AlHzürich

PRECISION PHYSICS AT THE LHC: QCD CORRECTIONS

VALENTIN HIRSCHI

HEFEI USTC MADGRAPH SCHOOL 2018 21 ST NOVEMBER-2018

PREDICTION CHAIN

Theory

PREDICTION CHAIN

-Why and what are higher order corrections ?

- Computing one-loop Feynman diagrams
- Renormalisation and rational terms
- Subtraction techniques
- Matching to Parton showers beyond LO

FACTORISATION : $d \sigma_{p p \rightarrow\{H\}}=$

$$
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{p p \rightarrow\{P\}}\left(\mu_{F}, \mu_{R}, \mu_{S}\right) \mathcal{S}_{\{P\} \rightarrow\{H\}}\left(\mu_{S}\right)
$$

PERTURBATIVE EXPANSIONS

The differential cross section can be written as a perturbation series, using the coupling constant as an expansion parameter :

$$
\hat{\sigma}=\sigma^{\operatorname{Born}}\left(1+\frac{\alpha_{s}}{2 \pi} \sigma^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \sigma^{(2)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \sigma^{(3)}+\ldots\right)
$$

"Easy"

Difficult but automated.

Case-by-case only Only g g > H

By construction the all-order differential cross-section is scale-independent, but this is not longer true when truncated : assess theoretical uncertainties.

$$
\frac{d \sigma_{p p \rightarrow X}}{d \log \left(\mu_{R}\right)}=0 \quad \text { but } \quad \frac{\left.d \sigma_{p p \rightarrow X}\right|_{N^{k} L O}}{d \log \left(\mu_{R}\right)} \sim \sigma^{\text {Born }} \mathcal{O}\left(\alpha_{s}^{k+1}\right)
$$

CREDIBLE TOTAL RATES - $\mathbf{P} \mathbf{P}>\mathbf{H}$

MILD IMPACT ON RAPIDITY - PP > H

[Dulat \& al., '18]

SOMETIMES SIGNIFICANT IMPACT - PP > W J

[Ghermann \& al., '17]

PERTURBATIVE EXPANSION

The differential cross section can be written as a perturbation series, using the coupling constant as an expansion parameter:

$$
\hat{\sigma}=\sigma^{\operatorname{Born}}\left(1+\frac{\alpha_{s}}{2 \pi} \sigma^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \sigma^{(2)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \sigma^{(3)}+\ldots\right)
$$

Summary : why bothering to compute NkLO corrections?
\boldsymbol{m} Smaller theoretical uncertainty (μ_{R} var.) when including higher orders.
$\boldsymbol{\Delta}$ Better descriptions of the shape of highly energetic observables.
$\boldsymbol{\#}$ Credible prediction of total (i.e. inclusive) cross sections of various scattering processes characterised by a set of partonic final-states.

PERTURBATIVE EXPANSION

Consider the four-point Green function:

$$
\left\langle\phi_{x_{i 1}} \phi_{x_{i 2}} \mid \phi_{x_{f 1}} \phi_{x_{f 2}}\right\rangle=Z_{0}^{-1} \int \mathcal{D}[\phi] \phi_{x_{i 1}} \phi_{x_{i 2}} \phi_{x_{f 1}} \phi_{x_{f 2}} e^{-i \int d^{4} x \mathcal{L}_{I}\left[\phi_{x}\right]}
$$

And expand the exponential of the action:

$$
e^{-i \int d^{4} y \mathcal{L}_{I}\left[\phi_{y}\right]}=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int \mathcal{L}_{I}\left[\phi_{y_{1}}\right] d^{4} y_{1} \cdots \int \mathcal{L}_{I}\left[\phi_{y_{n}}\right] d^{4} y_{n}
$$

Using Wick theorem and considering $\mathcal{L}_{I}\left[\phi_{x}\right] \equiv i \lambda \phi_{x}^{3}$, we get Feyn. diags:

$$
n=2 \quad n=4 \quad n>5
$$

$\mathcal{O}\left(\lambda^{2}\right)$
$\mathcal{O}\left(\lambda^{4}\right)$
$\mathcal{O}\left(\lambda^{n}\right)$

PERTURBATIVE EXPANSION

Is this the only contribution however, in a prediction for observable \mathbf{J}

$$
\text { Prediction }=\mathrm{J} \otimes\left|\left\langle\phi_{\mathrm{x}_{\mathrm{i} 1}} \phi_{\mathrm{x}_{\mathrm{i} 2}} \mid \phi_{\mathrm{x}_{\mathrm{f} 1}} \phi_{\mathrm{x}_{\mathrm{f} 2}}\right\rangle\right|^{2}
$$

This assumes that the observable only select that particular final state:

$$
J \sim \delta\left(\left|\Phi_{f}\right\rangle-\left|\phi_{x f 1} \phi_{x f 2}\right\rangle\right) ?
$$

This is not reasonable for a theory like QCD (see jets lecture)!
The higher-multiplicity real-emission must be considered too :

$$
\left|\left\langle\phi_{x_{i 1}} \phi_{x_{i 2}} \mid \phi_{x_{f 1}} \phi_{x_{f 2}} \phi_{x_{f 3}}\right\rangle\right|^{2} \simeq
$$

Higher order corrections

LOOP COMPUTATIONS

PLAN

-Why and what are higher order corrections ?

