

MadAnalysis 5 tutorial

FeynRules/MadGraph School on Collider Phenomenology 2018 19-23 November 2018, Hefei (China)

2. Designing a simple analysis with the normal mode

2. Designing a simple analysis with the normal mode

Installation of tools on your machine

- 1. Installing the new release of MadAnalysis 5
 - Downloading the tarball from the webpage: <u>https://launchpad.net/madanalysis5/trunk/v1.6/+download/MA5_v1.7beta.tgz</u>
 - Untar the tarball
 - Executing MadAnalysis 5

bash> tar xzf MA5_v1.7beta.tgz

bash> cd madanalysis5
bash> ./bin/ma5

2. Installing Delphes for MadAnalysis 5

ma5> install delphes

- 3. Installing the PAD (Physics Analysis Database) interface
- ma5> install PAD
- 4. Piece of advice: installing zlib if not found ma5> install zlib

Samples produced during the MadGraph tutorial

1. Signal sample: monojet (jet+missing energy)

- *MG command line:* generate p p > xd xd~ j
- Number of events: at least 10,000
- File format: LHE, HEPMC

2. Background sample: neutrino + jets

- *MG command line:* generate p p > vl vl~ j
- Number of events: at least 10,000
- File format: LHE, HEPMC

If you did have the time to produce these samples, do not worry!

These samples can be found here:

https://indico.ihep.ac.cn/event/7822/page/8

Documentation

Reference card of MadAnalysis 5 v1.6 is available and can help you for defining an analysis.

2. Designing a simple analysis with the normal mode

First plots

- Import your samples LHE format
- Plotting a NPID histogram (multiplicity of each particle identity)
- Plotting MET
- Set the integrated luminosity to 65 fb⁻¹ (end of LHC run II)

Do the same for HEPMC files and compare the results.

Starting MadAnalysis 5 for parton level studies

bash> ./bin/ma5

Starting MadAnalysis 5 for hadron level studies

bash> ./bin/ma5 -H

IPHC Institut Pluridisciplinaire Hubert CUREN STRABOURD

First plots - SOLUTION

ROOT files production

• From HEPMC files, produce ROOT files by applying Delphes with « standard » CMS simulation. No pile-up simulation.

• Check with the previous scripts the content of your ROOT sample.

Starting MadAnalysis 5 for reconstruction-level studies

bash> ./bin/ma5 -R

Applying Delphes over your events from MadAnalysis 5 console

```
ma5> define invisible = 52 -52 invisible
ma5> set main.fastsim.package = delphes
ma5> set main.fastsim.detector = cms
ma5> set main.fastsim.output = true
ma5> import signal.hepmc
ma5> submit
```

ROOT file will be here: ANALYSIS_X/Output/_defaultset/RecoEvents0_0/DelphesEvents.root

Defining an analysis from ROOT files

- 1. Searching for the most discriminating variables and defining a simple cut-and-count selection.
- 2. Creating 4 several regions:
 - « At least one b-tag jet » and « light jets »
 - MET < 250 GeV and MET > 250 GeV

Helpful Tips	Some observables to study	Leptonic activity	Isolated lepton multiplicity	
		Hadronic activity	Jet multiplicity	
			THT (Total Hadronic Transverse Energy)	
			Transverse momentum of all jets, of the leading jet, of the sub-leading jet,	
			B-tagging	
		Angles	ΔR(MET,j), ΔΦ(MET,j)	

Defining an analysis from ROOT files - SOLUTION

```
ma5> # *****PLOTS*****
ma5> define 1 = 1 + 1 -
ma5> plot N(l)
ma5> define j = j b
ma5> plot N(j)
ma5> plot THT
ma5> plot PT(j)
ma5> plot PT(j[1])
ma5> plot N(b)
ma5> plot PT(b)
ma5> plot PT(b[1])
ma5> plot DELTAR(met, j[1])
ma5> plot DPHI 0 2PI(met,j[1])
```


