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Outline

2

‣Jet algorithms

‣How are jets made

‣Jet substructure

‣What’s inside them
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What is a jet?

3

No, not this....

A jet is something that happens 
in high energy events: 

a collimated bunch of hadrons flying 
roughly in the same direction
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Gluon ‘discovery’

4

1979: 
Three-jet events observed by 

TASSO, JADE, MARK J and PLUTO  at 
PETRA in e+e- collisions at 27.4 GeV

Interpretation: 
large angle emission of a 

hard gluon

Jets viewed as a proxy 
to the initial partons
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Why jets

5

We could eyeball the collimated 
bunches, but it becomes impractical 

with millions of events

From PETRA to LEP

The classification of particles into jets is best done 
using a clustering algorithm
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Jets @ LHC

6

A few decades after PETRA and LEP, the event displays got prettier, 
but jets are still pretty much the same

Dijet event from CMS
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Jets @ LHC

7

8(!) jets event from ATLAS
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Jets @ LHC

8
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Why do jets happen?

9
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The pervasiveness of jets

10

‣ ATLAS and CMS have each published 400+ papers since 2010
‣ More than half of these papers make use of jets
‣ 60% of the searches papers makes use of jets

(Source: INSPIRE. 
Results may vary when 

employing different search 
keywords)

Why are jets so important?

Plot by G. Salam
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Taming reality

11

QCD predictions Real data

??

Jets

One purpose of a ‘jet clustering’ algorithm is to
reduce the complexity of the final state, simplifying many hadrons 

to simpler objects that one can hope to calculate

Multileg + PS
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Jet definitions as projections

12

NB: projections are NOT unique: 
a jet is NOT EQUIVALENT to a parton
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Reconstructing jets is an ambiguous task

7

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets?
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Reconstructing jets is an ambiguous task

8

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets? 
or 4 jets?
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Jet clustering algorithm

15

{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets

A jet algorithm maps the momenta of the final state particles 
into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, R, 
which controls the extension of the jet

“Jet [definitions] are legal contracts between theorists and experimentalists’’ 
-- MJ Tannenbaum
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Jets

1621

Jets can serve two purposes

‣ They can be observables, that one can measure 
and calculate

‣ They can be tools, that one can employ to extract 
specific properties of the final state

Different clustering algorithms have different properties and characteristics 
that can make them more or less appropriate for each of these tasks
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IRC safety

17

An observable is infrared and collinear safe if, 
in the limit of a  collinear splitting, or the emission of an 
infinitely soft particle, the observable remains unchanged:

O(X; p1, . . . , pn, pn+1 � 0) � O(X; p1, . . . , pn)
O(X; p1, . . . , pn ⇥ pn+1) � O(X; p1, . . . , pn + pn+1)

If we wish to be able to calculate a jet rate in perturbative QCD 
the jet algorithm that we use must be IRC safe: 

soft emissions and collinear splittings must not change the hard jets

This property ensures cancellation of real and virtual divergences 
in higher order calculations
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Reconstructing jets must respect rules

18

Perturbative calculations of jet observable will 
only be possible with collinear (and infrared) safe 

jet definitions
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Cone algorithms

19

The first rigorous definition of cone jets in QCD is due to Sterman and Weinberg
Phys. Rev. Lett. 39, 1436 (1977)



(+ virtual corrections)
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Jet algorithms

22

The Sterman-Weinberg definition is “inclusive enough” 
for IRC safety

Good for 2 jets and e+e- collisions

What happens in a more general case, where more than 
two jets are likely to exist?

Where do we place the cones? How many?

Iterative jet algorithms
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Two main approaches to jet clustering

23

1.  Find regions where a lot of energy flows

2. Decide which particles are “close”, 
    aggregate them

In HEP these are usually called cone and 
sequential recombination algorithms 

respectively
(in other fields they are often called partitional-type clustering 

and agglomerative hierarchical clustering)

or
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Two main classes of jet algorithms

24

‣ Sequential recombination algorithms 
 Bottom-up approach: combine particles starting from closest ones 

         How? Choose a distance measure, iterate recombination until     
                     few objects left, call them jets

Works because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..

‣ Cone algorithms
  Top-down approach: find coarse regions of energy flow. 

        How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint,  ATLAS cone, CMS cone, SISCone…...