- Computing one-loop Feynman diagrams
- Renormalisation and rational terms
- Subtraction techniques
- Matching to Parton showers beyond LO

MADLOOP IN MG5AMC

- Process generation

```
f. import model <model_name>-<restrictions>
&. generate <process> <amp_orders_and_option> [<mode>=<pert_orders>] <squared_orders>
`. output <format> <folder_name>
&. launch <options>
```

- Examples, starting from a default MG5aMC interface
f. Very simple one (in this case, generates the full code for NLO computations) :

```
[ 2.5s ] generate p p > t t~ [QCD]
[ 6.1s ] output
[ ~ mins*] launch
    * timing for 10k unweighted events on a laptop
```

f. With options specified (in this case, generates the one-loop matrix element code only):
[0.01s] import model loop_sm-no_hwidth
[0.01s] set complex_mass_scheme
[5min] generate g g >e+ ve mu- vm~ b b~ / h QED=2 [virt=QCD]
[2min] output MyProc
[~1 s*] launch -f

* time per phase-space point, summed over helicity configurations and colors.

Details on how to generate and use a MadLoop standalone library available @ cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary

GENERATING LOOP DIAGRAMS

- No external tool for loop diagram generation: Reuse MG5_aMC efficient tree level diagram generation!
- Cut loops have two extra external particles

$$
\text { Trees }\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} u \sim \mathrm{u} u \sim\right) \equiv \text { Loops }\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} u \sim\right)
$$

OPEN-LOOPS

[S. Pozzorini \& al. hep-ph/1111.5206]

- Lite-Motive: Be Numerical where you can and analytical where you should.

$$
\mathcal{N}\left(l^{\mu}\right)=\sum_{r=0}^{r_{\max }} C_{\mu_{0} \mu_{1} \cdots \mu_{r}}^{(r)} l^{\mu_{0}} l^{\mu_{1}} \cdots l^{\mu_{r}}
$$

- How to get these coefficients? (Wavefunction and 4-momenta indices now omitted)

ONE-LOOP INTEGRAL

- Consider this m-point loop diagram with n external momenta
with $D_{i}=\left(\ell+p_{i}\right)^{2}-m_{i}^{2}$

We will denote by \mathcal{C} this integral.

SCALAR INTEGRAL BASIS

$$
\begin{array}{rlrl}
\mathcal{C}^{1 \text {-loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \text { Box }_{i_{0} i_{1} i_{2} i_{3}} & \text { Box }_{i_{0} i_{1} i_{2} i_{3}}=\int d^{d} l \frac{1}{D_{i_{0}} D_{i_{1}} D_{i_{2}} D_{i_{3}}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \text { Triangle }_{i_{0} i_{1} i_{2}} & \text { Triangle }_{i_{0} i_{1} i_{2}}=\int d^{d} l \frac{1}{D_{i_{0}} D_{i_{1}} D_{i_{2}}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} & \text { Bubble }_{i_{0} i_{1}}=\int d^{d} l \frac{1}{D_{i_{0} D_{i_{1}}}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} & & \text { Tadpole }_{i_{0}}=\int d^{d} l \frac{1}{D_{i_{0}}} \\
& +R+\mathcal{O}(\epsilon) & &
\end{array}
$$

The a, b, c, d and R coefficients depend only on external parameters and momenta.
Reduction of the loop to these scalar coefficients can be achieved using either Tensor Integral Reduction or Reduction at the integrand level

'TIR: PASSARINO-VELTMAN

- Passarino-Veltman reduction:

$$
\int d^{d} l \frac{N(l)}{D_{0} D_{1} D_{2} \cdots D_{m-1}} \rightarrow \sum_{i} \operatorname{coeff}_{i} \int d^{d} l \frac{1}{D_{0} D_{1} \cdots}
$$

- Reduce a general integral to "scalar integrals" by "completing the square"
- Example:

Application of PV to this triangle rank-1 integral

- Implemented in codes such as:

COLLIER [A. Denner, S .Dittmaier, L. Hofer, 1604.06792]
GOLEM95 [T. Binoth, J.Guillet, G. Heinrich, E.Pilon, T.Reither, 0810.0992]

$$
\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{l^{\mu}}{\left(l^{2}-m_{1}^{2}\right)\left((l+p)^{2}-m_{2}^{2}\right)\left((l+q)^{2}-m_{3}^{2}\right)}
$$

- The only independent four vectors are p^{μ} and q^{μ}. Therefore, the integral must be proportional to those. We can set-up a system of linear equations and try to solve for C_{1} and C_{2}

$$
\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{l^{\mu}}{\left(l^{2}-m_{1}^{2}\right)\left((l+p)^{2}-m_{2}^{2}\right)\left((l+q)^{2}-m_{3}^{2}\right)}=\left(\begin{array}{ll}
p^{\mu} & q^{\mu}
\end{array}\right)\binom{C_{1}}{C_{2}}
$$

