 4 resonances. Note that at least
 one magnitude and one phase in the fit have to be fixed, otherwise there is
 no unique solution and fits will generally not converge */
 myanalysis->SetParameter(1,mag_f20);
 myanalysis->SetParameter(2,phase_f20);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 44

Sharing fit parameters

 myanalysis->SetParameter(5,mag_f21);
 //myanalysis->SetParameter(6,phase_f21);
 myanalysis->GetPartialWave(1)->SetPhaseParameter(2);
 myanalysis->FixParameter(6,0);

 myanalysis->SetParameter(9,mag_f22);
 //myanalysis->SetParameter(10,phase_f22);
 myanalysis->GetPartialWave(2)->SetPhaseParameter(2);
 myanalysis->FixParameter(10,0);

 myanalysis->SetParameter(13,mag_f0);

 myanalysis->SetParameter(14,phase_f0);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 45

Fix resonance parameters

 myanalysis->FixParameter(3,res_f2.m);
 myanalysis->FixParameter(4,res_f2.w);

 myanalysis->FixParameter(7,res_f2.m);
 myanalysis->FixParameter(8,res_f2.w);

 myanalysis->FixParameter(11,res_f2.m);
 myanalysis->FixParameter(12,res_f2.w);

 myanalysis->FixParameter(15,res_f0.m);
 myanalysis->FixParameter(16,res_f0.w);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 46

Perform the MC integration

/* Here we perform the preparations for the Monte Carlo calculation.
 This will read the MC file, compute and sum all amplitude and interference
 terms and write them to a file. This has to be called only once for a constant

set of resonances, as long as their masses and widths are not changed */
 myanalysis->MCIntegral();

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 47

Do the fit

 /* Now we can do the fit. Currently you can use either of the following
fitters:

 - FUMILI (the Minuit2 implementation,
 - OLDFUMILI (the BES II implementation, in general requires fewest

iterations),
 - MINUIT (with numerical gradients),
 - MINUITGRAD (with analytical gradients,
 - MINUITMINOS (MINUIT (numerical gradients) followed by a modified

MINOS error estimation)
 */
 myanalysis->DoFit(GPUPartialWaveAnalysis::OLDFUMILI);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 48

Differential X-section from MC

 /*And now we would like to plot some projections for the fit results. For this
we need event-wise differential x-sections for the Monte Carlo, which we
are going to generate with the following line. The boolean argument denotes

 whether the interference terms should also be plotted*/

 float ** dcs = myanalysis->GetMCDcs(true);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 49

Things we want to plot

 // Create the quantities to be plotted
 GPUStreamScalar &ct_g=costheta(gamma);

 /* .. yes, we can also rotate and boost vectors - this is of course meaningless
for covariant amplitudes, but nice for plotting */

 GPUStreamVector & kr= lorentzrotation(k_plus,x);
 GPUStreamVector & xr= lorentzrotation(x,x);
 GPUStreamVector & kb= lorentzboost(kr,xr);
 GPUStreamScalar & ct_k=costheta(kb);
 GPUStreamScalar & ph_k=phi(kb);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 50

Create a set of plots

 // So first we create a set of plots, which takes care of the formatting and
 //file handling

 GPUPlotset * plotset = new GPUPlotset();
 // we also need the number of active partial waves
 int nwaves = myanalysis->GetWaves()->GetNActiveWaves();

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 51

Plotting

 /* And then we add plots.
 The GPUStreamScalar::Plot() function generates a vector of root histograms

(TH1F). Arguments are:
 - Plot name (used for access in root files)
 - Plot title (used for displaying). In the title, titles for the x and y axis can be

given after semicolons
 - Number of bins
 - Axis low
 - Axis high
 - Array with the MC differential cross sections
 - Number of waves
 - Whether or not to plot the off diagonal (interference) elements. If true, the

dcs array also has to contain the interference terms */
 plotset->AddPlots(mX.Plot("mass","mass;mX [GeV]",50,1.7,2.3,dcs,

nwaves,true));
 ...

