FeynRules/Madgraph School on Collider Phenomenology 2018

TUTORIAL ON MADGRAPH5_AMC@NLO:

BASIC USAGES

HUA-SHENG SHAO

19-23 November 2018

INSTALL MADGRAPH 5

- Preinstall requirements (you should receive an email before):
 - Unix system (Linux or Mac OS). For windows user, try a virtual machine
 - gcc and gfortran (version >= 4.6 and not 8.X)
 - python (version >= 2.6 and < 3.0)
- https://launchpad.net/mg5amcnlo
- untar it (tar -zxvf MG5_aMC_v2.6.X.X.tar.gz)
- launch it (\$./bin/mg5_aMC)
- learn it from tutorial!
 - Type tutorial and follow instructions

INSTALL MADGRAPH 5

The standard reference for the use of the code is: J. Alwall et al, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations", arXiv:1405.0301 [hep-ph]. In addition to that, computations in mixed-coupling expansions and/or of NLO corrections in theories other than QCD (eg NLO EW) require the citation of: R. Frederix et al, "The automation of next-to-leading order electroweak calculations", arXiv:1804.10017 [hep-ph]. A more complete list of references can be found here: http://amcatnlo.web.cern.ch/amcatnlo/list_refs.htm

Download:

FIND HELP?

- Ask us (tutors and/or authors) or your experienced friends
- Use the command "help" or "help XXX"
 - "help" will guide you what to do next.
- From Launchpad:
 - First check: https://answers.launchpad.net/mg5amcnlo/+faqs
 - Submit Q: https://answers.launchpad.net/mg5amcnlo

INPUTS

My first example:

```
./bin/mg5_aMC
> generate p p > t t~
> output MyExample
> exit
cd MvExample/Cards
```

- Read the cards and understand what they are
 - param_card.dat: model parameters
 - --- run_card.dat: run parameters and kinematical cuts

Detail explainations: https://answers.launchpad.net/mg5amcnlo/+faq/2014

EXERCISE: INPUTS

- Please change the following inputs
 - top quark mass
 - top quark width
 - W boson mass
 - beam energy
 - number of events
 - min pt cut of the charged leptons
 - number of quark flavors in a jet

EXERCISES: GENERATION SYNTAX

- What's the meaning of the coupling order QED/QCD
- What's the difference between

```
> generate p p > t t~
> generate p p > t t~ QED=2
> generate p p > t t~ QED=0
> generate p p > t t~ QED=0
> generate p p > z a > t t~
> generate p p > z a > t t~
```

```
> generate p p > t t~ QCD=0
> generate p p > t t~ QCD<=2

> generate p p > t t~ QCD^2==2
> generate p p > t t~ $$ z QED=2
```

- Hint: Use 'display diagrams' to see the generated Feynman diagrams
- Compute the cross-section for each of them!
- Generate a Higgs from vector-boson fusion process

Generate the invariant mass distribution for

```
> generate p p > e+ e-
> generate p p > z, z > e+ e-
> generate p p > e+ e- $ z
> generate p p > e+ e- / z
```

- Hint: If you have installed MadAnalysis5 via 'install MadAnalysis5', you can find a few predefined plots in MA5_report_analysis1.
- Edit the madanalysis5_parton_card.dat to refine the bins.
- · Understand the meaning from the invariant mass distribution


```
## PARAM_CARD AUTOMATICALY GENERATED BY MGS FOLLOWING UFO MODEL ####
         Width set on Auto will be computed following the information
                         present in the decay.py files of the model.
                         See arXiv:1402.1178 for more details.
 5 4.708000e+08 # MB
         6 1.730000e+02 # MT
       15 1.777000e+00 # MTA
       23 9.118800e+01 # MZ
       25 1.250000e+02 # MH
 ## Dependent parameters, given by model restrictions.
 ## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MGS
 ## to external program such as Pythia.
    1.0.000000 # d : 0.0
    2 0.000000 # u : 0.0
    3 0.000000 # s : 0.0
    4 0.000000 # c : 0.0
     11 0.000000 # e- : 0.0
     12 0.000000 # ve : 0.0
     13 0.000000 ≠ mu= : 8.0
     14 0.000000 # vm : 0.0
     16 0.000000 # vt : 0.0
     21 0.000000 # g : 0.0
     22 0.000000 # a : 0.0
     24 88.419002 # w+ : cmath.sqrt(MZ_exp__2/2. + cmath.sqrt(MZ_exp__4/4. - (aEN*cmath.pi*MZ_exp__2)/(Gf*sqrt_2)))
 *******************************
 ## INFORMATION FOR SMINPUTS
         1 1.325070e+02 # aEWM1
         2 1.165390e-05 # Gf
         3 1.180000e-01 # aS
 ***********************
## INFORMATION FOR YUKAWA
sosassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessassessass
         5 4.798989e+98 # ymb
         6 1.738989e+92 # ymt
       15 1.777000e+00 # ymtou
 DECAY 6 1.491508e+00 # WT
DECAY 23 2.441404e+00 # WZ
DECAY 24 2.047698e+80 # WW
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MGS ignores those values
```