- We can solve for C_{1} and C_{2} by contracting with p and q

$$
\binom{R_{1}}{R_{2}}=\binom{[2 l \cdot p]}{[2 l \cdot q]}=G\binom{C_{1}}{C_{2}} \equiv\left(\begin{array}{cc}
2 p \cdot p & 2 p \cdot q \\
2 p \cdot q & 2 q \cdot q
\end{array}\right)\binom{C_{1}}{C_{2}}
$$

where $[2 l \cdot p]=\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{2 l \cdot p}{l^{2}(l+p)^{2}(l+q)^{2}}$ (For simplicity, the masses are neglected here)

- By expressing 2l.p and 2l.q as a sum of denominators we can express R_{1} and R_{2} as a sum of simpler integrals, e.g.

$$
\begin{aligned}
R_{1} & =\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{2 l \cdot p}{l^{2}(l+p)^{2}(l+q)^{2}}=\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{(l+p)^{2}-l^{2}-p^{2}}{l^{2}(l+p)^{2}(l+q)^{2}} \\
& =\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{1}{l^{2}(l+q)^{2}}-\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{1}{(l+p)^{2}(l+q)^{2}}-p^{2} \int \frac{d^{n} l}{(2 \pi)^{n}} \frac{1}{l^{2}(l+p)^{2}(l+q)^{2}}
\end{aligned}
$$

- And similarly for R_{2}

$$
\begin{aligned}
R_{2} & =\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{2 l \cdot q}{l^{2}(l+p)^{2}(l+q)^{2}}=\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{(l+q)^{2}-l^{2}-q^{2}}{l^{2}(l+p)^{2}(l+q)^{2}} \\
& =\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{1}{l^{2}(l+p)^{2}}-\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{1}{(l+p)^{2}(l+q)^{2}}-q^{2} \int \frac{d^{n} l}{(2 \pi)^{n}} \frac{1}{l^{2}(l+p)^{2}(l+q)^{2}}
\end{aligned}
$$

- Now we can solve the equation

$$
\binom{R_{1}}{R_{2}}=\binom{[2 l \cdot p]}{[2 l \cdot q]}=G\binom{C_{1}}{C_{2}} \equiv\left(\begin{array}{cc}
2 p \cdot p & 2 p \cdot q \\
2 p \cdot q & 2 q \cdot q
\end{array}\right)\binom{C_{1}}{C_{2}}
$$

by inverting the "Gram" matrix G

$$
\binom{C_{1}}{C_{2}}=G^{-1}\binom{R_{1}}{R_{2}}
$$

- We have re-expressed, reduced, our original integral

$$
\int \frac{d^{n} l}{(2 \pi)^{n}} \frac{l^{\mu}}{\left(l^{2}-m_{1}^{2}\right)\left((l+p)^{2}-m_{2}^{2}\right)\left((l+q)^{2}-m_{3}^{2}\right)}=\left(\begin{array}{cc}
p^{\mu} & q^{\mu}
\end{array}\right)\binom{C_{1}}{C_{2}}
$$

in terms of known, simpler scalar integrals

PV-REDUCTION CHAIN

$D_{i j k l}$	\rightarrow	$D_{00 i j}, D_{i j k}, C_{i j k}, C_{i j}, C_{i}, C_{0}$
$D_{00 i i}$	\rightarrow	$D_{i j k}, D_{i j}, C_{i j}, C_{i}$
D_{0000}	\rightarrow	$D_{00 i}, D_{00}, C_{00}$
$D_{i j k}$	\rightarrow	$D_{00 i}, D_{i j}, C_{i j}, C_{i}$
$D_{00 i}$	\rightarrow	$D_{i j}, D_{i}, C_{i}, C_{0}$
$D_{i j}$	\rightarrow	$D_{00}, D_{i}, C_{i}, C_{0}$
D_{00}	\rightarrow	D_{i}, D_{0}, C_{0}
D_{i}	\rightarrow	D_{0}, C_{0}
$C_{i j k}$	\rightarrow	$C_{00 i}, C_{i j}, B_{i j}, B_{i}$
$C_{00 i}$	\rightarrow	$C_{i i}, C_{i}, B_{i}, B_{0}$
$C_{i j}$	\rightarrow	$C_{00}, C_{i}, B_{i}, B_{0}$
C_{00}	\rightarrow	C_{i}, C_{0}, B_{0}
C_{i}	\rightarrow	C_{0}, B_{0}
$B_{i i}$	\rightarrow	B_{00}, B_{i}, A_{0}
B_{00}	\rightarrow	B_{i}, B_{0}, A_{0}
B_{i}	\rightarrow	B_{0}, A_{0}

Table from K.Ellis \& al. hep-ph/1105.4319

INTEGRAND REDUCTION

- The integrand (or OPP [Ossola, Papadopoulos, Pittau 2006]) reduction method is a purely numerical algorithm that has been automated in computer codes such as

CutTools [G.Ossola, C.Papadopoulos, R.Pittau, 0711.3596]
NINJA [T. Peraro, 1403.1229] (interface to MadLoop in [VH, T. Peraro, 1604.01363]
SAMURAI [P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano 1006.0710]
to find the scalar loop coefficients

- Both OPP and Tensor Integral Reduction techniques are interfaced in MadLoop to compute loop diagrams.

