

Collider Phenomenology

Fabio Maltoni

Università di Bologna & Université catholique de Louvain

FeynRules/MadGraph School - Hefei 2018

Collider Physics

The purpose of collider physics is to test theoretical predictions experimentally in a controllable environment

Collider	Site	Initial State	Energy	Discovery / Target
SPEAR	SLAC	e^+e^-	4 GeV	charm quark, tau lepton
PETRA	DESY	e^+e^-	38 GeV	gluon
SppS	CERN	p ar p	600 GeV	W, Z bosons
LEP	CERN	e^+e^-	210 GeV	SM: elw and QCD
SLC	SLAC	e^+e^-	90 GeV	elw SM
HERA	DESY	ep	320 GeV	quark/gluon structure of proton
Tevatron	FNAL	p ar p	2 TeV	top quark
BaBar / Belle	SLAC / KEK	e^+e^-	I0 GeV	quark mix / CP violation
LHC	CERN	pp	7/8/14 TeV	Higgs boson, elw. sb, New Physics
FCC-ee/CEPC/ILC		e^+e^-	> 200 GeV	hi. res of elw sb / Higgs couplings
CLIC		e^+e^-	3 - 5 TeV	hi. res of elw sb / Higgs couplings
FCC-pp		pp	100 TeV	disc. multi-TeV physics

The reach of collider facilities

$A + B \to M$	production in 2-partic	le collisions:	$M^2 = (p_1 + p_2)^2$		
fixed target:	$p_1 \simeq (E, 0, 0, E)$	before	after		
	$p_2 = (m, 0, 0, 0)$	\longrightarrow 0	$\bullet \longrightarrow$		
	$M \simeq \sqrt{2mE}$	root increase	e in M		
	- root E law: large energy loss in $E_{\rm kin}$ - dense target: large collision rate / luminosity				
<u>collider target:</u>	$p_1 = (E, 0, 0, E)$	before	after		
	$p_2 = (E, 0, 0, -E)$	$\longrightarrow \leftarrow$	-		
	$M \simeq 2E$ - linear E law: no ene - less dense bunches:	rgy loss small collision 1	rates		

FeynRules/MadGraph School - Hefei 2018

Collider characteristics

<u>Energy:</u> ranges from a few GeV to several TeV (LHC)

<u>Luminosity:</u> measures the rate of particles in colliding bunches

$$\mathcal{L} = \frac{N_1 N_2 f}{A} \qquad N_i = \text{ number of particles in bunches} \\ A = \text{ transverse bunch area} \\ f = \text{ bunch collision rate}$$

 $\mathcal{L}\sigma =$ observed rate for process with cross section σ

LHC (targeted): $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 300 \text{ fb}^{-1}$ in 3 years <u>Circular vs linear collider:</u>

charged particles in circular motion: permanently accelerated towards center -> emitting photons as synchrotron light $\Delta E \sim E^4/R$

- large loss of energy [hypothetical TeV collider at LEP: $\Delta E \simeq E$ per turn]
- no-more sharp initial state energy

FeynRules/MadGraph School - Hefei 2018

LHC master formula

FeynRules/MadGraph School - Hefei 2018

CEPC master formula

FeynRules/MadGraph School - Hefei 2018

Kinematics

We describe the collision in terms of parton energies

E1 = x1 Ebeam E2 = x2 Ebeam

Obviously the partonic c.m.s. frame will be in general boosted. Let us say that the two partons annihilate into a particle of mass M.

$$M^{2} = x_{1}x_{2}S = x_{1}x_{2}4E_{\text{beam}}^{2}$$
$$y = \frac{1}{2}\log\frac{x_{1}}{x_{2}}$$
$$x_{1} = \frac{M}{\sqrt{S}}e^{y} \quad x_{2} = \frac{M}{\sqrt{S}}e^{-y}$$

LHC master formula

More exactly

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

where the partonic cross section is calculated by

Crucial pieces for the calculation of the hadronic cross section are the **parton distribution** functions $f_{i/p}$ and the squared matrix element $|\mathcal{M}|^2$

