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Prediction chain

ModelGµ⌫Gµ⌫ + ıq̄(i)Dµ�
µq(i) + [· · · ] = ı�µtaij , ...

Matrix Elementpp ! jj QCD = 2 M2
gg!dd̄ , ...

Partonic Eventsmatrix.f

Hadron level {⇡0,K+, e+, p, · · · }events.lhe

Detector levelevents.hep

ModelFeynRules

Matrix ElementMadGraph 5

Partonic EventsMadEvent

Hadron levelPythia / Herwig

Detector levelPGS / DELPHES

Partonic EventsMadFKS inc. MC@NLO
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ModelFR + NLOCT
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Plan

• Why and what are higher order corrections ?

• Computing one-loop Feynman diagrams
• Renormalisation and rational terms

• Subtraction techniques
• Matching to Parton showers beyond LO
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perturbative expansions
The differential cross section can be written as a perturbation series, using the 
coupling constant as an expansion parameter :

⇤̂ = ⇤Born
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“Easy”

NLO 
corrections

Difficult but
automated.

NNLO 
corrections

Case-by-case only

NNNLO 
corrections

Only g g > H

By construction the all-order differential cross-section is scale-independent, 
but this is not longer true when truncated : assess theoretical uncertainties.
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Credible total rates - p p > h

[ Anastasiou & al., ’15 ]
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Mild impact on rapidity - pp > H

[ Dulat & al., ’18 ]
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Sometimes significant impact - pp > w j

[ Ghermann & al., ’17 ]

NLO 2

NNLO 2
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perturbative expansion
The differential cross section can be written as a perturbation series, using the 
coupling constant as an expansion parameter :

NLO 
corrections

NNLO 
corrections

NNNLO 
corrections

⇤̂ = ⇤Born

⇤
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�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .

⌅

LO 
predictions

➡ Credible prediction of total (i.e. inclusive) cross sections of various 
scattering processes characterised by a set of partonic final-states.

➡ Better descriptions of the shape of highly energetic observables.
➡ Smaller theoretical uncertainty (    var.) when including higher orders.µR

Summary : why bothering to compute NkLO corrections?
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Perturbative expansion
Consider the four-point Green function:

And expand the exponential of the action:

Using Wick theorem and considering                       , we get Feyn. diags:       

e�i
R
d4yLI [�y ] =

1X

n=0

(�i)n

n!

Z
LI [�y1 ]d

4y1 · · ·
Z

LI [�yn ]d
4yn

h�xi1�xi2 |�xf1�xf2i = Z�1
0

Z
D[�]�xi1�xi2�xf1�xf2e

�i
R
d4xLI [�x]

LI [�x] ⌘ i��3
x

n = 2

Multi-loop

O(�2) O(�n)

n = 4

O(�4)

n > 5



Valentin Hirschi, ETHZ NLO QCD Accuracy 21.11.2018MG School, UTSC, Hefei

Perturbative expansion
Is this the only contribution however, in a prediction for observable J

This assumes that the observable only select that particular final state:

Prediction = J⌦ |h�xi1�xi2 |�xf1�xf2i|2

J ⇠ �(|�f i � |�xf1�xf2i)?
This is not reasonable for a theory like QCD (see jets lecture)!
The higher-multiplicity real-emission must be considered too :

|h�xi1�xi2 |�xf1�xf2�xf3i|2 '

⇠ (�3)2 [ +O(�8) ]
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Higher order corrections



MadEvent
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Loop computations

Real emission part

z }| {
Z

m+1
d(d)�R+

MadFKS

�NLO =

Virtual part

Z

m
d(d)�V +

MadLoop

Z

m
d(4)�B

Born
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Plan

• Why and what are higher order corrections ?

• Computing one-loop Feynman diagrams
• Renormalisation and rational terms

• Subtraction techniques
• Matching to Parton showers beyond LO
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MadLoop in MG5aMC
Process generation

With options specified (in this case, generates the one-loop matrix element code only):
[	0.01s	]	import	model	loop_sm-no_hwidth	
[	0.01s	]	set	complex_mass_scheme
[	5min		]	generate	g	g	>	e+	ve	mu-	vm~	b	b~	/	h	QED=2	[virt=QCD]	
[	2min		]	output	MyProc	
[	~1	s*	]	launch	-f

 generate	<process>	<amp_orders_and_option>	[<mode>=<pert_orders>]	<squared_orders>	
 import	model	<model_name>-<restrictions>

 output	<format>	<folder_name>
 launch	<options>

Very simple one (in this case, generates the full code for NLO computations) :
[	2.5s			]	generate	p	p	>	t	t~	[QCD]	
[	6.1s			]	output	
[	~	mins*]	launch

Examples, starting from a default MG5aMC interface

*	time	per	phase-space	point,	summed	over	helicity	configurations	and	colors.

cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary
Details on how to generate and use a MadLoop standalone library available @

*	timing	for	10k	unweighted	events	on	a	laptop

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary
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• No external tool for loop diagram generation:                       
Reuse MG5_aMC efficient tree level diagram generation!