How does OPP work?

INTEGRAND LEVEL

- The decomposition to scalar integrals presented before works at the level of the integrals

$$
\begin{aligned}
\mathcal{M}^{\text {1-loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \text { Box }_{i_{0} i_{1} i_{2} i_{3}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \text { Triangle }_{i_{0} i_{1} i_{2}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} \\
& +R+\mathcal{O}(\epsilon)
\end{aligned}
$$

If we would know a similar relation at the integrand level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$
\begin{aligned}
& +\tilde{P}(l) \prod_{i}^{m-1} D_{i} \quad \text { Spurious term }
\end{aligned}
$$

INTEGRAND LEVEL

- The functional form of the spurious terms is known (it depends on the rank of the integral and the number of propagators in the loop) [del Aguila, Pittau 2004]
- for example, a box coefficient from a rank I numerator is

$$
\tilde{d}_{i_{0} i_{1} i_{2} i_{3}}(l)=\tilde{d}_{i_{0} i_{1} i_{2} i_{3}} \epsilon^{\mu \nu \rho \sigma} l^{\mu} p_{1}^{\nu} p_{2}^{\rho} p_{3}^{\sigma}
$$

(remember that p_{i} is the sum of the momentum that has entered the loop so far, so we always have po $=0$)

- The integral is zero

$$
\int d^{d} l \frac{\tilde{d}_{i_{0} i_{1} i_{2} i_{3}}(l)}{D_{0} D_{1} D_{2} D_{3}}=\tilde{d}_{i_{0} i_{1} i_{2} i_{3}} \int d^{d} l \frac{\epsilon^{\mu \nu \rho \sigma} l^{\mu} p_{1}^{\nu} p_{2}^{\rho} p_{3}^{\sigma}}{D_{0} D_{1} D_{2} D_{3}}=0
$$

EXAMPLE - BOX COEFFICIENTS

$$
N\left(l^{ \pm}\right)=d_{0123}+\tilde{d}_{0123}\left(l^{ \pm}\right) \prod_{i \neq 0,1,2,3}^{m-1} D_{i}\left(l^{ \pm}\right)
$$

- Two values are enough given the functional form for the spurious term. We can immediately determine the Box coefficient

$$
d_{0123}=\frac{1}{2}\left[\frac{N\left(l^{+}\right)}{\prod_{i \neq 0,1,2,3}^{m-1} D_{i}\left(l^{+}\right)}+\frac{N\left(l^{-}\right)}{\prod_{i \neq 0,1,2,3}^{m-1} D_{i}\left(l^{-}\right)}\right]
$$

- By choosing other values for l, that set other combinations of 4 "denominators" to zero, we can get all the Box coefficients

EXAMPLE - BOX COEFFICIENTS

- Compute this integral:

$$
\int d^{d} l \frac{1}{D_{0} D_{1} D_{2} D_{3} D_{4} D_{5} D_{6}}
$$

- So we that the numerator is $N(l)=1 \quad D_{i}=\left(l+p_{i}\right)^{2}-m_{i}^{2}$
- We know that we need only Box, Triangle, Bubble (and Tadpole) contributions. Let's find the first Box integral coefficient.
- Take the two solutions of

$$
D_{0}\left(l^{ \pm}\right)=D_{1}\left(l^{ \pm}\right)=D_{2}\left(l^{ \pm}\right)=D_{3}\left(l^{ \pm}\right)=0
$$

- And use the relation we found before and we directly have

$$
d_{0123}=\frac{1}{2}\left[\frac{1}{D_{4}\left(l^{+}\right) D_{5}\left(l^{+}\right) D_{6}\left(l^{+}\right)}+\frac{1}{D_{4}\left(l^{-}\right) D_{5}\left(l^{-}\right) D_{6}\left(l^{-}\right)}\right]
$$

OPP REDUCTION

$$
\begin{aligned}
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c_{i_{0} i_{1} i_{2}}^{m}+\tilde{c}_{i_{0} i_{1} i_{2}}(l)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b_{i_{0} i_{1}}+\tilde{b}_{i_{0} i_{1}}(l)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& +\sum_{i_{0}}^{m-1}\left[a_{i_{0}}+\tilde{a}_{i_{0}}(l)\right] \prod_{i \neq i_{0}}^{m-1} D_{i} \\
& +\tilde{P}(l) \prod_{i}^{m-1}
\end{aligned}
$$

To solve the OPP reduction, choosing special values for the loop momentum helps a lot

For example, choosing I such that

$$
\begin{aligned}
& D_{0}\left(l^{ \pm}\right)=D_{1}\left(l^{ \pm}\right)= \\
& \quad=D_{2}\left(l^{ \pm}\right)=D_{3}\left(l^{ \pm}\right)=0
\end{aligned}
$$

sets all the terms in this equation to zero except the first line

There are two (complex) solutions to this equation due to the quadratic nature of the propagators

OPP REDUCTION

Now we choose I such that
$D_{0}\left(l^{i}\right)=D_{1}\left(l^{i}\right)=D_{2}\left(l^{i}\right)=0$
sets all the terms in this equation to zero except the first and second line

