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So combine them!

SHOWERS VS MATRIX ELEMENTS

Peter  Skands !2Monash Univers i ty

๏Showers. Nice to have all-orders solution 
•But only exact in singular (soft & collinear) limits 
•→ gets bulk of bremsstrahlung corrections right, but no 
precision for hard wide-angle radiation: visible, extra jets 
•… which is exactly where fixed-order (ME) calculations work!

See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

P. Skands Introduction to QCD
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F

plus anything. F exclusive = F and only F . Thus, �F ;incl =
P1

k=0
�F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F

plus anything. F exclusive = F and only F . Thus, �F ;incl =
P1

k=0
�F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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http://arxiv.org/abs/arXiv:1207.2389


HOW NOT TO DO IT … IN MORE DETAIL

Peter  Skands !3Monash Univers i ty
P.  S k a n d s

Interpretation

35

► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 



EXAMPLE:                      .

Peter  Skands !4Monash Univers i ty

Born + Shower

Born + 1 @ LO 

22

+

+

2

Shower Approximation
to Born + 1

+ … 

What you get from 
first-order (LO) 
madgraph

What the first-order shower 
expansion gives you



Born + Shower

Born + 1 @ LO 

1

EXAMPLE:                      .

Peter  Skands !5Monash Univers i ty

2

+
|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g
2
s 2CF


2sik
sijsjk

+
1

sIK

✓
sij

sjk
+

sjk

sij
+ 2

◆�

Total Overkill to add these two.  All we really need is just that +2 … 

2

+ …

Example of shower kernel 
(here, used an “antenna function” for 
coherent gluon emission from a quark pair)

Example of matrix element; 
what MG would give you



1. MATRIX-ELEMENT CORRECTIONS

Peter  Skands !6Monash Univers i ty

๏Exploit freedom to choose non-singular terms 
•Modify parton shower to use process-dependent radiation functions for 
first emission → absorb real correction 

๏ Process-dependent MEC → P’ different for each process 
•Done in PYTHIA for all SM decays and many BSM ones 

๏ Based on systematic classification of spin/colour structures 
๏ Also used to account for mass effects, and for a few 2→2 procs 

๏Difficult to generalise beyond one emission 
•Parton-shower expansions complicated & can have “dead zones” 
•Achieved in VINCIA (by devising showers that have simple expansions) 
•Only recently done for hadron collisions

Bengtsson, Sjöstrand, 
PLB 185 (1987) 435

Norrbin, Sjöstrand, 
NPB 603 (2001) 297

Parton Shower
P (z)

Q2
! P 0(z)

Q2
=

P (z)

Q2

|Mn+1|2P
i Pi(z)/Q2

i |Mn|2| {z }
MEC

Giele, Kosower, Skands, PRD 84 (2011) 054003

(suppressing 
αs and 
Jacobian 
factors)

Fischer et al, arXiv:1605.06142

http://arxiv.org/abs/arXiv:1605.06142


MECS WITH LOOPS: POWHEG

Peter  Skands !7Monash Univers i ty

Legs
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Start at Born level
Nason, JHEP 0411 (2004) 040

Frixione, Nason, Oleari JHEP 0711 (2007) 070
+ POWHEG Box JHEP 1006 (2010) 043

Acronym stands for: Positive Weight Hardest Emission Generator. 

Note: still LO for X+1

Shower for X+2, … 

๏Method is widely applied/available, can be used 
with PYTHIA, HERWIG, SHERPA 
๏Subtlety 1: Connecting with parton shower 

•Truncated Showers & Vetoed Showers 

๏Subtlety 2: Avoiding (over)exponentiation of 
hard radiation 

•Controlled by “hFact” parameter (POWHEG)



2: SLICING (MLM & CKKW-L)

Peter  Skands !8Monash Univers i tyP.  S k a n d s

Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 

33
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events

— 47 —

Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)

P.  S k a n d s

Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 

33
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events

— 47 —

Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)



THE GAIN THE COST
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W + N jets 

R
A

T
IO

Plot from mcplots.cern.ch; see arXiv:1306.3436 

Shower (w 1 st order MECs)

MLM w 3 rd order Matrix Elements

NJETS1 2 30

Example: LHC7 : W + 20-GeV Jets

P.  S k a n d s

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV!
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; !

