Parton Showers and Matching/Merging

Lecture 2 of 2: Matching/Merging \& Non-Perturbative Corrections

Peter Skands (Monash University) Feynrules/Madgraph School, Hefei 2018

SHOWERS VS MATRIX ELEMENTS

Showers. Nice to have all-orders solution
But only exact in singular (soft \& collinear) limits
\rightarrow gets bulk of bremsstrahlung corrections right, but no precision for hard wide-angle radiation: visible, extra jets
... which is exactly where fixed-order (ME) calculations work!

So combine them!

See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

HOW NOT TO DO IT ... IN MORE DETAIL

- A (Complete Idiot's) Solution - Combine

1. $[\mathrm{X}]_{\text {ME }}+$ showering
2. $[X+1 \text { jet }]_{\text {ME }}+$ showering
3. ...

Doesn't work

Run generator for X (+ shower)
Run generator for $\mathrm{X}+1$ (+ shower)
Run generator for ... (+ shower)
Combine everything into one sample

- $[\mathrm{X}]+$ shower is inclusive
- $[X+1]+$ shower is also inclusive

EXAMPLE: \boldsymbol{H}^{0}
 $\rightarrow \mathrm{bb}$.

Born + Shower

What the first-order shower expansion gives you

Born + I @ LO

2

Shower Approximation to Born + I

What you get from first-order (LO) madgraph

EXAMPLE: $H^{0} \rightarrow \mathrm{~b} \overline{\mathrm{~b}}$.

Born + Shower

$$
\left.+\frac{g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]}{\text { Example of shower kernel }}+\ldots\right)
$$

(here, used an "antenna function" for

Born + I @ LO

coherent gluon emission from a quark pair)
 what MG would give you
Total Overkill to add these two. All we really need is just that $\mathbf{+ 2} \ldots$

1. MATRIX-ELEMENT CORRECTIONS

Exploit freedom to choose non-singular terms

Bengtsson, Sjöstrand, PLB 185 (I987) 435

Modify parton shower to use process-dependent radiation functions for first emission \rightarrow absorb real correction

$$
\text { Parton Shower } \frac{P(z)}{Q^{2}} \rightarrow \frac{P^{\prime}(z)}{Q^{2}}=\frac{P(z)}{Q^{2}} \underbrace{\frac{\left|M_{n+1}\right|^{2}}{\sum_{i} P_{i}(z) / Q_{i}^{2}\left|M_{n}\right|^{2}}}_{\text {MEC }}
$$

```
(suppressing
\alpha
Jacobian
factors)
```

Process-dependent MEC $\rightarrow \mathrm{P}^{\prime}$ different for each process
Done in PYTHIA for all SM decays and many BSM ones Norrbin, Sjöstrand,
Based on systematic classification of spin/colour structures NPB 603 (200I) 297

Also used to account for mass effects, and for a few $2 \rightarrow 2$ procs
Difficult to generalise beyond one emission
Parton-shower expansions complicated \& can have "dead zones"
Achieved in VINCIA (by devising showers that have simple expansions)
Only recently done for hadron collisions

Giele, Kosower, Skands, PRD 84 (201I) 054003
Fischer et al, arXiv:1605.06I42

MECS WITH LOOPS: POWHEG

Acronym stands for: Positive Weight Hardest Emission Generator.

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission $\left[\begin{array}{l}\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { any }} a_{i}\left|M_{F}\right|^{2} \\ \text { Correct to Matrix Element }\end{array}\right.$

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\rightarrow\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

Method is widely applied/available, can be used with PYTHIA, HERWIG, SHERPA

Subtlety 1: Connecting with parton shower
Truncated Showers \& Vetoed Showers
Subtlety 2: Avoiding (over)exponentiation of hard radiation
Controlled by "hFact" parameter (POWHEG)

2: SLICING (MLM \& CKKW-L)

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

F @ LO \times LL-Soft (HERWIG Shower)

$$
\text { F+1@ LO } \times \mathbf{L L} \text { (HERWIG Corrections) }
$$

F @ $\mathbf{L O}_{1} \times \mathbf{L L}$ (HERWIG Matched)

Many emissions: the MLM \& CKKW-L prescriptions

F @ LO \times LL-Soft (excl)

(CKKW \& Lönnblad, 2001)

F+1@ LO \times LL-Soft (excl)
F+2@ LO $\times \mathbf{L L}($ incl $)$

F@ $\mathbf{L O}_{2} \times \mathbf{L L}($ MLM \& (L)-CKKW)

THE GAIN

THE COST

Example: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z} \rightarrow$ Jets
2. Time to generate 1000 events ($Z \rightarrow$ partons, fully showered \& matched. No hadronization.)