Coefficient computed in a previous step

OPP REDUCTION

Now, choosing I such that
$D_{0}\left(l^{i}\right)=D_{1}\left(l^{i}\right)=0$
sets all the terms in this equation to zero except the first, second and third line

Coefficient computed in a previous step

OPP REDUCTION

$$
+\sum_{i_{0}<i_{1}}^{m-1}\left[b_{i_{0} i_{1}}+\tilde{b}_{i_{0} i_{1}}(l) \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}\right.
$$

$$
+\sum_{i_{0}}^{m-1}\left[a_{i_{0}}+\tilde{a}_{i_{0}}(l)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
$$

$=0$

Now, choosing / such that

$$
D_{1}\left(l^{i}\right)=0
$$

sets the last line to zero

PLAN

-Why and what are higher order corrections ?

- Computing one-loop Feynman diagrams
- Renormalisation and rational terms
- Subtraction techniques
- Matching to Parton showers beyond LO

COMPLICATIONS IN D-DIMENSIONS

- The previous expression should in fact be written in d-dimensions
- In the t'HV scheme, external momenta and polarisation vectors are in 4 dimensions; only the loop momentum is in dimensions
- The integral to be computed should therefore read

$$
\begin{aligned}
& \int d^{d} l \frac{N(l, \tilde{l})}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \cdots \bar{D}_{m-1}} \quad \begin{array}{c}
\bar{l}=l+\tilde{l} \\
{\underset{\mathrm{~d} \operatorname{dim}}{\text { 4 dim }}}_{\text {epsilon } \operatorname{dim}} \\
\bar{D}_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}+\tilde{l}^{2}=D_{i}+\tilde{l}^{2} \\
l \cdot \tilde{l}=0 \quad \bar{l} \cdot p_{i}=l \cdot p_{i} \quad \bar{l} \cdot \bar{l}=l \cdot l+\tilde{l} \cdot \tilde{l}
\end{array}
\end{aligned}
$$

COMPLICATIONS IN D-DIMENSIONS

- The d-dimensional contribution gives rise to the rational term which splits into two contributions

$$
R=R_{1}+R_{2}
$$

- R_{I} can be directly computed by the reduction algorithm, while R_{2} can be computed from a finite set of process-independent additional Feynman rules.
- RI: originates from the propagator (calculated in the reduction)
- R2: originates from the numerator (additional Feynman rules)

\mathbf{R}_{1}

- The origin of R_{1} is coming is the denominators of the propagators in the loop

$$
\frac{1}{D_{i}} \rightarrow \frac{1}{\bar{D}_{i}}=\frac{1}{D}\left(1-\frac{\tilde{c}^{2}}{D_{i}}\right)
$$

- Of course, the propagator structure is known, so these contributions can be included in the OPP reduction
- They give contributions proportional to

$$
\begin{aligned}
\int d^{d} \bar{l} \frac{\tilde{l}^{2}}{\bar{D}_{i} \bar{D}_{j}} & =-\frac{i \pi^{2}}{2}\left[m_{i}^{2}+m_{j}^{2}-\frac{\left(p_{i}-p_{j}\right)^{2}}{3}\right]+\mathcal{O}(\epsilon) \\
\int d^{d} \bar{l} \frac{\tilde{l}^{2}}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}} & =-\frac{i \pi^{2}}{2}+\mathcal{O}(\epsilon) \\
\int d^{d} \bar{l} \frac{\tilde{l}^{4}}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{l}} & =-\frac{i \pi^{2}}{6}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Loop amplitude:

$$
\frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad, \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}
$$

Problem : numerical technique can only evaluate the numerator in 4 dimensions Solution : isolate the ε-dim part of the numerator: $\underbrace{\bar{N}(\bar{q})}_{\text {d-dim }}=\underbrace{N(q)}_{\text {-dim }}+\underbrace{\tilde{N}(\tilde{q}, q, \epsilon)}_{\epsilon-\text { dim }}$
Then : compute analytically the finite set of loops for which its contribution does not vanish, and re-express it in terms of an R2 Feynman rules.

$$
R 2 \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{(2 \pi)^{4}} \int d^{d} \bar{q} \frac{\tilde{N}(\tilde{q}, q, \epsilon)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

Ex. :

[C. Degrande, arXiv:1412.6955]

- UV counterterms:
A) Renormalize the Lagrangian

Fields $\phi_{0} \rightarrow\left(1+\frac{1}{2} \delta Z_{\phi \phi}\right)+\sum_{\chi} \frac{1}{2} \delta Z_{\phi \chi} \chi$
ext. params $x_{0} \rightarrow x+\delta x$
int. params $\quad g(x) \rightarrow g(x+\delta x)$

$\}$$\mathcal{L}_{0} \rightarrow \mathcal{L}+\delta \mathcal{L}$
B) Compute the defining loops
\rightarrow Done in FeynArts. Notice that for $\overline{M S}$, only poles are needed.
C) Solve for the counterterms by applying renormalization conditions

D) Derive and output the corresponding UV counterterms.

- R2 counterterms, computed using FeynArts amplitudes as well.

