

CEPC fit framework

Zhang Kaili

zhangkl@ihep.ac.cn

2018-03-19

Outline

- Statistics introduction
 - parameters of interest
 - Asimov Data
- Fit framework
- Example
 - H->invisible
 - vvH->bb
- Fit result

Statistics in CEPC

- After get this distribution:
 - what can we expect?
 - signal strength $\mu \equiv \frac{N_{obs}}{N_{exp}}$
 - μ =CrossSection*Br, $\Delta \mu$
 - ΔBr , with known $\Delta \sigma(ZH)(0.5\%)$
 - For discovery: significance
 - For exclusion: upper limit
 - More: *κ*, EFT.....

if not familiar with these, please refer to Cowan's tutorial <u>here</u> (3 talks) or see the backup slides or come to find me [©]

Combination framework

- Advantages to individual study
 - Fit result more robust & reliable
 - Treatment for correlation: ZH bkg
 - Extensibility in future for systematic uncertainties

- Currently finished the combine model
- All functional making workspace, fitting, plotting
- For individual channel, the tutorial fit code undergoing
 - when finished, will upload to http://cepcsoft.ihep.ac.cn/

Fit method: likelihood scan

- Most robust
 - deviation at 1σ : precision $\Delta\mu$
 - deviation at 2(1.95) σ : upper limit
 - clear definition

Fit functions• Crystal ball/Crystal ball + bifurcated Gaussian• 2^{nd} exponential• like $exp(a\frac{m-100}{100} + b\frac{(m-100)^2}{100^2})$ • for smooth/flat background• 5^{th} chebshev• RooKeysPdf(Kernel estimation)•undergoing

Inputs for the fit

- (After your final selection) distribution of signal & bkg
 - Mass(higgs & Z, invariant & recoil), 4 momentum
 - for further treatment on the shape
 - Event weight, if scaled
 - bkg, separate ZH/non ZH process and specify which ZH it is.
 - e.g H->WW, other modes like H->bb/cc/gg, ZZ, $\tau\tau$
 - Mass ntuples (Most recommened) -> 1d unbinned fit
 - Flavor template/ Histograms -> 1/2d binned fit
 - esp. only signal/bkg event number
- -> 1d binned (1 bin) fit

.

Asimov Data

- In principle, we can have infinite MC events as long as we want.
 - May not in reality, low MC stats would bring external uncertainty
- Idea of Asimov Data
 - Replace the shape to its median value (which is, the fit pdf)
 - Use the fit pdf to generate the exactly same datasets, as much as we want
 - Suppresses all statistical uncertainty from MC
 - Very useful for approximation
- Shows best performance in comparison
 - H->invisible, an example

H->Invisible

• Xin's result: (Assume Br in SM value 0.106%)

TABLE I: Branching ratio measurements and upper limits

	$Z(e^+e^-)H(\text{inv})$	$Z(\mu^+\mu^-)H(\text{inv})$	$Z(qar q)H({ m inv})$	Combined
BR	$(0.350\pm 0.510)\%$	$(0.350\pm0.290)\%$	$(0.094 \pm 0.150)\%$	$(0.103 \pm 0.075)\%$
95% CL upper limit	1.30%	0.90%	0.37%	0.24%

• Note: Current all CEPC result is MC, which is set to the expected

value, so μ should be always close to 1.

- If deviation too large: Not reliable
- Huge bkg-> large fluctuations

In mH 120~150 (L=5ab ⁻¹)	signal bkg		s/b
Z->ee	12.86	4205	0.003
Z->mm	23.69	36540	0.0006
Z->qq	224.41	426540	0.0005

Using Asimov data

- Using same ntuples
 - on Asimov Data
 - Based on $Br^*\sigma$, same range 120-150
 - Using more npoints when building
 - $Br_{BSM}(H \to inv) < 0.31\%$ at 95% CL.

	Mine	Mo's
Z->ee	0.97 ± 350%	$3.30\pm481\%$
Z->mm	$1.00\pm242\%$	$3.30\pm273\%$
Z->qq	$1.03 \pm 226\%$	$0.88 \pm 141\%$
Combined	$1.01 \pm 148\%$	$0.97\pm71\%$

	Mine	significance	Upper limit	Br Upper limit
Z->ee	0.97 <u>+</u> 350%		7.97	0.84%
Z->mm	$1.00 \pm 242\%$		5.84	0.62%
Z->qq	$1.03 \pm 226\%$		5.55	0.59%
Combined	1.01 <u>+</u> 148%	0.68	3.97	0.42%

- Also, Toy MC test may lead to external uncertainly, Asimov fit shows better
 - in ZH->qqyy, Yitian: 15.6% Mine: 12.8%