1000 SHOWERS

$\mathrm{Z} \rightarrow \mathbf{n}$: Number of Matched Emissions

See e.g. Lopez-Villarejo \& Skands, arXiv:I I 09.3608

3: SUBTRACTION

Examples: MC@NLO, aMC@NLO

LO \times Shower
NLO

\ldots Fixed-Order Matrix Element
... Shower Approximation

MATCHING 3: SUBTRACTION

LO \times Shower

Fixed-Order Matrix Element
... Shower Approximation

NLO - Showernlo

$X(2)$	$X+I^{(2)}$	\ldots		
$X(1)$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Expand shower approximation to NLO analytically, then subtract:

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

MATCHING 3: SUBTRACTION

LO \times Shower

Fixed-Order Matrix Element

Shower Approximation
$\left(\right.$ NLO - Shower $\left._{\text {NLO }}\right) \times$ Shower

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Subleading corrections generated by shower off subtracted ME

MATCHING 3: SUBTRACTION

Combine - MC@NLO

Examples: MC@NLO, aMC@NLO

Frixione, Webber, JHEP 0206 (2002) 029
Consistent NLO + parton shower (though correction events can have w<0)
Recently, has been fully automated in aMC@NLO
Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP I202 (2012) 048

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

NB: $\mathbf{w}<0$ are a problem because they kill efficiency:
Extreme example: 1000 positive-weight - 999 negative-weight events \rightarrow statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has $\sim 10 \%$ neg-weights)

POWHEG VS MC@NLO

Both methods include the complete first-order (NLO) matrix elements.

Difference is in whether only the shower kernels are exponentiated (MC@NLO) or whether part of the matrix-element corrections are too (POWHEG)

In POWHEG, how much of the MEC you exponentiate can be controlled by the "hFact" parameter

Variations basically span range between MC@NLO-like case, and original (hFact=1) POWHEG case (~ PYTHIA-style MECs)

$R^{s}=D_{h} R_{\text {div }} \quad R^{f}=\left(1-D_{h}\right) R_{\text {div }}$ exponentiated not exponentiated

(MULTI-LEG MERGING AT NLO)

Currently, much activity on how to combine several NLO matrix elements for the same process: NLO for $\mathrm{X}, \mathrm{X}+1, \mathrm{X}+2, \ldots$

Unitarity is a common main ingredient for all of them
Most also employ slicing (separating phase space into regions defined by one particular underlying process)

Methods

UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:12II.7278
MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more)
FxFx, based on MC@NLO: Frederix \& Frixione, arXiv:1209.6215
arXiv:|206.3572,
arXiv:|5|2.02663

Most (all?) of these also allow NNLO on total inclusive cross section
Will soon define the state-of-the-art for SM processes
For BSM, the state-of-the-art is generally one order less than SM

SUMMARY: MATCHING AND MERGING

The Problem:

Showers generate singular parts of (all) higher-order matrix elements Those terms are of course also present in $X+$ jet(s) matrix elements To combine, must be careful not to count them twice! (double counting)

3 Main Methods

1. Matrix-Element Corrections (MECs): multiplicative correction factors Pioneered in PYTHIA (mainly for real radiation Similar method used in POWHEG (with virtual corrections Generalised to multiple branchings: VINCIA
2. Slicing: separate phase space into two regions: ME populates high-Q region, shower populates low-Q region (and calculates Sudakov factors) CKKW-L (pioneered by SHERPA) \& MLM (pioneered by ALPGEN)
3. Subtraction: MC@NLO, now automated: aMC@NLO

State-of-the-art > Multi-Leg NLO (UNLOPS, MiNLO, FxFx)

QUIZ: CONNECT THE BOXES

1

Ambiguity about how much of the nonsingular parts of the ME that get exponentiated; controlled by: hFact

A
Matrix-Element Corrections (MECs)

2

CKKW-L \& MLM

3

Ambiguity about definition of which events "count" as hard N-jet events; controlled by:
Merging Scale
Procedure can lead to a substantial fraction of events having: Negative Weights

FROM PARTONS TO PIONS

Here's a fast parton

Fast: It starts at a high
factorization scale
$\mathrm{Q}=\mathrm{Q}_{\mathrm{F}}=\mathrm{Q}_{\text {hard }}$

It showers
(bremsstrahlung)

It ends up at a low effective factorization scale $\mathrm{Q} \sim \mathrm{m}_{\rho} \sim 1 \mathrm{GeV}$

FROM PARTONS TO PIONS

Here's a fast parton

Fast: It starts at a high
factorization scale $\mathrm{Q}=\mathrm{Q}_{\mathrm{F}}=\mathrm{Q}_{\text {hard }}$

It showers
(bremsstrahlung)

It ends up at a low effective factorization scale $\mathrm{Q} \sim \mathrm{m}_{\rho} \sim 1 \mathrm{GeV}$

How about I just call it a hadron?