top quark mass

W boson mass

Not allowed to change independently! Change MZ, aEWM1, Gf.

-top quark width


```
MadGraph5_aMC@NLO
                   run_card.dat MadEvent
  This file is used to set the parameters of the run.
  Same notation/conventions:
   Lines starting with a '#' are info or comments
  mind the format: value
                            = variable
                                         ! commert
   To display more options, you can type the command:
      update full_run_card
= ebeam2 ! beam 2 total energy in GeV
```

number of events

beam energy


```
MadGraph5_aMC@NLO
                   run_card.dat MadEvent
  This file is used to set the parameters of the run.
                                                                  # Ninimum and maximum pt's (for max, -1 means no cut)
  Some notation/conventions:
                                                                                     ! minimum pt for the jets
   Lines starting with a '#' are info or comments
                                                                                   ! minimum pt for the b
                                                                                    ! minimum pt for the photons
                                                                   10.0 = pta
   mind the format: value
                            = variable
                                        ! comment
                                                                   10.0 = ptl
                                                                                    ! minimum pt for the charged leptons
                                                                                   ! minimum missing Et (sum of neutrino's momenta)
                                                                        = misset
   To display more options, you can type the command:
      update full_run_card
                                                                                    ! maximum pt for the jets
                                                                        = ptbmax
                                                                                     ! maximum pt for the b
                                                                                     ! maximum pt for the photons
*************
                                                                        = ptlmax
                                                                                     ! maximum pt for the charged leptons
# Running parameters
                                                                        = missetmax ! maximum missing Et (sum of neutrino's momenta)
                                                                      pt_min_pdg ! pt cut for other particles (use pdg code). Applied on particle and anti-particle
                                                                          = pt_max_pdg ! pt cut for other particles (syntax e.g. {6: 100, 25: 50})
                                                                   Ð
# Number of events and rnd seed
# Warning: Do not generate more than 1M events in a single run
 10000 = nevents ! Number of unweighted events requested
   = iseed ! rnd seed (0=assigned automatically=default))
# lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton,
```

min pt cut of the charged leptons

! beam 2 type

= ebeam1 ! beam 1 total energy in GeV
= ebeam2 ! beam 2 total energy in GeV


```
MadGraph5_aMC@NLO
                   run_card.dat MadEvent
  This file is used to set the parameters of the run.
  Same notation/conventions:
   Lines starting with a '#' are info or comments
   mind the format: value
                           = variable
   To display more options, you can type the command:
      update full_run_card
~-----
# Running parameters
# Warning: Do not generate more than 1M events in a single run
 10000 = nevents ! Number of unweighted events requested
   = iseed ! rnd seed (0=assigned automatically=default))
# Collider type and energy
# lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton,
                    beam 2 type
             = ebeam1 ! beam 1 total energy in GeV
              = ebeam2 ! beam 2 total energy in GeV
```

```
# Ninimum and maximum pt's (for max, -1 means no cut)
              ! minimum pt for the jets
             ! minimum pt for the b
              ! minimum pt for the photons
10.0 = pta
10.0 = ptl
              ! minimum pt for the charged leptons
             ! minimum missing Et (sum of neutrino's momenta)
0.0 = misset
              ! maximum pt for the jets
              ! maximum pt for the b
    = ptbmax
-1.0 = ptamax
              ! maximum pt for the photons
-1.0 = ptlmax
              ! maximum pt for the charged leptons
-1.0 = missetmax ! maximum missing Et (sum of neutrino's momenta)
{} = pt_min_pdg ! pt cut for other particles (use pdg code). Applied on particle and anti-particle
     = pt_max pdg ! pt cut for other particles (syntax e.g. {6: 100, 25: 50})
# maximal pdg code for quark to be considered as a light jet
# (otherwise b cuts are applied)
! Maximum jet pdg code
 4 = maxjetflavor
```

number of quark flavors in a jet

- What's the meaning of the coupling order QED/QCD
 - By default, MG5 will guess the lowest order in QED