FEYNRULES @ NLO
 (VERSION 2.1)

[Alloul, N. Christensen, C. Degrande, C. Duhr, B.Fuks, in 1310.192 I]

PLAN

-Why and what are higher order corrections ?

- Computing one-loop Feynman diagrams
- Renormalisation and rational terms
- Subtraction techniques
- Matching to Parton showers beyond LO

NLO ANATOMY

$$
\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+
$$

$\int_{m} d^{(4)} \sigma^{B}$
Born (B)

Virutal: computed analytically in dimensional regularisation ($d=4-2 \epsilon$):

$$
\text { Virtual }=\frac{A}{\epsilon^{2}}+\frac{B}{\epsilon}+V
$$

Real: Diverges when unresolved extra emission is integrated over:

$$
\int d \phi_{1} \text { Real }=-\frac{A}{\epsilon^{2}}-\frac{B}{\epsilon}+R
$$

Total: Finite in 4 dimensions, and more accurate: $\sigma^{\mathrm{NLO}}=\underbrace{B}_{\sigma^{\mathrm{LO}}}+\underbrace{R+V}_{\text {NLO correction }}$

NLO ANATOMY

TOY EXAMPLE

In order simplify the discussion, simplify \mathbf{V} to some dummy divergent function one a one-dimensional compact volume:

$$
V \equiv \delta(x) \int_{0}^{1} d y \frac{-e^{-y}}{y} \vdots
$$

Phase-space boundary
Prediction for "infrared safe" observable $\mathcal{J}(x) \not \propto \delta(x)$:

$$
\mathcal{J}=\int d x(R(x)+V \delta(x)) \mathcal{J}(x)=V \mathcal{J}(0)+\int d x R(x) \mathcal{J}(x)
$$

TOY EXAMPLE

- Toy expression with \mathcal{J} a measurement function, over $x \in[0,10]$

$$
\sigma^{(R+V)}(\mathcal{J})=\int_{0}^{10} d x \frac{\cos (x)}{x} \mathcal{J}(x)+\left[\int_{0}^{1} d y \frac{-e^{-y}}{y}\right] \mathcal{J}(0)-\left[\int_{0}^{10} d x \frac{1}{x}\right] \mathcal{J}(0)+\left[\int_{0}^{10} d x \frac{1}{x} \mathcal{J}(0)\right]
$$

- Distribute the local (in \times) counterterm over both pieces:

$$
\sigma^{(R+V)}(\mathcal{J})=\int_{0}^{10} d x\left[\frac{\cos (x)}{x} \mathcal{J}(x)-\frac{1}{x} \mathcal{J}(0)\right]+\left(\left[\int_{0}^{1} d y \frac{-e^{-y}}{y}\right]+\left[\int_{0}^{10} d x \frac{1}{x}\right]\right) \mathcal{J}(0)
$$

- And a regulator to evaluate the divergent integrals
$\sigma^{(R+V)}(\mathcal{J})=\int_{0}^{10} d x\left[\frac{\cos (x)}{x} \mathcal{J}(x)-\frac{1}{x} \mathcal{J}(0)\right]+\lim _{\epsilon \rightarrow 0}\left(\left[\int_{\epsilon}^{1} d y \frac{-e^{-y}}{y}\right]+\left[\int_{\epsilon}^{10} d x \frac{1}{x}\right]\right) \mathcal{J}(0)$
- To finally arrive at a finite result, differential in $x \in[0,10]$
$=\int_{0}^{10} d x\left[\frac{\cos (x)}{x} \mathcal{J}(x)-\frac{1}{x} \mathcal{J}(0)\right]+\lim _{\epsilon \rightarrow 0}(\log (\epsilon)+\gamma-\operatorname{Ei}(-1)+\log (10)-\log /(\epsilon)) \mathcal{J}(0)$

A PHYSICS CASE : $e^{+} e^{-} \rightarrow d \bar{d} g$

\mathbf{R} : Resolved region (finite)
\mathbf{S} : Soft gluon region
C : Collinear 4//5 region
SC : Soft and collinear 4//5 region

$$
R_{\text {subtracted }}=\left(1-\mathcal{C}_{35}-\mathcal{C}_{45}-\mathcal{S}_{3}+\mathcal{S}_{3} \mathcal{C}_{35}+\mathcal{S}_{3} \mathcal{C}_{45}\right) R
$$

COLLINEAR LIMIT

SOFT LIMIT

SOFT-COLLINEAR LIMIT

$$
\begin{gathered}
\text { NLO SUBTRACTION } \\
\sigma_{\sigma^{\mathrm{NLO}} \sim \int d^{4} \Phi_{m} B\left(\Phi_{m}\right)+\int d^{4} \Phi_{m} \int_{\text {loop }} d^{d} V\left(\Phi_{m}\right)+\int d^{d} \Phi_{m+1} R\left(\Phi_{m+1}\right)}
\end{gathered}
$$

In order to remain fully differential, one must regularise divergences in \mathbf{R} using a subtraction method:

$$
\begin{aligned}
\sigma^{\mathrm{NLO}} \sim & \int d^{4} \Phi_{m} B\left(\Phi_{m}\right) \\
& +\int d^{4} \Phi_{m}\left[\int_{\text {loop }} d^{d} l V\left(\Phi_{m}\right)+\int d^{d} \Phi_{1} G\left(\bar{\Phi}_{m+1}\right)\right]_{\epsilon \rightarrow 0} \\
& +\int d^{4} \Phi_{m+1}\left[R\left(\Phi_{m+1}\right)-G\left(\bar{\Phi}_{m+1}\right)\right]
\end{aligned}
$$

Terms in brackets are now both finite and fully differential in the real-emission degrees of freedom.