• Cut loops have two extra external particles

            Trees (e+e- ➞ u u~ u u~)  ≡  Loops (e+e- ➞ u u~)

≡

≡

Diag 1 = [u⇤(6)g⇤(5)u⇤(A)]

Diag 3 = [u⇤(A)u⇤(6)g⇤(5)]

Generating loop diagrams
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Open-loops
[S. Pozzorini & al. hep-ph/1111.5206]

• Lite-Motive: Be Numerical where you can and analytical where you should.

N (lµ) =
rmaxX

r=0

C(r)
µ0µ1···µr l

µ0 lµ1 · · · lµr

• How to get these coefficients? (Wavefunction and 4-momenta indices now omitted)

...
W 0

1

W 1
2

W 1
3

W 2
4

W 3
5V 1

1

V 0
2

V 1
3

V 0
4

V (r=0,1)
j =

rX

i=0

vij l
iW (r)

j =
rX

i=0

wi
j l

i

W (0)
1 = w0

1 = 1

W (1)
2 = (v11l + v01)w

0
1

W (1)
3 = v02W

(1)
2 = v02(v

1
1l + v01)w

0
1

W (1)
4 = V (1)

3 W (1)
2 = (v13l + v03)v

0
2(v

1
1l + v01)w

0
1

... or end of loop and C(2) = v13v
0
2v

1
1w

0
1, C

(1) = v02w
0
1(v

1
3v

1
0 + v03v

1
1), C

0 = · · ·



ℓ
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ℓ+ p2 ℓ+ p3
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∫
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≡
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one-loop integral

• Consider this m-point loop diagram 
with n external momenta
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CWe will denote by     this integral. 

Di = (`+ pi)
2 �m2

iwith 



C
1-loop =

X
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X
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Scalar integral Basis
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The a, b, c, d and R coefficients depend only on external parameters 
and momenta.
Reduction of the loop to these scalar coefficients can be achieved using 
either Tensor Integral Reduction or Reduction at the integrand level



TIR: Passarino-Veltman
• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by 
“completing the square”

• Example: 
Application of PV to this triangle rank-1 integral
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Z
ddl

N(l)

D0D1D2 · · ·Dm�1
!

X

i

coe↵i

Z
ddl

1

D0D1 · · ·

p

q
p+ q

l

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

• Implemented in codes such as: 
COLLIER   [A. Denner, S .Dittmaier, L. Hofer, 1604.06792]
GOLEM95 [T. Binoth, J.Guillet, G. Heinrich, E.Pilon, T.Reither, 0810.0992]

http://arxiv.org/abs/arXiv:1604.06792
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)
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27

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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⎜
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2
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In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is
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1 + κ2
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28

• We can solve for C1 and C2 by contracting with p and q

 

       where                                                (For simplicity, the masses are neglected here)

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

• By expressing 2l.p and 2l.q as a sum of denominators we can express R1 and 
R2 as a sum of simpler integrals, e.g. 

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear
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collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

• The only independent four vectors are pµ and qµ . Therefore, the integral 
must be proportional to those. We can set-up a system of linear equations 
and try to solve for C1 and C2
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

• Now we can solve the equation 
 
 
 
by inverting the “Gram” matrix G

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

• We have re-expressed, reduced, our original 
integral  
 
 
 
in terms of known, simpler scalar integrals

R2 =

Z
dnl

(2⇡)n
2l · q

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + q)2 � l2 � q2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + p)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� q2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

• And similarly for R2



PV-Reduction chain
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Table from K.Ellis & al. hep-ph/1105.4319



Integrand reduction

• The integrand (or OPP [Ossola, Papadopoulos, Pittau 2006]) 
reduction method is a purely numerical algorithm that has been 
automated in computer codes such as 

CutTools [G.Ossola, C.Papadopoulos, R.Pittau, 0711.3596]

NINJA [T. Peraro, 1403.1229] (interface to MadLoop in [VH, T. Peraro, 1604.01363]

SAMURAI [P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano 1006.0710]

to find the scalar loop coefficients

• Both OPP and Tensor Integral Reduction techniques are 
interfaced in MadLoop  to compute loop diagrams. 