Let's see how to calculate the cross section for a simple process such as $pp \rightarrow ttbar$. There are two initial states possible, gg and qqbar. For gg (which will dominate at the LHC) we obtain:

$$\frac{d\sigma}{d\hat{s}} = \int_0^1 \int_0^1 dx_1 dx_2 g(x_1, \mu_F) g(x_2, \mu_F) \,\hat{\sigma}(\hat{s}) \delta(\hat{s} - x_1 x_2 s)$$

We introduce the variable tau, that is proportional to x1 and x2:

$$\tau \equiv \frac{\hat{s}}{s} = x_1 x_2$$

and obtain

$$\frac{d\sigma}{d\tau} = \int_0^1 \int_0^1 dx_1 dx_2 g(x_1, \mu_F) g(x_2, \mu_F) \frac{\hat{\sigma}(\hat{s})}{\tau} \delta\left(1 - \frac{x_1 x_2}{\tau}\right)$$

$$\frac{d\sigma}{d\tau} = \frac{\hat{\sigma}(\hat{s})}{\tau} \left| \int_{\tau}^{1} \frac{dx_1}{x_1} g(x_1) g(\frac{\tau}{x_1}) \right|$$

We define the dimensionless partonic luminosity:

$$\frac{dL_{gg}}{d\tau} \equiv \int_{\tau}^{1} \frac{dx_1}{x_1} g(x_1) g(\frac{\tau}{x_1})$$

and calculate the total cross section as:

$$\begin{split} \sigma(pp \to t\bar{t} + X) &= \int_{\tau_{\min}}^{1} d\tau \cdot \hat{\sigma}_{gg \to t\bar{t}}(s\tau) \cdot \frac{dL}{d\tau} & \text{Close to} \\ &= \int_{\tau_{\min}}^{1} \frac{d\tau}{\tau} \cdot [\hat{s}\hat{\sigma}_{gg \to t\bar{t}}(\hat{s})] \cdot \frac{\tau dL}{\hat{s}d\tau} & \text{(cross section)}^{"} \end{split}$$

FeynRules/MadGraph School - Hefei 2018

A simple example: tt

$$\frac{dL_{gg}}{d\tau} \equiv \int_{\tau}^{1} \frac{dx_1}{x_1} g(x_1) g(\frac{\tau}{x_1})$$

If we take for simplicity

 $g(x) = \frac{1}{x^{1+\delta}} \Rightarrow \frac{dL_{gg}}{d\tau} = \frac{1}{\tau^{1+\delta}}\log\tau$

i.e. the total "cross section" will scale as a power of 1/mt^{1+delta} Log Mt

The short distance coefficient can be easily calculated at LO via the feynman diagrams:

FeynRules/MadGraph School - Hefei 2018

$$\begin{aligned} \frac{1}{256}|M|^2 &= \frac{3g_s^4}{4}\frac{(m^2-t)(m^2-u)}{s^2} - \frac{g_s^4}{24}\frac{m^2(s-4m^2)}{(m^2-t)(m^2-u)} + \frac{g_s^4}{6}\frac{tu-m^2(3t+u)-m^4}{(m^2-t)^2} \\ &+ \frac{g_s^4}{6}\frac{tu-m^2(t+3u)-m^4}{(m^2-u)^2} - \frac{3g_s^4}{8}\frac{tu-2m^2t+m^4}{s(m^2-t)} - \frac{3g_s^4}{8}\frac{tu-2m^2u+m^4}{s(m^2-u)} \end{aligned}$$

3 diagrams squared + the interferences. This amplitude is integrated over the phase space at fixed shat:

$$\hat{\sigma}_{gg \to t\bar{t}} = \frac{1}{2\hat{s}} \,\beta \,2\pi \int_{-1}^{+1} d\cos\theta^* \,|M|^2/256$$

eventually giving:

$$\beta = \sqrt{1 - 4m_t^2/\hat{s}}$$
$$\hat{\sigma}_{gg \to t\bar{t}} = \frac{\pi \alpha_s^2 \beta}{48\hat{s}} \left(31\beta + \left(\frac{33}{\beta} - 18\beta + \beta^3\right) \ln\left[\frac{1+\beta}{1-\beta}\right] - 59 \right)$$