Usually trivially made IRC safe, but their 
algorithmic complexity scales like N3

Can be programmed to be fairly fast, at the  
price of being complex and IRC unsafe
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Snowmass

251023

Speed
Infrared and 

collinear safety

[Addition of a soft 
particle or a collinear 
splitting should not 

change final hard jets]
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A little history

26

‣Cone-type jets were introduced first in QCD in the 1970s 
(Sterman-Weinberg ’77)

‣In the 1980s cone-type jets were adapted for use in hadron 
colliders (SppS, Tevatron...) ➙ iterative cone algorithms

‣LEP was a golden era for jets: new algorithms and many 
relevant calculations during the 1990s
‣ Introduction of the ‘theory-friendly’ kt algorithm

‣  sequential recombination type algorithm, IRC safe
‣  it allows for all order resummation of jet rates

‣Several accurate calculations in perturbative QCD of jet 
properties: rates, jet mass, thrust, ....
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Finding stable cones

2727

In partitional-type algorithms (i.e. cones), one wishes to find 
the stable configurations: 

axis of cones coincides with sum of 4-momenta of the particles it contains

The ‘safe’ way of doing so is to test 
all possible combinations of N objects

Unfortunately, this takes N2N operations:
the time taken is the age of the universe for only 100 objects

An approximate way out is to use seeds (e.g. à la k-means)
However, the final result can depend on the choice of the seeds and, 

such jet algorithms usually turn out to be IRC unsafe
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Finding cones

28

Different procedures for placing the cones lead to different cone algorithms

NB: their properties and behaviour can vastly differ:
there isn’t ‘a’ cone algorithm, but rather many of them

 Fixed cone with progressive removal (FC-PR) (PyJet, CellJet, GetJet)

 Iterative cone with progressive removal (IC-PR) (CMS iterative cone)

 Iterative cone with split-merge (IC-SM) (JetClu, ATLAS cone)

 IC-SM with mid-points (ICmp-SM) (CDF MidPoint, D0 Run II)

 ICmp with split-drop (ICmp-SD) (PxCone)

 Seedless cone with split-merge (SC-SM) (SISCone)

The main sub-categories of cone algorithms are:

All, except SISCone, are approximate
All, except SISCone, are infrared or collinear unsafe
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Recombination algorithms

29

‣ First introduced in e+e- collisions in the ’80s

‣ Typically they work by calculating a ‘distance’ 
between particles, and then recombine them pairwise 
according to a given order, until some condition is met 
(e.g. no particles are left, or the distance crosses a given 
threshold)

IRC safety can usually be seen to be trivially guaranteed
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JADE algorithm

30

‣ Find the minimum ymin of all yij

‣ If ymin is below some jet resolution threshold ycut, recombine i and j 
into a single new particle (‘pseudojet’), and repeat

‣ If no ymin < ycut are left, all remaining particles are jets

Distance:

Problem of this particular algorithm: 
two soft particles emitted at large angle get easily recombined into a single 

jet: counterintuitive and perturbatively troublesome
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e+e- kt (Durham) algorithm

31

Distance:

In the collinear limit, the numerator reduces to the relative transverse 
momentum (squared) of the two particles, hence the name of the algorithm

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

‣ Find the minimum ymin of all yij

‣ If ymin is below some jet resolution threshold ycut, recombine i and j 
into a single new particle (‘pseudojet’), and repeat

‣ If no ymin < ycut are left, all remaining particles are jets
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e+e- kt (Durham) algorithm in action 

32

Characterise events 
in terms of number of jets 

(as a function of ycut)

Resummed calculations for distributions of ycut doable with the kt algorithm

2-jet

3-jet

4-jet

5-jet
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e+e- kt (Durham) algorithm v. QCD

33

One key feature of the kt 
algorithm is its relation to the 
structure of QCD divergences:

kt is a sequential recombination type algorithm

The yij distance is the inverse of the emission probability

‣The kt algorithm roughly inverts the QCD branching sequence 
(the pair which is recombined first is the one with the largest 
probability to have branched)

‣The history of successive clusterings has physical meaning
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The common wisdom circa 2005

34

‣Cone algorithms are IRC unsafe

‣Sequential recombination algorithms (i.e. kt) 
are slow and too susceptible to background 
contamination

➙ because, to make them reasonably 
    fast, they were usually implemented via    
    approximate methods using seeds

➙ because they scale like N3

➙ because they tend to collect soft 
    particles up to large distances from centre
➙ because they were often run with R=1 and 
    compared to cones with R=0.5! 
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Geometry