Valentin Hirschi, ETHZ NLO QCD Accuracy 21.11.2018MG School, UTSC, Hefei

How does OPP work?

http://arxiv.org/abs/arXiv:1604.06792
http://arxiv.org/abs/arXiv:1604.06792
http://arxiv.org/abs/arXiv:1604.06792
http://arxiv.org/abs/arXiv:1604.06792


integrand level
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• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

If we would know a similar relation at  
the integrand level, we would be able  
to manipulate the integrands and 
extract the coefficients without doing 
the integrals

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di Spurious term



integrand level
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• The functional form of the spurious terms is known (it depends on the 
rank of the integral and the number of propagators in the loop) [del 
Aguila, Pittau 2004]

• for example, a box coefficient from a rank 1 numerator is 
 
 
 
 
(remember that pi is the sum of the momentum that has entered the 
loop so far, so we always have p0 = 0)

• The integral is zero  
 
 

d̃i0i1i2i3(l) = d̃i0i1i2i3 ✏
µ⌫⇢� lµp⌫1p

⇢
2p

�
3

Z
ddl

d̃i0i1i2i3(l)

D0D1D2D3
= d̃i0i1i2i3

Z
ddl

✏µ⌫⇢� lµp⌫1p
⇢
2p

�
3

D0D1D2D3
= 0



Example - box coefficients
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• Two values are enough given the functional form for the 
spurious term. We can immediately determine the Box 
coefficient 
 
 
 

• By choosing other values for l, that set other combinations of 
4 “denominators” to zero, we can get all the Box coefficients

N(l±) = d0123 + d̃0123(l
±)

m�1Y

i 6=0,1,2,3

Di(l
±)

d0123 =
1

2

"
N(l+)

Qm�1
i 6=0,1,2,3 Di(l+)

+
N(l�)

Qm�1
i 6=0,1,2,3 Di(l�)

#



Example - box coefficients
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• Compute this integral:

• So we that the numerator is 

• We know that we need only Box, Triangle, Bubble (and Tadpole) 
contributions. Let’s find the first Box integral coefficient.

• Take the two solutions of

• And use the relation we found before and we directly have

Z
ddl

1

D0D1D2D3D4D5D6

D0(l
±) = D1(l

±) = D2(l
±) = D3(l

±) = 0

N(l) = 1

d0123 =
1

2

"
1

D4(l+)D5(l+)D6(l+)
+

1

D4(l�)D5(l�)D6(l�)

#

Di = (l + pi)
2 �m2

i



OPP Reduction
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To solve the OPP reduction, 
choosing special values for the 
loop momentum helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
to zero except the first line

There are two (complex) 
solutions to this equation due to 
the quadratic nature of the 
propagators

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
±) = D1(l

±) = D2(l
±) = D3(l

±) = 0

D0(l
±) = D1(l

±) = D2(l
±) = D3(l

±) = 0

= 0
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Now we choose l such that

 
sets all the terms in this equation 
to zero except the first and 
second line

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = D2(l
i) = 0

Coefficient computed in a previous step

= 0

OPP Reduction
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OPP Reduction

Now, choosing l such that 
 
 
sets all the terms in this equation 
to zero except the first, second 
and third line

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = 0

Coefficient computed in a previous step

= 0
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OPP Reduction

Now, choosing l such that 
 
 
sets  the last line to zero

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = 0

= 0
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Plan

• Why and what are higher order corrections ?

• Computing one-loop Feynman diagrams
• Renormalisation and rational terms

• Subtraction techniques
• Matching to Parton showers beyond LO



Complications in d-dimensions
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• The previous expression should in fact be written in d-dimensions

• In the t’HV scheme, external momenta and polarisation vectors 
are in 4 dimensions; only the loop momentum is in d dimensions 
 

• The integral to be computed should therefore read

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0



Complications in d-dimensions
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• The d-dimensional contribution gives rise to the 
rational term which splits into two contributions 
 

• R1 can be directly computed by the reduction 
algorithm, while R2 can be computed from a finite set 
of process-independent additional Feynman rules.