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

S l ic ing :  The  Cos t

35
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Z→n : Number of Matched Emissions

2 3 4 5 6
1s

10s
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1000s

10000s

Z→n : Number of Matched Emissions

2 3 4 5 6

1. Initialization time 
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events 
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of sta
te of th

e art)

See e.g. Lopez-Villarejo & Skands, arXiv:1109.3608

Time

Matching Order

Example: e+e- → Z → Jets

http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1306.3436


3: SUBTRACTION

Peter  Skands !10Monash Univers i ty

๏LO × Shower ๏NLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Examples: MC@NLO, aMC@NLO



MATCHING 3: SUBTRACTION
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๏LO × Shower ๏NLO - ShowerNLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO



MATCHING 3: SUBTRACTION
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๏LO × Shower ๏(NLO - ShowerNLO) × Shower

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO



MATCHING 3: SUBTRACTION
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๏Combine ➤ MC@NLO 
•Consistent NLO + parton shower (though correction events can have w<0) 

•Recently, has been fully automated in aMC@NLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

NB: w < 0 are a problem because they kill efficiency:   
Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision 
of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO



POWHEG VS MC@NLO
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๏Both methods include the complete 
first-order (NLO) matrix elements.  

•Difference is in whether only the 
shower kernels are exponentiated 
(MC@NLO) or whether part of the 
matrix-element corrections are too 
(POWHEG) 

๏In POWHEG, how much of the MEC 
you exponentiate can be controlled 
by the “hFact” parameter 

•Variations basically span range 
between MC@NLO-like case, and 
original (hFact=1) POWHEG case (~ 
PYTHIA-style MECs)
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h = 30 GeV, LHEF

NLO
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R

Figure 1: Left: e↵ect of the damping factor Dh for di↵erent values of the scale h on the transverse
momentum distribution of a SM Higgs of mass equal to 125 GeV. The red dashed line is obtained
with h = mH/1.2 GeV, the green dot-dashed one with h = mH/2 GeV and the indigo dashed one
with h = 30 GeV. The blue continuous line corresponds to no damping. For the no damping case and
for h = 30 GeV we also show the results at the level of Les Houches Event File (LHEF). For reference
we show the NLO curve in gray. Right: ratio of the POWHEG prediction for the transverse momentum
over the NLO result. The color coding is the same as in left figure.

variation of the scale µres in the interval [µ̄res/2, 2µ̄res] is customarily adopted.
The matching procedure requires to fix the integral of the Higgs transverse momentum distribution

to a constant, which is conventionally set to the value of the fixed order total cross section [56]. This
constraint holds exactly for any choice of µres, so that any variation of the resummation scale modifies
the shape of the distribution but not its integral and yields thus a correlation between low- and
intermediate-pH? regions.

2.2 Numerical resummation in the NLO+PS framework

Another approach to the resummation of terms enhanced by the factor log(pH?/mH) is the one obtained
in the context of PS Monte Carlo, where the multiple emission of partons is numerically simulated
via the PS algorithm. The matching between the fixed order NLO-QCD results and the PS has been
discussed in refs. [63, 91, 92] and it is implemented in several tools regularly used in the experimental
analyses.

In a su�ciently general way we can write the matching formula as

d� = B̄
s(�B)d�B

⇢
�s

t0
+�s

t

R
s(�)

B(�B)
d�r

�
+R

f
d�+Rregd�. (1)

The phase space is factorized into the product of the Born and the real emission components, d� =
d�Bd�r. The Born squared matrix element is denoted by B while B̄ is the NLO normalization factor.

5

Plot from Bagnashi, Vicini, 
JHEP 1601 (2016) 056

The latter is defined as

B̄
s(�B) = B(�B) + V̂fin(�B) +

Z
R̂

s(�B,�r)d�r . (2)

In this formula V̂fin represents the UV- and IR-regularized virtual contribution. We use the hat to
indicate that an amplitude has been IR-regularized. The partonic subprocesses with the emission
of an additional real parton can be split into two groups: those that are divergent in the limit of
collinear emission, called Rdiv, and the ones that are instead regular, Rreg. We can further subdivide
the squared matrix elements of the divergent subprocesses in two parts:

Rdiv = R
s +R

f
. (3)

The term R
s contains the collinear singularity of Rdiv, while R

f is a finite remainder. Finally, we use
the symbol �s

t for the Sudakov form factor, with t as the shower ordering variable:

�s

t = e
�

R
dt

0
t0

R
s

B
d�r✓(t0�t)

. (4)

The splitting of Rdiv in eq. (3) is defined up to a finite part which can be reabsorbed in R
s. In the

literature two di↵erent choices have been adopted: in POWHEG R
s = Rdiv, while in MC@NLO R

s
/ ↵sPijB

is proportional to the product of the Born matrix elements times the relevant Altarelli-Parisi splitting
functions.