35

The solution to the speed problem came from 
considering the clustering problem from a 

geometrical rather from a combinatorial point of view

‣Sequential recombination algorithms could be 
implemented with O(N2) or even O(NlnN) 
complexity rather than O(N3) 
[MC, Salam, 2006]

‣Cone algorithms could be implemented exactly 
(and therefore made IRC safe) with O(N2lnN) 
rather than O(N2N) complexity
[Salam, Soyez 2007]
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kt algorithm in hadron collisions

36

‣  Calculate the distances between the particles: dij 

‣  Calculate the beam distances: diB

‣  Combine particles with smallest distance dij or, 
 if diB is smallest, call it a jet

‣  Find again smallest distance and repeat procedure until 
 no particles are left (this stopping criterion leads to the inclusive  
 version of the kt algorithm)

‣ Only use jets with pt > pt,min

(Inclusive and longitudinally invariant version)
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The kt algorithm and its siblings

37

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001

M. Wobisch and T. Wengler, hep-ph/9907280

p = -1  anti-kt algorithm MC, G. Salam and G. Soyez, arXiv:0802.1189

NB: in anti-kt pairs with a hard particle will cluster first: if no other 
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safety of generalised-kt algorithms

38

p > 0
New soft particle (pt →0) means that d → 0   ⇒  clustered first, no effect on jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p = 0
New soft particle (pt →0) can be new jet of zero momentum ⇒  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p < 0
New soft particle (pt →0) means d →∞  ⇒  clustered last or new zero-jet,  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safe algorithms

39

kt

SR
dij = min(pti2,ptj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(pti-2,ptj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

All are available in FastJet, http://fastjet.fr
‘second-generation’ algorithms

(As well as many IRC unsafe ones)

http://fastjet.fr
http://fastjet.fr
http://fastjet.fr
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FastJet speed

40

Time needed to cluster an event with N particles
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16
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max(p2ti, p
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�R2
ij
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Clustering grows 
around hard cores
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action

16
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action
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Anti-kt in action

16

Anti-kt gives 
circular jets  
(“cone-like”) 

in a way that’s 
infrared safe

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores



kt Cam/Aa

SISCone anti-kt
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Example of jet observable

58

Inclusive 
jet cross 
section

Excellent 
theory-data 

agreement over 
many orders of 

magnitude
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Recap of Lecture 1

59

‣A vast zoology of jet algorithms has been reduced in the past 
few years to 4 infrared and collinear safe algorithms
‣All are implemented in an efficient and fast way 

‣Of these, anti-kt is used by all the LHC collaborations as 
their main algorithm for “finding” jets and measuring 
inclusive cross sections

‣The four algorithms have quite different characteristics, which 
makes them non easily swappable when specific properties 
are needed for specific tasks. On the other hand, chances are 
that one can chose the algorithm which is most appropriate 
for a specific job
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Jet substructure

61

What is the arrangement of the constituents 
inside the jet?

At the end of a jet finding (i.e. clustering) 
procedure, a jet is a collection of constituents 

to which we assign a 4-momentum 
(related to the sum of the 4-momenta of the constituents)

≠
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Jet substructure

62

First studied by Mike Seymour in the early ‘90s
to distinguish W jets from QCD jets

Topic revived about 10 years 
ago in order to study boosted objects

X
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Jet substructure

63

The past ten years have seen en explosion in jet 
substructure studies, i.e. how radiation is 

arranged within jets, and what it can tell us
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Jet substructure

64

Jet 
declustering

Machine learning

Jet shapes 
(calculate a function from 

radiation distribution
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Why boosted objects

65

Heavy particle X at rest Boosted heavy particle X

X
X

Easy to resolve jets and 
calculate invariant mass, 

but signal very likely 
swamped by background 

(eg H→bb v. tt →WbWb)

Cross section very much 
reduced, but acceptance 

better and some 
backgrounds smaller/

reducible
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Mass of a single jet

66

A heavy object decaying 
into a single jet naturally 

gives it a mass...

... but pure QCD jets can be 
massive too:

G. Salam

Signal

Background
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This means that one can’t rely on the invariant mass only. 
An appropriate strategy must be found to reduce the background 

and enhance the signal

Mass of a single jet

67

Summing ‘signal’ and ‘background’ (with appropriate cross sections)
shows how much the background dominates

Background only Signal + background

Practically identical
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Tagging

68

X
How to tell this from this ?