Defining an analysis from ROOT files - SOLUTION

Defining an analysis from ROOT files - SOLUTION

ma5> # *****SOME CUTS*****

2. Designing a simple analysis with the normal mode

Goal: constraints on your process by the ATLAS monojet analysis ATLAS-EXOT-2015-03

Have a look on the PAD (Physics Analysis Database) of the validation card of the analysis implementation

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase

Reinterpretation step-by-step:

• Opening a MadAnalysis 5 session @ the reconstruction level

bash> ./bin/ma5 -R

• Activating the « recast » mode

ma5> set main.recast = on

• Importing your signal sample (HEPMC format)

• Launching the reinterpretation

Launching the analysis ATLAS-EXOT-2015-03 on your signal:

• Editing the recasting Card

MA5: Would you like to edit the recasting Card ? (Y/N) Answer: Y

• Selecting ONLY the ATLAS monojet analysis ATLAS-EXOT-2015-03 analysis

# AnalysisName	PADType	Switch	DelphesCard		
cms_top_17_009	v1.2	off	delphes_card_cms_top_17_009.tcl	# CMS	- 13 TeV - 4 top and
CMS_EXO_16_012_2gamma	v1.2	off	delphes_card_cms_exo_16_012.tcl	# CMS	- 13 TeV - Mono-Higg
cms_sus_17_001	v1.2	off	delphes_card_cms_exo_16_010.tcl	# CMS	- 13 TeV - stops in
CMS_SUS_16_052	v1.2	off	delphes_card_cms_SUS_16_052.tcl	# CMS	- 13 TeV - SUSY 1 le
ATLAS_SUSY_16_07	v1.2	off	delphes_card_ATLAS_1604_07773.tcl	# ATLAS	- 13 TeV - Multijet
ATLAS_EXOT_2016_32	v1.2	off	delphes_card_atlas_2016_32.tcl	# ATLAS	- 13 TeV - Monophoto
ATLAS_1711_03301	v1.2	on	delphes_card_ATLAS_1711_03301.tcl	# ATLAS	- 13 TeV - Monojet
ATLAS_CONF_2016_086	v1.2	off	delphes_card_ATLAS_CONF_2016_086.tcl	# ATLAS	- 13 TeV - Dark matt

• Detector simulation + Reinterpretation ongoing. Be patient please.

Opening the results

At the end of the reinterpretation process, results are gathered into a file called « CLs_output_summary.dat ». Open the file for getting the excluded cross-section @ CL=95%.

# dataset	analysis name	signal region	sig95(exp)	sig95(obs)	11	efficiency	stat. unc.	sys
defaultset	ATLAS_1604_07773	EM1	4.8706612	5.1880773		0.0529692	0.0341248	0.0
defaultset	ATLAS_1604_07773	EM2	2.3853053	1.8139249		0.0694817	0.0387413	0.0
defaultset	ATLAS_1604_07773	EM3	1.0788100	0.6677819		0.1020777	0.0461277	0.0
defaultset	ATLAS_1604_07773	EM4	0.2632191	0.3037660		0.3445360	0.0724050	0.0
defaultset	ATLAS_1604_07773	EM5	0.2899671	0.4168377		0.1198082	0.0494776	0.0
defaultset	ATLAS_1604_07773	EM6	4.1283192	2.9171533		0.0048845	0.0106224	0.0
defaultset	ATLAS_1604_07773	EM7	11.7875544	15.2956134		0.0012613	0.0054078	0.0
defaultset	ATLAS_1604_07773	IM1	0.8393238	0.7617653		0.6950184	0.0701474	0.0
defaultset	ATLAS_1604_07773	IM2	0.5545031	0.4478380		0.6420493	0.0730420	0.0
defaultset	ATLAS_1604_07773	IM3	0.3738453	0.3294120		0.5725676	0.0753744	0.0
defaultset	ATLAS_1604_07773	IM4	0.2708652	0.3210029		0.4704898	0.0760482	0.0
defaultset	ATLAS_1604_07773	IM5	0.4089076	0.4915413		0.1259540	0.0505533	0.0
defaultset	ATLAS_1604_07773	IM6	0.4738019	3.8653407		0.0061458	0.0119077	0.0