• R1: originates from the propagator (calculated in the reduction)

• R2: originates from the numerator (additional Feynman rules)

R = R1 +R2
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• The origin of R1 is coming is the denominators of the 
propagators in the loop  
 

• Of course, the propagator structure is known, so these 
contributions can be included in the OPP reduction

• They give contributions proportional to

1

Di
! 1

D̄i
=

1

D

 
1� l̃2

Di

!

Z
dd l̄

l̃2

D̄iD̄j
= �

i⇡2

2

"
m2

i +m2
j �

(pi � pj)2

3

#
+O(✏)

Z
dd l̄

l̃2

D̄iD̄jD̄k
= �

i⇡2

2
+O(✏)

Z
dd l̄

l̃4

D̄iD̄jD̄kD̄l
= �

i⇡2

6
+O(✏)

R1
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R2
1

(2⇡)4

Z
ddq̄

N̄(q̄)

D̄0D̄1 · · · D̄m�1

 Problem : numerical technique can only evaluate the numerator in 4 dimensions 

D̄i = (q̄ + pi)
2 �m2

iLoop amplitude: ,

 Solution : isolate the ε-dim part of the numerator: N̄(q̄)| {z }
d-dim

= N(q)| {z }
4-dim

+ Ñ(q̃, q, ✏)| {z }
✏�dim

�

Z
ddq̄

q̃2

D̄0D̄1D̄2
= �

i⇡2

2
+O(✏) Ex. : 

�i
↵

2⇡
e�µ

 Then : compute analytically the finite set of loops for which its contribution   
does not vanish, and re-express it in terms of an R2 Feynman rules.

R2 ⌘ lim
✏!0

1

(2⇡)4

Z
ddq̄

Ñ(q̃, q, ✏)

D̄0D̄1 · · · D̄m�1
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NLOCT
[C. Degrande, arXiv:1412.6955]

• UV counterterms:

�0 ! (1 +
1

2
�Z��) +

X

�

1

2
�Z���

x0 ! x+ �x

g(x) ! g(x+ �x)

L0 ! L+ �L
Fields

ext. params

int. params
}

A) Renormalize the Lagrangian 

C) Solve for the counterterms by applying renormalization conditions 

D) Derive and output the corresponding UV counterterms. 

B) Compute the defining loops 

Done in FeynArts. Notice that for        , only poles are needed.MS

• R2 counterterms, computed using FeynArts amplitudes as well.
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Lagrangian

FeynArts

Interfaces or UFO

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

Golem

MadGraph 5

Sherpa

[Alloul, N. Christensen, C. Degrande, C. Duhr, B.Fuks, in 1310.1921] 

Whizard

CalcHep

HERWIG

FeynArts
Needed for the

computation of  UV 
and R2 counterterms

[C. Degrande, 1406.3030] 

NLOCT
+

Feynrules @ NLO (version 2.1)
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Plan

• Why and what are higher order corrections ?

• Computing one-loop Feynman diagrams
• Renormalisation and rational terms

• Subtraction techniques
• Matching to Parton showers beyond LO
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NLO Anatomy

�NLO =

Virtual (V)

Z

m
d(d)�V +

Real-emission (R)

z }| {
Z

m+1
d(d)�R+

Z

m
d(4)�B

Born (B)

Virutal: computed analytically in dimensional regularisation (               ):d = 4� 2✏

Real: Diverges when unresolved extra emission is integrated over:

Total: Finite in 4 dimensions, and more accurate: 

Virtual =
A

✏2
+

B

✏
+ V

Z
d�1 Real = �A

✏2
� B

✏
+R

�NLO = B|{z}
�LO

+ R+ V| {z }
NLO correction
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NLO Anatomy 

p?

B|{z}
�LO

+ R+ V| {z }
NLO correction

=

d�NLO

+

Born (B)

Z

m
d(4)�B +

p?

+B

d�B

B

+

d�

Real-emission (R)

Z

m+1
d(d)�R

p?