Decay of a heavy 
(boosted) object

Light parton 
fragmentation
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Tagging and Grooming

69

‣The substructure of a jet can be exploited to
‣tag a particular structure inside the jet, i.e. a massive 

particle
‣ First examples: Higgs (2-prong decay), top (3-prong decay)

‣remove background contamination from the jet or its 
components, while keeping the bulk of the perturbative 
radiation (often generically denoted as grooming)

‣ First examples: filtering,  trimming, pruning
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Nomenclature

70

‣Groomer
‣ procedure that always returns an output jet

(i.e. it only subtracts uncorrelated ‘UE/pileup’ radiation from 
it.  This is used to “clean” the jets from radiation largely 
unrelated to the fragmentation of the particle of interest)

‣Tagger
‣ procedure that might not return an output jet

(i.e. it either tags a heavy particle originating the jet or 
returns zero. This is used to identify a specific particle 
originating the jet.)

In practice, this classification is not always followed. 
In some cases it also denoted a ‘tagger’ a procedure that rejects 

background jets more often than signal jets
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Why substructure

71

Scales: m ~ 100 GeV, pt ~ 500 GeV
(e.g. electroweak particle from decay of ~ 1TeV BSM particle)

Possible strategies
‣ Use large R, get a single jet : background large
‣ Use small R, resolve the jets : what is the right scale?
‣Also: small jets lead to huge combinatorial issues

‣ need small R (< 2m/pt ~ 0.4) to resolve two prongs
‣ need large R (>~ 3m/pt ~ 0.6) to cluster into a single jet

 Let an algorithm find the ‘right’ substructure
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What jets to use for substructure?

72

Different jet algorithms will give different ‘pictures’ 
of what’s inside a jet
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Dendrogram

73

Distance between two objects 
is given by the height of the 
lowest internal node that they 

share.

Internal node

Order of clustering here is A, B, C, D

A
B

C
D

Used to represent graphically the sequence of clustering steps 
in a sequential recombination algorithm

Distance

The clustering sequence is 4-5 (A), 2-3 (B), 23-45 (C), 1-2345 (D)

1 2 3 4 5



Matteo Cacciari - LPTHE FeynRules/MadGraph School - Hefei - November 2018

First try

74

anti-kt
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Hierarchical substructure

75

Anti-kt distance measure

Cluster by merging 
to the hardest/closest particle

dij = min

�
1
p2

ti

,
1

p2
tj

�
�y2 + ��2

R2
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.0014577

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 0.00147749

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 1.96

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.



Matteo Cacciari - LPTHE FeynRules/MadGraph School - Hefei - November 2018

Second try

93

kt
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Hierarchical substructure

94

kt distance measure

Cluster by merging 
the softest/closest particles

dij = min(p2
ti, p

2
tj)

�y2 + ��2

R2
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 1.48276

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering



Matteo Cacciari - LPTHE FeynRules/MadGraph School - Hefei - November 2018 101

Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 2.34277

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 717.825

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 11432

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics



Matteo Cacciari - LPTHE FeynRules/MadGraph School - Hefei - November 2018 111

Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Third try

112

Cambridge/Aachen
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Hierarchical substructure

113

C/A distance measure

Cluster by merging 
the closest particles

dij =
�y2 + ��2

R2
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1



Matteo Cacciari - LPTHE FeynRules/MadGraph School - Hefei - November 2018 119

Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08
Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09
Ellis, Vermilion & Walsh ’09

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Hierarchical substructure

131

Slide by 
Gavin Salam

Undo the last 
clustering step(s)
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The IRC safe algorithms

132

Speed Regularity UE
contamination

Backreaction Hierarchical
substructure

kt ☺︎☺︎☺︎ ☂ ☂☂ ☁☁ ☺☺︎☺☺︎

Cambridge
/Aachen

☺︎☺︎☺︎ ☂ ☂ ☁☁ ☺︎☺︎☺︎

anti-kt ☺︎☺︎☺︎ ☺☺︎☺☺︎ ☁/☺︎ ☺☺︎☺☺︎ ✘

SISCone    ☺☺︎ ☁ ☺☺︎☺☺︎ ☁ ✘

Array of tools with different characteristics. 
Pick the right one for the job
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QCD v. heavy decay