A simple example: tt

LHC master formula

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

Two ingredients necessary:

- 1. Parton Distribution Functions (from exp, but evolution from th).
- 2. Short distance coefficients as an expansion in α_S (from th).

$$\hat{\sigma}_{ab\to X} = \sigma_0 + \alpha_S \sigma_1 + \alpha_S^2 \sigma_2 + \dots$$

Leading order

Next-to-leading order

Next-to-next-to-leading order

Perturbative expansion

- Leading order (LO) calculations typically give only the order of magnitude of cross sections and distributions
 - the scale of α s is not defined
 - jets partons: jet structure starts to appear only beyond LO
 - Born topology might not be leading at the LHC
- To obtain reliable predictions at least NLO is needed
- NNLO allows to quantify uncertainties

Furthermore:

- Resummation of the large logarithmic terms at phase space boundaries
- NLO ElectroWeak corrections ($\alpha_{s^2} = \alpha_W$)
- Fully exclusive predictions available in terms of event simulation that can be used in experimental analysis

for production vs # vS=14Tei LD, eteq 811, $\alpha_{n}(M_{n})=0.130$

Ω. ctco6 m. α.(N.)=0.118

µ[GeV]

LHC Physics = QCD + ϵ

]FeynRules/MadGraph School - Hefei 2018

Higgs production channels

P,

Higgs production at the LHC

FeynRules/MadGraph School - Hefei 2018

P,

FeynRules/MadGraph School - Hefei 2018

FeynRules/MadGraph School - Hefei 2018

I. High-Q² Scattering

where new physics lies

respendent Sherpa artist

first principles description

religious in the systematically improved

3. Hadronization

FeynRules/MadGraph School - Hefei 2018

4. Underlying Event

I. High-Q² Scattering

2. Parton Shower

FeynRules/MadGraph School - Hefei 2018

I. High-Q² Scattering

Iow Q² physics
energy and process dependent
model dependent

3. Hadronization

FeynRules/MadGraph School - Hefei 2018

4. Underlying Event

SM Status

]FeynRules/MadGraph School - Hefei 2018

Summary so far

- High energy collisions allow to probe interactions at very short distances, but entail SM physics that has to be described with:
 - Identify observables that can be calculated and measured reliably.
 - Accurate/Precise predictions => difficult calculations, multi-loop, QCD, EW.
 - ✦ A fully exclusive approach (associate an history to each short distance event).

Discoveries in the precision era

Question:

Precise/accurate predictions are very difficult/expensive. Are we sure they are really needed? For what exactly?

Short answer:

The discovery potential of any collider working in the precision phase (fixed energy, accumulating luminosity) is directly related to our ability to make precise predictions.

New Physics

- A new force has been discovered, the first elementary of Yukawa type ever seen.
- Its mediator looks a lot like the SM scalar: Huniversality of the couplings
- No sign of.....New Physics (from the LHC)!

• We have no bullet-proof theoretical argument to argue for the existence of New Physics between 8 and 13 TeV and even less so to prefer a NP model with respect to another.

The obvious imperative:

LOOK FOR NP AT THE LHC BY COVERING THE WIDEST RANGE OF TH- AND/OR EXP-MOTIVATED SEARCHES.

Searches should aim at being sensitive to the highest-possible scales of energy

Searching for new physics

Model-dependent

SUSY, 2HDM, ED,...

UCLouvain

simplified models, EFT, ...

Model-independent

Search for new states

specific models, simplified models

Search for new interactions

anomalous couplings, EFT...