- What's the meaning of the coupling order QED/QCD
 - By default, MG5 will guess the lowest order in QED
 - > generate p p > t t~ = > generate p p > t t~ QED=0
 - > generate p p > t t~ QED=2

- What's the meaning of the coupling order QED/QCD
 - By default, MG5 will guess the lowest order in QED
 - > generate p p > t t~ = > generate p p > t t~ QED=0
 - > generate p p > t t~ QED=2

Results in the sm for p p > t t

Run	Collider	Banner	Cross section (pb)
run_01	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	505.7 ± 0.79

Results in the sm for p p > t t \sim QED=2

Run	Collider	Banner	Cross section (pb)
run_01	рр 6500.0 x 6500.0 GeV	<u>tag_1</u>	505.8 ± 0.93

What's the meaning of the coupling order QED/QCD

> generate p p > t t~ QCD^2==2

Returns the interference between the QCD and QED diagrams

Zero in this case due to the colour!

Generate a Higgs from vector-boson fusion process

• '\$\$' excludes diagrams with the particles in s-channel

- Generate the invariant mass distribution for
 - Refine the bins in madanalysis5_parton_card.dat

```
# Uncomment the line below to skip this analysis altogether
# @MG5aMC skip_analysis
@MG5aMC stdout_lvl=INFO
@MG5aMC inputs = *.lhe
@MG5aMC analysis_name = analysis1
# Multiparticle definition
define vl = 12 14 16
define vl~ = -16 -14 -12
define invisible = ve ve~ vm vm~ vt vt~ vl vl~
# Histogram drawer (options: matplotlib or root)
set main.graphic_render = matplotlib
# Global event variables
plot THT 40 0 500 [logY]
plot MET 40 0 500 [logY]
plot SQRTS 40 0 500 [logY]
# PT and ETA distributions of all particles
plot PT(e-[1]) 40 0 500 [logY]
plot ETA(e-[1]) 40 -10 10 [logY]
plot PT(e+[1]) 40 0 500 [logY]
plot ETA(e+[1]) 40 -10 10 [logY]
# Invariant-mass distributions
plot M(e-[1] e+[1]) 40 0 500 [logY]
# Angular distance distributions
plot DELTAR(e-[1],e+[1]) 40 0 10 [logY]
```

Invariant mass of the lepton pair

100

 $M[e+e-](GeV/c^2)$

103

10²

200

MADGRAPH

MADGRAPH

On-shell cut in run_card.dat

```
## BW_cutoff (M+/-bwcutoff*Gamma) ! Define on/off-shell for "$" and decay
#*
15.0 = bwcutoff ! (M+/-bwcutoff*Gamma)
```

$$|M(e^+e^-) - M_Z| < \text{bwcutoff} \times \Gamma_Z$$

- Full (physical) distribution is very close the sum of the two.
- The '\$' forbids the Z to be on shell but the photon invariant mass can be at M_Z (i.e. on-shell subtraction).
- The '/' is to be avoid if possible since this may lead to (unphysical) gauge dependent.

 Next slides are generated with bwcutoff=5, which is TOO SMALL from the physical viewpoint in practice.

Red curve p p > e+e-/zBlue curve p p > e+e-/z

• Next slides are generated with bwcutoff=5, which is TOO SMALL from the physical viewpoint in practice.

Red curve p p > e+e-/zBlue curve p p > e+e-/z

The on-shell region of Z is vetoed

Photon contribution is still there.

• Next slides are generated with bwcutoff=5, which is TOO SMALL from the physical viewpoint in practice.

Red curve p p > e+e-/zBlue curve p p > e+e-/z

The on-shell region of Z is vetoed

Photon contribution is still there.

Area sensitive to Z peak

bwcutoff=15 will cover this region

 Next slides are generated with bwcutoff=5, which is TOO SMALL from the physical viewpoint in practice.

Red curve p p > e+e-/zBlue curve p p > e+e-/z

The on-shell region of Z is vetoed

Photon contribution is still there.

Area sensitive to Z peak

bwcutoff=15 will cover this region

The very off-shell Z region, the difference between the two curves is due to the interference between Z and photon diagrams