133

A possible approach for reducing the QCD background is to identify the two 
prongs of the heavy particle decay, and put a cut on their momentum fraction

Signal: Background: 
P (z) ⇥ 1 + z2

1� z
P (z) ⇥ 1 + (1� z)2

z
P (z) � 1

Will split mainly 
symmetrically

Will split mainly 
asymmetrically

Will split mainly 
symmetrically
Will split mainly 

symmetrically

Potential tagger: asymmetric splitting

y = min(p2
ti, p

2
tj)

�R2
ij

m2
� min(pti, ptj)

max(pti, ptj)
Possibly 

implemented 
via a cut on
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Splittings and distances

134

Quasi-collinear 
splitting (ptj < pti)

pt
pti = (1-z)pt

m ptj = zpt

m2 ⇥ ptiptj�R2
ij = (1� z)zp2

t �R2
ijInvariant mass:

dij = z2p2
t �R2

ij ⇥
z

1� z
m2

kt distance:

For a given mass, the background will have smaller distance dij than the signal, 
i.e.  it will tend to cluster earlier in the kt algorithm

(ptj < pti)

Potential tagger: last clustering in kt algorithm
This is where the hierarchy of the kt algorithm becomes relevant. 

QCD radiation is clustered first, and only at the end the symmetric, 
large-angle splittings due to decays are reclustered
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Alternative algorithms

135

‣ Suppose that for some reasons (which will become clearer later) one does not 
with to use the kt algorithm

‣ One must then find a way to determine what the relevant splitting (i.e. the 
one due to the decay, not to QCD radiation) is.

A possible approach is to use a Mass-Drop requirement:
the clustering is progressively undone, and a splitting is the relevant one if 

both subjects are much less massive than their combination 
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The BDRS tagger/groomer

136

‣A two-prong tagger/groomer for boosted Higgs, which
‣ Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

‣ Employs a Mass-Drop condition, as well as an asymmetry cut to 
find the relevant splitting (i.e. ‘tag’ the heavy particle)

‣ Includes a post-processing step, using ‘filtering’ (introduced in the same paper) 
to clean as much as possible the resulting jets of UE contamination 
(‘grooming’)

Butterworth, Davison, Rubin, Salam, 2008

pp →ZH → ννbb--
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pp →ZH → ννbb

Start with the 
hardest jet

Use C/A with 
large R=1.2

mj = 150 GeV
G

. S
al

am

- -
BDRS: tagging
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pp →ZH → ννbb

Undo last step of 
clustering

Check how the mass splits 
between the two subjets

(m1 = 139 GeV, m2 = 5 GeV)
and how asymmetric the 

splitting is

If repeator
min(p2

t1, p
2
t2)

m2
j

�R2
12 < ycut

max(m1,m2)
mj

> µ

BDRS: tagging
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pp →ZH → ννbb

m1 = 52 GeV, m2 = 28 GeV

Stop when a large mass 
drop is observed 

(and recombine these
 two jets)

[NB. Parameters used μ = 0.67 and ycut = 0.09]
G

. S
al

am

BDRS: tagging
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BDRS: filtering

140

Start with the 
recombined jet

pp →ZH → ννbb

G
. S

al
am
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Recluster the 
contituents with Rfilt

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Only keep the nfilt 
hardest jets

The low-momentum stuff surrounding the hard particles has been removed

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Visualisation of BDRS

143

Cluster with a large R
Undo the clustering into subjets,

until a large asymmetry/mass drop 
is observed: tagging step

Re-cluster with smaller R, 
and keep only 3 hardest 

jets: grooming step

pp →ZH → ννbb--
Butterworth, Davison, Rubin, Salam, 2008
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First taggers/groomers

144

‣ Mass Drop + Filtering

‣ Jet ‘trimming’  

‣ Jet ‘pruning’ 

Butterworth, Davison, Rubin, Salam, 2008

Krohn, Thaler, Wang, 2009

S. Ellis, Vermilion, Walsh, 2009

Aim: limit contamination from QCD background while 
retaining bulk of perturbative radiation

Decluster with mass drop and asymmetry conditions
Recluster constituents into subjets at distance scale Rfilt,  retain nfilt hardest subjets 

Recluster constituents into subjets at distance scale Rtrim,  
retain subjets with pt,subjet > εtrim pt,jet 

While building up the jet, discard softer subjets when ΔR > Rprune 
and min(pt1,pt2) < εprune (pt1+pt2)