+1

R
d(d)�1 R = A

✏2 + B
✏ +R

Virtual (V)

Z

m
d(d)�V

p?

d�

�1
� A

✏2 � B
✏2 + V

+

+

+

=

�NLO =

NLO inclusive
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Toy example
In order simplify the discussion, simplify V to some dummy 
divergent function one a one-dimensional compact volume:

…
R ⌘ cos(x)

x
IR divergence

Phase-space boundary
V ⌘ �(x)

Z 1

0
dy

�e�y

y

Prediction for “infrared safe” observable                      :

J =

Z
dx(R(x) + V �(x))J (x) = V J (0) +

Z
dxR(x)J (x)

J (x)⇢/ �(x)
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Toy example
J x 2 [0, 10]Toy expression with     a measurement function, over        

�(R+V )(J ) =

Z 10

0
dx

cos(x)

x
J (x) +

Z 1

0
dy

�e�y

y

�
J (0)

Distribute the local (in x) counterterm over both pieces:

�(R+V )(J ) =

Z 10

0
dx


cos(x)

x
J (x)� 1

x
J (0)

�
+

✓Z 1

0
dy

�e�y

y

�
+

Z 10

0
dx

1

x

�◆
J (0)

And a regulator to evaluate the divergent integrals

�(R+V )(J ) =

Z 10

0
dx


cos(x)

x
J (x)� 1

x
J (0)

�
+lim

✏!0

✓Z 1

✏
dy

�e�y

y

�
+

Z 10

✏
dx

1

x

�◆
J (0)

x 2 [0, 10]To finally arrive at a finite result, differential in 

=

Z 10

0
dx


cos(x)

x
J (x)� 1

x
J (0)

�
+lim

✏!0

⇣
log(✏)+��Ei(�1)+ log(10)� log(✏)

⌘
J (0)

�
Z 10

0
dx

1

x

�
J (0) +

Z 10

0
dx

1

x
J (0)

�

= 0
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A physics case : e+e� ! dd̄g

+

2

R = 

C

S
SC

R

s 3
5
!

0

s45 ! 0

p5 ! 0

⇠ s12
s35s45

R : Resolved region (finite)
S : Soft gluon region
C : Collinear 4//5 region
SC : Soft and collinear 4//5 region

Rsubtracted = (1� C35 � C45 � S3 + S3C35 + S3C45)R



Valentin Hirschi, ETHZ NLO QCD Accuracy 21.11.2018MG School, UTSC, Hefei

Collinear limit
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Soft limit
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Soft-collinear limit
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NLO Subtraction

�NLO ⇠
Z

d4�m B(�m)

+

Z
d4�m

 Z

loop

ddl V (�m) +

Z
dd�1G(�m+1)

�

✏!0

+

Z
d4�m+1


R(�m+1)�G(�m+1)

�

�NLO ⇠
Z

d4�m B(�m) +

Z
d4�m

Z

loop

ddl V (�m) +

Z
dd�m+1 R(�m+1)

In order to remain fully differential, one must regularise 
divergences in R using a subtraction method:

Terms in brackets are now both finite and fully differential in 
the real-emission degrees of freedom.
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Subtraction collinear CT
Required characteristics of the counterterms    :

➡ Universal, that is: process-independent

➡ Reproduce singularities of R, allowing numerical integration in 4D
G

➡ Analytically integrable ,                    must be “simple enough”
Z

dd�1G(�m+1)

Factorised universality of collinear (and soft) radiation:

ka

kb

kc

dσ(0)(ka)

d�(1,R) =
↵s

2⇡

Z
dk2T

Z 1

0
dzCF

1 + z2

1� z

1

k2T
d�(0)(ka) +R

kb = zka + kT + �bn̂

kc = (1� z)ka � kT + �cn̂

Allows to schematically write : G(�m+1) ⇠ B(�m)| {z }
process dep.

⌦P (z, kT )| {z }
universal
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Similarly for the soft limit, know as the Eikonal approximation:

S3|M(pd, pd̄, pg)|2 ⇠

The origin of the colour correlation is the interference nature of 
the soft limit:

Td̄

Td

sdd̄
sdgsd̄g

hM(pd, pd̄) |id taidkt
a
kid̄ id̄ || {z }

Td·Td̄

M(pd, pd̄)i

Subtraction soft CT



Valentin Hirschi, ETHZ NLO QCD Accuracy 21.11.2018MG School, UTSC, Hefei

FKS implementation
Divide and conquer, partition the phase-space into sectors:

d�dd̄g =
�
Sgd + Sgd̄

�
| {z }

=1

d�dd̄g = Sgd d�dd̄g| {z }
:=d�(gd)

dd̄g

+Sgd̄ d�dd̄g| {z }
:=d�(gd̄)

dd̄g

Design the partition functions to isolate collinear singularities

s 3
5
!

0

s45 ! 0

s 3
5
!

0

s45 ! 0

s 3
5
!