\rightarrow "Local Parton-Hadron Duality"

PARTON \rightarrow HADRONS?

Early models: "Independent Fragmentation"
Local Parton Hadron Duality (LPHD) can give useful results for inclusive quantities in collinear fragmentation
Motivates a simple model:
"Independent Fragmentation"

π

But ...

The point of confinement is that partons are coloured Hadronisation $=$ the process of colour neutralisation
\rightarrow Unphysical to think about independent fragmentation of a single parton into hadrons
\rightarrow Too naive to see LPHD (inclusive) as a justification for Independent
Fragmentation (exclusive)
\rightarrow More physics needed

COLOUR NEUTRALISATION

A physical hadronization model
Should involve at least TWO partons, with opposite color charges (e.g., \mathbf{R} and anti-R)

Strong "confining" field emerges between the two charges when their separation > ~1fm

THE ULTIMATE LIMIT: WAVELENGTHS > 10-15 M

Quark-Antiquark Potential
As function of separation distance

What physical

 system has a linear potential?Long Distances ~ Linear Potential
"Confined" Partons (a.k.a. Hadrons)

$$
F(r) \approx \mathrm{const}=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \Longleftrightarrow V(r) \approx \kappa r
$$

~ Force required to lift a 16-ton truck
\square

FROM PARTONS TO STRINGS

Motivates a model:
Let color field collapse into a (infinitely) narrow flux tube of uniform energy density $\mathrm{K} \sim 1 \mathrm{GeV} / \mathrm{fm}$
\rightarrow Relativistic $1+1$ dimensional worldsheet

Pedagogical Review: B. Andersson, The Lund model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.

In "unquenched" QCD
$\mathrm{g} \rightarrow \mathrm{qq} \rightarrow$ The strings will break

(NOTE ON THE LENGTH OF STRINGS)

In Space:

String tension $\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow$ a $5-\mathrm{GeV}$ quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string.
Then it must start moving the other way. String breaks will have happened behind it \rightarrow yo-yo model of mesons

In Rapidity : $\quad y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right)$

For a pion with $\mathrm{z}=1$ along string direction (For beam remnants, use a proton mass):

$$
y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right)
$$

Note: Constant average hadron multiplicity per unit $y \rightarrow$ logarithmic growth of total multiplicity

Scaling in lightcone $p_{ \pm}=E \pm p_{z}$ (for $\mathrm{q} \overline{\mathrm{q}}$ system along z axis) implies flat central rapidity plateau + some endpoint effects:

$\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim$ Poissonian multiplicity distribution

THE (LUND) STRING MODEL

Map:

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area \rightarrow AREA LAW

Gluon = kink on string, carrying energy and momentum
\rightarrow STRING EFFECT

Simple space-time picture

Details of string breaks more complicated (e.g., baryons, spin multiplets)

differences between QuARK AND GLUON JETS

Recent "hot topic": Q/G Discrimination

Gluon connected to two string pieces

Each quark connected to one string piece
\rightarrow expect factor $2 \sim C_{A} / C_{F}$ larger particle multiplicity in gluon jets vs quark jets

Can be hugely important for discriminating new-physics signals (decays to quarks vs decays to gluons, vs composition of background and bremsstrahlung combinatorics)

> EVENT GENERATORS

Aim: generate events in as much detail as mother nature
\rightarrow Make stochastic choices \sim as in Nature (Q.M.) \rightarrow Random numbers
Factor complete event probability into separate universal pieces, treated independently and/or sequentially (Markov-Chain MC)

Improve lowest-order (perturbation) theory by including 'most significant' corrections

Resonance decays (e.g., $t \rightarrow b W^{+}, W \rightarrow q q^{1}, H^{0} \rightarrow \gamma^{0} \gamma^{0}, Z^{0} \rightarrow \mu^{+} \mu^{\prime}, \ldots$)
Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits)
Hard radiation (matching \& merging)
Hadronization (strings / clusters)
Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein correlations, colour reconnections, hadron decays, ...

Coherence*
Soft radiation \rightarrow Angular ordering or Coherent Dipoles/Antennae