It is interesting to observe that di↵erent definitions for R
s generate higher-order e↵ects in the

matched di↵erential cross section. The possibility of defining the finite part R
f in an arbitrary way

can be exploited to parameterize the uncertainties related to the matching procedure.

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework

In the POWHEG-BOX framework, the separation between R
s and R

f can be achieved in a dynamical way
using the damping factor Dh, defined as

Dh =
h
2

h2 + (pH? )2
. (5)

The divergent and the regular part of Rdiv = R
s +R

f are then defined as:

R
s = Dh Rdiv , R

f = (1�Dh) Rdiv . (6)

The role of the scale h is to separate the low and the high transverse-momentum regions and it
therefore specifies the range of momenta for which the Sudakov form factor is possibly di↵erent from
1. In the limit p

H

? ⌧ h we obtain R
s
! Rdiv and R

f
! 0. In this limit the Higgs p

H

? distribution
is suppressed by the Sudakov form factor. On the other hand, when p

H

? � h we have R
s
! 0 and

Rf ! Rdiv and the Sudakov form factor tends to 1. In this latter regime the emission of a real parton
is described at fixed order by the matrix elements Rf = Rdiv.

The di↵erential distribution generated according to eq. (1) contains higher order terms, beyond
the claimed accuracy of the calculation, due to the product of B̄ ⇥R

s. Indeed in the large p
H

? region
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Example: Higgs Production
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(MULTI-LEG MERGING AT NLO)
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๏Currently, much activity on how to combine several NLO matrix 
elements for the same process: NLO for X, X+1, X+2, …  

•Unitarity is a common main ingredient for all of them 
•Most also employ slicing (separating phase space into regions defined by 
one particular underlying process) 

๏Methods 
•UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:1211.7278

•MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more)  

•FxFx, based on MC@NLO: Frederix & Frixione, arXiv:1209.6215

•(VINCIA, based on NLO MECs): Hartgring, Laenen, Skands, arXiv:1303.4974  

๏Most (all?) of these also allow NNLO on total inclusive cross section 
•Will soon define the state-of-the-art for SM processes 
•For BSM, the state-of-the-art is generally one order less than SM

•arXiv:1206.3572, 
•arXiv:1512.02663

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1512.02663


SUMMARY: MATCHING AND MERGING
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๏The Problem: 
•Showers generate singular parts of (all) higher-order matrix elements 
•Those terms are of course also present in X + jet(s) matrix elements  
•To combine, must be careful not to count them twice! (double counting) 

๏3 Main Methods 
•1. Matrix-Element Corrections (MECs): multiplicative correction factors 

๏ Pioneered in PYTHIA (mainly for real radiation ➠ LO MECs) 
๏ Similar method used in POWHEG (with virtual corrections ➠ NLO) 
๏ Generalised to multiple branchings: VINCIA  

•2. Slicing: separate phase space into two regions: ME populates high-Q 
region, shower populates low-Q region (and calculates Sudakov factors) 

๏ CKKW-L (pioneered by SHERPA) & MLM (pioneered by ALPGEN) 
•3. Subtraction: MC@NLO, now automated: aMC@NLO  

๏State-of-the-art ➤ Multi-Leg NLO (UNLOPS, MiNLO, FxFx)



QUIZ: CONNECT THE BOXES
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Matrix-Element 
Corrections (MECs)

CKKW-L & MLM

MC@NLO

A

B

C

Ambiguity about how much of the 
nonsingular parts of the ME that get 

exponentiated; controlled by: 

hFact

Procedure can lead to a substantial 
fraction of events having: 

Negative Weights

Ambiguity about definition of which 
events “count” as hard N-jet events; 

controlled by: 

Merging Scale

1

2

3

?

?
?