SUBTRACTION COLLINEAR CT

Required characteristics of the counterterms G:
\Rightarrow Reproduce singularities of R, allowing numerical integration in 4D
\Rightarrow Analytically integrable, $\int d^{d} \Phi_{1} G\left(\Phi_{m+1}\right)$ must be "simple enough"
\Rightarrow Universal, that is: process-independent
Factorised universality of collinear (and soft) radiation:

$$
\begin{gathered}
k_{b}=z k_{a}+k_{T}+\beta_{b} \hat{n} \\
k_{c}=(1-z) k_{a}-k_{T}+\beta_{c} \hat{n}
\end{gathered}
$$

$$
d \sigma^{(1, R)}=\frac{\alpha_{s}}{2 \pi} \int d k_{T}^{2} \int_{0}^{1} d z C_{F} \frac{1+z^{2}}{1-z} \frac{1}{k_{T}^{2}} d \sigma^{(0)}\left(k_{a}\right)+\mathcal{R}
$$

Allows to schematically write : $G\left(\phi_{m+1}\right) \sim \underbrace{B\left(\bar{\phi}_{m}\right)}_{\text {process dep. }} \otimes \underbrace{P\left(z, k_{T}\right)}_{\text {universal }}$

SUBTRACTION SOFT CT

Similarly for the soft limit, know as the Eikonal approximation:
$\mathcal{S}_{3}\left|\mathcal{M}\left(p_{d}, p_{\bar{d}}, p_{g}\right)\right|^{2} \sim$

$$
\frac{s_{d \bar{d}}}{s_{d g} s_{\bar{d} g}}\langle\mathcal{M}\left(p_{d}, p_{\bar{d}}\right) \underbrace{\left.\right|_{i_{d}} t_{i_{d} k}^{a} t_{k i_{\bar{d}}}^{a} i_{\bar{d}}}_{\mathbf{T}_{\mathbf{d}} \cdot \mathbf{T}_{\overline{\mathbf{d}}}} \mid \mathcal{M}\left(p_{d}, p_{\bar{d}}\right)\rangle
$$

The origin of the colour correlation is the interference nature of the soft limit:

FKS IMPLEMENTATION

Divide and conquer, partition the phase-space into sectors:

$$
d \sigma_{d \bar{d} g}=\underbrace{\left(S_{g d}+S_{g \bar{d}}\right)}_{=1} d \sigma_{d \bar{d} g}=\underbrace{S_{g d} d \sigma_{d \bar{d} g}}_{:=d \sigma_{d \bar{d} g}^{(g d)}}+\underbrace{S_{g \bar{d}} d \sigma_{d \bar{d} g}}_{:=d \sigma_{d \bar{d} g}^{(g \bar{d})}}
$$

Design the partition functions to isolate collinear singularities

Possible choice here: $S_{g x}\left(p_{d}, p_{\bar{d}}, p_{g}\right)=\frac{s_{g \bar{x}}}{s_{g d}+s_{g \bar{d}}} x \in\{d, \bar{d}\}$

FKS : PARAMETRISATION

Choose a wise parametrisation for each sector :

$$
d \sigma_{d \bar{d} g}^{(g d)}=\left(S_{g d} \mathcal{M}_{d \bar{d} g}\right) \mathbf{d} \mathbf{\Phi}_{\mathbf{d} \overline{\mathbf{d}} \mathbf{g}}=\left(S_{g d} \mathcal{M}_{d \bar{d} g}\right) E_{g} d E_{g} d \cos \left(\theta_{g d}\right) d \phi_{g} \mathbf{d} \tilde{\mathbf{\Phi}}_{\mathbf{d} \overline{\mathbf{d}}}^{(\mathbf{g d})}
$$

Now that singularities are factorised, introduce twice the identity:

$$
1 \equiv \frac{1-\delta(x)}{x}+\frac{\delta(x)}{x}=\left(\frac{1}{x}\right)_{+}+\frac{\delta(x)}{x} \quad\left(\text { i.e : } \int d x\left(\frac{1}{x}\right)_{+} f(x):=\int d x \frac{f(x)-f(0)}{x}\right)
$$

Thereby formally obtaining a subtraction scheme $\left(y_{g q}:=1-\cos \left(\theta_{g q}\right)\right)$
$d \sigma_{d \bar{d} g}^{(g d)}=\left[\left(\frac{1}{E_{g}}\right)_{+}+\frac{\delta\left(E_{g}\right)}{E_{g}}\right]\left[\left(\frac{1}{y_{g d}}\right)_{+}+\frac{\delta\left(y_{g d}\right)}{y_{g d}}\right] \times$
Local $\mathrm{CT}(d=4)<\left(E_{g}^{2} y_{g d} S_{g d} \mathcal{M}_{d \bar{d} g}\right) d E_{g} d y_{g d} d \phi_{g} \mathbf{d} \tilde{\Phi}_{\mathbf{d} \overline{\mathbf{d}}}^{(\mathbf{g d})}$