Trimming and pruner are a priori groomers, but can become taggers 
when combined with an invariant mass window test 

(if you can groom everything then there’s no heavy particle in the jet)
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The jet substructure maze

145

Slide by G. Salam, now a few years old
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Soft Drop declustering

146

Larkoski, Marzani, Soyez,Thaler, 2014

Decluster and drop softer constituent unless i.e. remove wide-angle 
soft radiation from a jet

The paper contains
✓ analytical calculations and comparisons to Monte Carlos
✓ study of effect of non-perturbative corrections
✓ performance studies

Example of SoftDrop 
performance when used 
as a boosted W tagger
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Alternatives to hierarchical substruct.

147

‣ If what we are interested in is the structure of the constituents of a jet, the 
“jet” itself is not the most important feature. 
‣ A different algorithm, or simply the study of the constituents in a certain patch 

will also do.  Selected alternatives are:
‣ Use of jet-shapes to characterise certain features
‣ e.g. N-subjettiness: how many subjets a jets appears to have

‣ Alternative ways of clustering
‣ e.g. Qjets: the clustering history not deterministic, but controlled by 

random probabilities of merging. Can be combined with, e.g. pruning

‣ Use information from matrix element
‣ e.g. shower deconstruction: use analytic shower calculations to estimate 

probability that a certain configuration comes from signal or from 
background

‣ Use event shapes mimicking jet properties
‣ e.g. JetsWithoutJets, mimicking trimming

Thaler, van Tilburg, 2011

Ellis, Hornig, Roy, Krohn, Schwartz, 2012

Soper, Spannowsky, 2011

Bertolini, Chen, Thaler, 2013
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Distances to axes of N subjets

N-subjettiness

148

τN measures departure from N-parton energy flow:
if a jet has N subjets, τN-1 should be much larger than τN

Sum over constituents 
of a jet

Thaler, van Tilburg, 2010
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N-subjettiness

149

A jet with a small τN,N-1 

is more likely to have 
N than N-1 subjets  

(from 1011.2268, with β=1)

Thaler, van Tilburg, 2010
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C

150

Energy correlation functions
Probes of N-prong structures without requiring 

identification of subjets

ECF(N+1) is zero if there are only N particles 

More generally, if there are N subjets one expects 
ECF(N+1) to be much smaller than ECF(N)
[because radiation will be mainly soft/collinear to subjets]

Angular (y-φ) distances 
between constituents

Larkoski, Salam, Thaler 2013
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C

151

Discriminators

A jet with a small CN is more likely 
to have N prongs and at most soft/coll radiation  

Larkoski, Salam, Thaler 2013

small for N prongs: 
if N hard partons, small if radiation 

only soft-collinear
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C

152

C1
quark-gluon discriminator

C3
top tagging

Note different values of β 
(chosen to maximise discriminating power)



Matteo Cacciari - LPTHE FeynRules/MadGraph School - Hefei - November 2018

D

153

The D functions are variations of the C ones
Larkoski, Moult, Neill, 2014

Instead of

define

Attempt to improve the 
discriminating power, 

and to account for different 
regions of phase space of 

radiation
[also, gives an idea of increasing 

‘sophistication’, or complexification]
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Robustness of substructure tools

154

Tools that are considered (or can be seen in Monte Carlo tests) to behave 
‘similarly’ could cease to do so in different parameter regions

Dasgupta, Fregoso, Marzani, Salam, 2013
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Analytic calculations of jet substructure

155

Dasgupta, Fregoso, Marzani, Salam, 2013

Monte Carlo
Analytic

(resummed pQCD) ‣ Analytical 
understanding of ‘kinks’ 
in distributions
‣ Check of Monte Carlo 

predictions
‣ Other analytical investigations: 

Rubin 2010 (filtering), Walsh, 
Zuberi 2011 (jet substructure 
with SCET), Feige Schwartz, 
Stewart, Thaler 2012 (N-
subjettiness), Dasgupta, 
Marzani, Powling 2013 
(groomed jet mass), ...
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Recap of Lecture 2

156

The big news of the past few years has been the 
development of taggers and groomers using properties of 
jet substructure, through

‣ declustering

‣ jet shapes

‣ direct analysis of images (machine learning)

These techniques have been commissioned by 
experimental collaborations proven their worth in 
‘Standard Model’ analyses. They are now being implemented 
in BSM searches