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 52

Formatting and saving plots

 // Nicely format the plots (root defaults are REALLY UGLY!)
 plotset->Format();
 // Write a postscript file with the plots. The arguments are currently ignored.
 // -> Fix the argument issue
 plotset->WritePsfile("testout1.ps",1,1);
 // Write a rootfile with the plots
 plotset->WriteRootfile("testout1.root");

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 53

Done!

 // Done
 return 0;

}

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 54

Recap

● Less than 500 lines in GammaKK.cpp, most of them comments and
fit parameter handling for a complete PWA

● GPUPWA does all the work (it contains now > 30'000 lines of code,
> 300'000 if you include the Brook+ generated code for the GPU)

● This code is not flawless, but many testers help us find many bugs –
and it has to be debugged only once

● The code is written in a style so that it describes what you want to do:
declarative programming

● Due to inheritance, polymorphism etc. in C++, you can easily change
and extend GPUPWA functionality, without changing the core code

● GPUPWA is extremely fast

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 55

Other fun things we can do

● Scan a resonance
● Repeat fits with different initial parameters
● Do fits with free resonance parameters
● Constrain a parameter

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 56

Scan a resonance

Find out how the likelihood changes, if you change the mass or width
of a resonance

Just replace:

 myanalysis->DoFit(GPUPartialWaveAnalysis::OLDFUMILI);

with

 TGraph * mygraph =
myanalysis->ScanParameter(GPUPartialWaveAnalysis::OLDFUMILI,

 15, 2.145,2.155,20);

 and add the resulting TGraph to the Plotset:

 plotset->AddGraph(mygraph);

Due to a root bug, do NOT fix the corresponding parameter!

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 57

Test initial parameters

If you want to make sure, whether your minimum is stable, repet the
fit with different initial parameters:

Just replace:

 myanalysis->DoFit(GPUPartialWaveAnalysis::OLDFUMILI);

with

 myanalysis->DoMultiFit(GPUPartialWaveAnalysis::OLDFUMILI, 5, 20);

(vary fits within 5x the error given, do 20 fits) or

 myanalysis->DoDynamicFit(GPUPartialWaveAnalysis::OLDFUMILI,
 0.5, 5, 1000);

 (perform fits until 5 of them have converged within 0.5 of
 the minimum likelihood)

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 58

Fits with free resonance parameters

● To do fits with free resonance parameters, do not fix all of them – the
rest is taken care of by GPUPWA (sort of...)

● You have to use MINUIT as a fitter (we do not yet calculate analytical
gradients for this case, but this is planned)

● The fit will take longer (we have to recalculate the MC integral for
every iteration)

● You might run out of GPU memory with large MC samples

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 59

Constraining a parameter

Sometimes we have external knowledge about a parameter with
some uncertainty (e.g. a badly measured mass and width from the
PDG) that we want to add to the fit. GPUPWA can easily do this:

 myanalysis->SetParameter(15,res_f0.m);

 myanalysis->SetParameterError(15,0.01);

 // Constrain the parameter

 GPUChi2FitConstraint * p15constraint =
new GPUChi2FitConstraint(myanalysis, 15, 2.16, 0.001);

 myanalysis->AddConstraint(p15constraint);

PWA Tutorial May 2009 GPUPWA - Niklaus Berger 60

Additional Resources

● You can find installation instructions and the complete class
documentation at:

http://docbes3.ihep.ac.cn/twiki/bin/view/Main/GpuPwa

● If you find bugs, have questions or suggestions or do not understand
the documentation: Ask us!

Hypernews: http://202.122.32.197/HyperNews/get/pwa.html

Email: nberger@ihep.ac.cn / Office A406
● Share your contributions with your colleagues: Add your extensions to

the CVS repository (tell me beforehand)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