Exotic signatures

precision measurements

Standard signatures

rare processes

FeynRules/MadGraph School - Hefei 2018

Searching for new physics

Search for new states

SUSY, EXOTICS, BSM HIGGS

Search for new interactions

SM

Searching for new resonances

peak

shape

pp→gg,gq,qq→jets+∉_T

discriminant

 $pp \rightarrow H \rightarrow W^+W^-$

very hard

Background normalization and shapes known very well. Interplay with the best theoretical predictions (via MC) and data.

Background directly measured from data. TH needed only for parameter extraction (Normalization, acceptance,...)

hard

Background shapes needed. Flexible MC for both signal and background tuned and validated with data.

A simple example: tt

Imagine a new scalar exists which couples mostly to top quark, similar to the SM Higgs, but it is heavier than 2m_t. It would be produced as the SM Higgs via gluon fusion and then mostly decay to top quarks:

giving rise to a peak in the invariant mass distribution of m(tt). However, this process interferes with the QCD background:

A simple example: tt

Taking our previous calculation of the SM amplitude and adding the scalar production:

$$N(s/m^2) = \frac{3}{2} \frac{m^2}{s} \left[4 - \left(1 - \frac{4m^2}{s} \right) I(s/m^2) \right] \quad I(s/m^2) = \left[\ln \frac{1+\beta}{1-\beta} - i\pi \right]^2 \quad (s > 4m^2)$$

]FeynRules/MadGraph School - Hefei 2018

A simple example: tī

Peaks but also peak-dip and dip only structures. "Easy" to discover independently of the precise knowledge of the SM. However, needs accurate theory to characterise it.

Increasing the energy of a collider gives a big boost to the reach of resonance searches, while the gain due to the increase of luminosity is marginal (beware of assumptions here).

]FeynRules/MadGraph School - Hefei 2018

Searching for new physics

Search for new states

SUSY, EXOTICS, BSM HIGGS

Search for new interactions

SM

FeynRules/MadGraph School - Hefei 2018

FeynRules/MadGraph School - Hefei 2018

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{g^2}{M^2} \bar{\psi} \psi \bar{\psi} \psi$$
$$M^2 = g^2 v^2 \Rightarrow \Lambda = v$$

 Λ is an upper bound on the scale of new physics

$$h = c = 1$$
$$\dim A^{\mu} = 1$$
$$\dim \phi = 1$$
$$\dim \psi = 3/2$$

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{\dim=6}$$

59 operators [Buchmuller, Wyler, 1986]

A simple example: tt

FeynRules/MadGraph School - Hefei 2018

A simple example: tt

These new interactions lead to deformations of the SM distributions.

Need to know the SM distributions extremely well as well as the EFT ones!

Search for New Physics at the LHC

Two main strategies for searching new physics

"Peak" or more complicated structures searches. Need for **descriptive MC** for discovery = Discovery is data driven. Later need precision for characterisation.

UCLouvain

Deviations are expected to be small. Intrinsically a precision measurement. Needs for **predictive MC** and accurate predictions for SM and EFT.

]FeynRules/MadGraph School - Hefei 2018

New generation of MC tools

Theory

Lagrangian Gauge invariance QCD Partons NLO Resummation

...

Detector simulation Pions, Kaons, ... Reconstruction B-tagging efficiency Boosted decision tree Neural network

New generation of MC tools

Aims of the week

- * The morning lectures for reviewing or introducing new concepts
- The afternoons, the most important part of the school, will be devoted to the tutorials

Aims of the week

- * Master the basic concepts of collider physics
- * Learn about the latest techniques that allow to make accurate and predictions for events at the LHC in the SM and Beyond.
- * Install the full chain of tools on your laptop.
- * Apply and use the tools to make your own New Physics search, simulating signal and background.
- * At the end of the week you'll be ready to roll

QCD, MC Showers

Jets

QCD precision

EW precision

Detector Sim

MG5aMC

MadAnalysis

Future e+e-

Inspiring BSM

Precision BSM

BSM in the making

Tutorials

EFT at LHC

EFT at e+e-

Hidden particles

Dark Matter

We are for you!