0

s45 ! 0

+

Possible choice here: Sgx(pd, pd̄, pg) =
sgx̄

sgd + sgd̄
x 2 {d, d̄}
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FKS : Parametrisation
Choose a wise parametrisation for each sector :

d�(gd)
dd̄g

= (SgdMdd̄g)d�dd̄g = (SgdMdd̄g) EgdEgd cos(✓gd)d�gd�̃
(gd)

dd̄

Local CT
Integrated CT

(d = 4)

(d = 4� 2✏)

Now that singularities are factorised, introduce twice the identity:

1 ⌘ 1� �(x)

x
+

�(x)

x
=

✓
1

x

◆

+

+
�(x)

x
(  i.e :                                   )

Z
dx

✓
1

x

◆

+

f(x) :=

Z
dx

f(x)� f(0)

x

Thereby formally obtaining a subtraction scheme (                      )ygq := 1� cos(✓gq)

d�(gd)
dd̄g

=

⇣
1
Eg

⌘

+
+ �(Eg)

Eg

� ⇣
1

ygd

⌘

+
+ �(ygd)

ygd

�
⇥

(E2
g ygdSgdMdd̄g) dEgdygdd�gd�̃

(gd)

dd̄
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FKS : “Residue CT”
Last step is to expand the deltas and invoke QCD factorisation:

Soft :

�(Eg)(Sgd + Sgd̄)Mdd̄g)
!
= �(Eg)Sg ⌦Mdd̄

Collinear :

�(ygd)SgdMdd̄g
!
= �(ygd)Cgd(zgd)Mdd̄

Soft-Collinear :

�(Eg)�(ygd)SgdMdd̄g
!
= �(Eg)�(ygd)SCgd(zgd)Mdd̄
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Plan

• Why and what are higher order corrections ?

• Computing one-loop Feynman diagrams
• Renormalisation and rational terms

• Subtraction techniques
• Matching to Parton showers beyond LO
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Double-counting : aMC@NLO

Double counting between real-emission contributions R and S{P}!{H}

This issue can again be solved by constructing additional MC counterterms 

Similar more subtle double-counting also between Virtual and S

SParton shower evolution(     )

...

...Born:

R:

Pe
rt

ur
ba

tio
n 

th
eo

ry
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MC counterterms
One can loosely write     as follows:S

SMC is constructed as the          term of     and can be subtracted:O(↵s)

d�NLOwPS ⇠
Z

d4�m

✓
B +

Z
ddl V+

Z
dd�1G+

Z
d4�1(MC �G)

◆�
S(m)

+

Z
d�m+1 (R�MC)

�
S(m+1)

At NLO the MC counterterms are universal and hand-crafted 
analytically for each implementation of 

The term R-MC is now bounded from above, so that one can 
produce unweighted events (though possibly negative)

S ⇠ B �

Z
d�1MC

�
+ d�1MC +O(↵2

s)
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MC counterterms
d�NLOwPS ⇠

Z
d4�m

✓
B +

Z
ddl V+

Z
dd�1G+

Z
d4�1(MC �G)

◆�
S(m)

+

Z
d�m+1 (R�MC)

�
S(m+1)

In the hard limit,                                                 and the real-
emission ME dictates the shape:

MC ' 0, S(m) ' 1, (B + V )J (m) = 0

d�NLOwPS

hard ⇠
⇥R

d�m+1 (R)
⇤
S(m+1)

Note that fixed-order NLO normalisation is maintained thanks to the 
unitarity of the shower operator ( unlike in POWHEG)

R�MC ' 0In the soft/collinear limit,                    and the shower dictates 
the shape of the spectrum emission:

d�NLOwPS

soft or coll. ⇠

Z
d4�m

✓
B +

Z
ddl V+

Z
dd�1G+

Z
d4�1(MC �G)

◆�

⇥

✓
1�

Z
d�1

MC

B

�
+ d�1

MC

B
+O(↵2

s)

◆
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MC@NLO

Main features of this matching scheme:

➡ Specific to the Parton Shower MC and its configuration

➡ Yields events with negative weights

➡ Maintains the fixed-order NLO inclusive normalisation

➡ Does not exponentiate matrix element corrections

➡ Matching uncertainty introduced via shower starting scale definition 
(equiv. to h_fact in POWHEG )
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TL;DL

Take-home messages:

➡ One-loop ME can be computed fully automatically to build the virtual

➡ Real-emission contributions are IR divergent and require subtraction

➡ Matching to PSMC with MC@NLO is shower specific but does not 
exponentiate the real-emission matrix element.

➡ NLO computations are automated but demand a tailored UFO model 