FKS : "RESIDUE CT"

Last step is to expand the deltas and invoke QCD factorisation:

Collinear :

$$
\delta\left(y_{g d}\right) S_{g d} \mathcal{M}_{d \bar{d} g} \stackrel{!}{=} \delta\left(y_{g d}\right) C_{g d}\left(z_{g d}\right) \mathcal{M}_{d \bar{d}}
$$

Soft :

$$
\left.\delta\left(E_{g}\right)\left(S_{g d}+S_{g \bar{d}}\right) \mathcal{M}_{d \bar{d} g}\right) \stackrel{!}{=} \delta\left(E_{g}\right) \mathbf{S}_{\mathbf{g}} \otimes \mathcal{M}_{\mathbf{d} \overline{\mathbf{d}}}
$$

Soft-Collinear :

$$
\delta\left(E_{g}\right) \delta\left(y_{g d}\right) S_{g d} \mathcal{M}_{d \bar{d} g} \stackrel{!}{=} \delta\left(E_{g}\right) \delta\left(y_{g d}\right) S C_{g d}\left(z_{g d}\right) \mathcal{M}_{d \bar{d}}
$$

PLAN

-Why and what are higher order corrections ?

- Computing one-loop Feynman diagrams
- Renormalisation and rational terms
- Subtraction techniques
- Matching to Parton showers beyond LO

DOUBLE-COUNTING : AMC@NLO

Double counting between real-emission contributions \mathbf{R} and $\mathcal{S}_{\{P\} \rightarrow\{H\}}$

Similar more subtle double-counting also between Virtual and \mathcal{S}
This issue can again be solved by constructing additional MC counterterms

MC COUNTERTERMS

One can loosely write \mathcal{S} as follows:

$$
\mathcal{S} \sim B-\left[\int d \phi_{1} M C\right]+d \phi_{1} M C+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

MC is constructed as the $\mathcal{O}\left(\alpha_{s}\right)$ term of \mathcal{S} and can be subtracted:

$$
\begin{aligned}
d \sigma^{\mathrm{NLOwPS}} & \sim\left[\int d^{4} \Phi_{m}\left(B+\int d^{d} l V+\int d^{d} \Phi_{1} G+\int d^{4} \Phi_{1}(M C-G)\right)\right] \mathcal{S}^{(m)} \\
& +\left[\int d \Phi_{m+1}(R-M C)\right] \mathcal{S}^{(m+1)}
\end{aligned}
$$

At NLO the MC counterterms are universal and hand-crafted analytically for each implementation of

The term R-MC is now bounded from above, so that one can produce unweighted events (though possibly negative)

$$
\begin{aligned}
d \sigma^{\mathrm{NLOwPS}} & \sim\left[\int d^{4} \Phi_{m}\left(B+\int d^{d} l V+\int d^{d} \Phi_{1} G+\int d^{4} \Phi_{1}(M C-G)\right)\right] \mathcal{S}^{(m)} \\
& +\left[\int d \Phi_{m+1}(R-M C)\right] \mathcal{S}^{(m+1)}
\end{aligned}
$$

In the soft/collinear limit, $R-M C \simeq 0$ and the shower dictates the shape of the spectrum emission:

$$
\begin{aligned}
d \sigma_{\text {soft or coll. }}^{\mathrm{NLOwPS}} \sim & {\left[\int d^{4} \Phi_{m}\left(B+\int d^{d} l V+\int d^{d} \Phi_{1} G+\int d^{4} \Phi /(M C-G)\right)\right] } \\
\times & \left(1-\left[\int d \phi_{1} \not / C\right]+d \phi_{1} \frac{M C}{B}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

Note that fixed-order NLO normalisation is maintained thanks to the unitarity of the shower operator (unlike in POWHEG)
In the hard limit, $M C \simeq 0, \mathcal{S}^{(m)} \simeq 1,(B+V) \mathcal{J}^{(m)}=0$ and the realemission ME dictates the shape:

$$
d \sigma_{h a r d}^{\mathrm{NLOwPS}} \sim\left[\int d \Phi_{m+1}(R)\right] \mathcal{S}^{(m+1)}
$$

MCANLD

Main features of this matching scheme:
\boldsymbol{m} Specific to the Parton Shower MC and its configuration
\boldsymbol{c} Yields events with negative weights
\Rightarrow Does not exponentiate matrix element corrections
\Rightarrow Maintains the fixed-order NLO inclusive normalisation
\Rightarrow Matching uncertainty introduced via shower starting scale definition (equiv. to h _fact in POWHEG)

TL;DL

Take-home messages:
\boldsymbol{m} One-loop ME can be computed fully automatically to build the virtual
\boldsymbol{m} NLO computations are automated but demand a tailored UFO model
\boldsymbol{A} Real-emission contributions are \mathbb{R} divergent and require subtraction
\Rightarrow Matching to PSMC with MC@NLO is shower specific but does not exponentiate the real-emission matrix element.