FROM PARTONS TO PIONS

Peter  Skands  18Monash Univers i ty

Here’s a fast parton

It showers 
(bremsstrahlung)

It ends up  
at a low effective 
factorization scale  
Q ~ mρ ~ 1 GeV

Fast: It starts at a high 
factorization scale 

Q = QF = Qhard

Qhard
1 

GeV

Q



Q

FROM PARTONS TO PIONS

Peter  Skands  19Monash Univers i ty

Here’s a fast parton

How about I just call it a hadron?
→ “Local Parton-Hadron Duality”

Qhard 1 GeV

It showers 
(bremsstrahlung)

It ends up  
at a low effective 
factorization scale  
Q ~ mρ ~ 1 GeV

Fast: It starts at a high 
factorization scale 

Q = QF = Qhard



PARTON → HADRONS?

Peter  Skands  20Monash Univers i ty

q
π 

π 
π 

๏Early models: “Independent Fragmentation”  
•Local Parton Hadron Duality (LPHD) can give useful results for 
inclusive quantities in collinear fragmentation 
•Motivates a simple model: 

๏But …  
•The point of confinement is that partons are coloured  
•Hadronisation = the process of colour neutralisation 

๏ → Unphysical to think about independent fragmentation of a single 
parton into hadrons 

๏ → Too naive to see LPHD (inclusive) as a justification for Independent 
Fragmentation (exclusive) 

๏ → More physics needed

“Independent Fragmentation”



COLOUR NEUTRALISATION
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Space

Ti
m

e

Early times 
(perturbative)

Late times 
(non-perturbative)

Strong “confining” field emerges between the two 
charges when their separation > ~ 1fm

an
ti-

R m
ov

ing
 a
lon

g 
rig

ht
 lig

ht
co

neR m
oving along left lightcone

pQCD

non-perturbative

๏ A physical hadronization model  
• Should involve at least TWO partons, with opposite 

color charges (e.g., R and anti-R) 



THE ULTIMATE LIMIT: WAVELENGTHS > 10-15 M
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P.  S k a n d s

Long Wavelengths > 10-15 m

๏Quark-Antiquark Potential 
•As function of separation distance

17

46 STATIC QUARK-ANTIQUARK POTENTIAL: SCALING. . . 2641

Scaling plot
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FIG. 4. All potential data of the five lattices have been scaled to a universal curve by subtracting Vo and measuring energies and

distances in appropriate units of &E. The dashed curve correspond to V(R)=R —~/12R. Physical units are calculated by exploit-
ing the relation &cr =420 MeV.

AM~a=46. 1A~ &235(2)(13) MeV .

Needless to say, this value does not necessarily apply to
full QCD.
In addition to the long-range behavior of the confining

potential it is of considerable interest to investigate its ul-
traviolet structure. As we proceed into the weak cou-
pling regime lattice simulations are expected to meet per-

turbative results. Although we are aware that our lattice
resolution is not yet really suScient, we might dare to
previe~ the continuum behavior of the Coulomb-like
term from our results. In Fig. 6(a) [6(b)] we visualize the
confidence regions in the K-e plane from fits to various
on- and off-axis potentials on the 32 lattices at P=6.0
[6.4]. We observe that the impact of lattice discretization
on e decreases by a factor 2, as we step up from P=6.0 to

150

140

Barkai '84 o
MTC '90
Our results:---

130-

120-

110-

100-

80—

5.6 5.8 6.2 6.4

FIG. 5. The on-axis string tension [in units of the quantity c =&E /(a AL ) ] as a function of P. Our results are combined with pre-
vious values obtained by the MTc collaboration [10]and Barkai, Moriarty, and Rebbi [11].

~ Force required to lift a 16-ton truck

LATTICE QCD SIMULATION. 
Bali and Schilling Phys Rev D46 (1992) 2636

What physical!
system has a !
linear potential?

Short Distances ~ “Coulomb”

“Free” Partons

Long Distances ~ Linear Potential

“Confined” Partons 
(a.k.a. Hadrons)

(in “quenched” approximation)



FROM PARTONS TO STRINGS
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๏Motivates a model: 
•Let color field collapse into 
a (infinitely) narrow flux 
tube of uniform energy 
density κ ~ 1 GeV / fm 
•→ Relativistic 1+1 
dimensional worldsheet  

๏

Pedagogical Review: B. Andersson, The Lund model. 
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.

String

P.  S k a n d s

String Breaks

๏In QCD, strings can (and do) break! 
•(In superconductors, would require magnetic monopoles) 
•In QCD, the roles of electric and magnetic are reversed 
•Quarks (and antiquarks) are “chromoelectric monopoles” 
•There are at least two possible analogies ~ tunneling:

18

Schwinger Effect

+

÷
Non-perturbative creation 
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๏In “unquenched” QCD 
•g→qq → The strings will break

→ Gaussian pT spectrum
Heavier quarks suppressed. Prob(q=d,u,s,c) ≈ 1 : 1 : 0.2 : 10-11 



(NOTE ON THE LENGTH OF STRINGS)

Peter  Skands  24Monash Univers i ty

๏In Space:  
•String tension ≈ 1 GeV/fm → a 5-GeV quark can travel 5 fm before all its 
kinetic energy is transformed to potential energy in the string.  
•Then it must start moving the other way. String breaks will have happened 
behind it → yo-yo model of mesons 
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For a pion with z=1 along string direction  
(For beam remnants, use a proton mass):

Note: Constant average hadron 
multiplicity per unit y → logarithmic 

growth of total multiplicity



THE (LUND) STRING MODEL
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Map: 

• Quarks → String 
Endpoints 

• Gluons → Transverse 
Excitations (kinks) 

• Physics then in terms of 
string worldsheet 
evolving in spacetime 

• Probability of string 
break (by quantum 
tunneling) constant per 
unit area → AREA LAW

Simple space-time picture
Details of string breaks more complicated (e.g., baryons, spin multiplets)

→ STRING EFFECT



DIFFERENCES BETWEEN QUARK AND GLUON JETS
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Figure 5: The jet pT dependence of (a) the di↵erence in the average charged-particle multiplicity (p
track
T > 0.5 GeV)

between the more forward and the more central jet. The band for the data is the sum in quadrature of the systematic
and statistical uncertainties and the error bars on the data points represent the statistical uncertainty. Bands on the
simulation include MC statistical uncertainty. The jet pT dependence of (b) the average charged-particle multiplicity
(p

track
T > 0.5 GeV) for quark- and gluon-initiated jets, extracted with the gluon fractions from Pythia 8.175 with the

CT10 PDF. In addition to the experimental uncertainties, the error bands include uncertainties in the gluon fractions
from both the PDF and ME uncertainties. The MC statistical uncertainties on the open markers are smaller than
the markers. The uncertainty band for the N3LO pQCD prediction is determined by varying the scale µ by a factor
of two up and down. The markers are truncated at the penultimate pT bin in the right because within statistical
uncertainty, the more forward and more central jet constituent charged-particle multiplicities are consistent with
each other in the last bin.
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1980: string (colour coherence) e↵ect

quark

antiquark

gluon

string motion in the event plane
(without breakups)

Predicted unique event structure;
inside & between jets.
Confirmed first by JADE 1980.

Generator crucial
to sell physics!

(today: PS, M&M, MPI, . . . )

Torbjörn Sjöstrand Status and Developments of Event Generators slide 5/28

Gluon connected to two string pieces

Each quark connected to one string piece

→ expect factor 2 ~ CA/CF larger particle 
multiplicity in gluon jets vs quark jets

Can be hugely important for discriminating new-physics signals (decays to quarks vs 
decays to gluons, vs composition of background and bremsstrahlung combinatorics )

Recent “hot topic”: Q/G Discrimination ATLAS, Eur.Phys.J. C76 (2016) no.6, 322 

See also 
Larkoski et al., JHEP 1411 (2014) 129 
Thaler et al., Les Houches, arXiv:1605.04692



➤ EVENT GENERATORS
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๏Aim: generate events in as much detail as mother nature 
•→ Make stochastic choices ~ as in Nature (Q.M.) → Random numbers 
•Factor complete event probability into separate universal pieces, treated 
independently and/or sequentially (Markov-Chain MC) 

๏Improve lowest-order (perturbation) theory by including ‘most 
significant’ corrections 

•Resonance decays (e.g., t→bW+, W→qq’, H0→γ0γ0, Z0→μ+μ-, …) 
•Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits) 
•Hard radiation (matching & merging) 
•Hadronization (strings / clusters)  
•Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein 
correlations, colour reconnections, hadron decays, … 

๏Coherence* 
•Soft radiation → Angular ordering or Coherent Dipoles/Antennae