Correlation: $vvH \rightarrow bb$

- WW fusion channel contains many ZH bkg;
 - Initial error is 2.89%, (Pre_CDR 2.8%)
 - But must consider the uncertainty of ZH process(~0.4%)
- In individual analysis
 - assume the error is Gaussian distribution
 - $-\text{Log}L = 0.5 \left(\frac{\mu_{ZH}-1}{0.375\%}\right)^2 P\left(data | \mu_{ZH}N_{ZH}Pdf_{ZH} + \mu_{wwf}N_{wwf}Pdf_{wwf} + N_{SM}Pdf_{SM}\right)$
- Here we can directly use the likelihood in Z->ee/mm/qq, H->bb channel
 - Already have the form of μ_{ZH} no assumption made;
- Combine Fit $\begin{cases} +3.13\% \\ -3.12\% \end{cases}$; consistent with individual result 3.1%.

Plots to show

Channels Table

Done/Almost Done:

Sig	nal	Precision	Signal		Precision	Signal		Precision
Z	Н	rrecision	Z	Н	rrecision	Z	Н	FIECISION
	H->qq			H->WW		vv	H(WW fusio	on)
	bb	1.6%		μνμν		VV	bb	3.1%
ee	сс	23.6%		evev	7.3%		Rare Decays	5
	gg	13.3%	μμ	evµv			Н→µµ	
	bb	1.1%		evqq	4.0%	qq		
μμ	сс	14.8%		μνqq	4.0%	ee]	15.00/
	gg	8.0%		μνμν		μμ	μμ	15.9%
	bb	0.5%		evev	9.2%	VV		
qq	сс	11.9%	ee	evµv		H->In	visible	Br, Upper
	gg	3.9%		evqq	4.6%	qq		0.8%
	bb	0.4%		μνqq	3.9%	ee	ZZ(vvvv)	0.6%
vv	сс	3.9%		qqqq	2.0%	μμ		0.6%
	gg	1.5%	vv	evqq	4.7%			
	Η→ττ			μνqq	4.2%			
ee		3.0%	qq	lvqq	2.2%(ILC)			
μμ		2.8%	ZH bkg co	ntribution	3.0%			
qq		0.9%		H->ZZ				
vv		3.7%	vv	μμqq	8.2%			
	Η→γγ, Ζγ		vv	eeqq	35.2%			
μμ+ττ		24.8%	μμ	vvqq	7.3%			
vv	γγ	11.7%	ee	eeqq	35.1%			
qq		12.8%	ee	μμqq	23.0%			
vv	Ζγ(qqγ)	21.2%	ZH bkg co	ntribution	19.4%			

Fit results

Standalone: Regardless any ZH bkg contribution; Different impact on w/z and b/c/g/ τ .

(5ab⁻¹)	Pre_CDR	Combined	Standalone
$\sigma(ZH)$	0.51%	0.5	0%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.3%	0.3%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.20%	3.5%	3.5%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.60%	1.4%	1.4%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.50%	1.0%	1.2%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.30%	5.0%	5.2%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.20%	0.8% 0.8%	
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.00%	8.1%	8.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	15.9%	15.9%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.80%	3.1%	3.1%
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%	0.42%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	١	4σ	4σ

Correlations in channel

2018/3/19

14

Statistics backup

From a course talk presented last year

Higgs: Stats & Fit

How can we claim a discovery

Is that Higgs?

- Now we have series plots with bump.
 - Could it be fluctuation? Is that Higgs?
 - Can we use data-bkg=signal?

- In modern particle physics, we develop a series statistic techniques to deal.
 - 5 sigma
 - Likelihood fit 似然拟合
 - Local p0, global p0, CL.....

5 sigma

•
$$p = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = 1 - \Phi(Z)$$
 Z=5 Gaussian, One side

• $p=2.87*10^{-7} \text{ or } \frac{1}{3500000}$

(when p=0.05, Z=1.64)

- A very strict threshold in HEP we set
 - when p is low, it may be explained by fluctuation or systematic error

<2 <i>o</i> (2%)	: not worthy to discuss
<3 σ (0.1%)	: hint
<5 σ	: evidence
>5 <i>o</i>	: discovery

Statistics definitions

- Null Hypotheses H_0 SM, without Higgs
- Alternate Hypotheses H_1 SM, with Higgs at m_H

- Reject H_0 in favor of $H_1 A$ DISCOVERY
- Reject H_1 in favor of H_0 We excluded Higgs with m_H

Hint: these two are not opposite.

• We prove Higgs exist by reject null hypotheses

由于我们永远无法直接证明H1, 通过拒绝H0假设来证明Higgs存在

Understand 5 sigma

• We calculate the probability

计算假设能构成观测到的数据的概率

- of test statistic at least as extreme as that observed.
- P(result is compatible with the tested (bkg only) hypotheses)
 - If low enough (< 2.87×10^{-7}) 5 sigma

Means SM can't explain current distribution (the bump)

- The null hypotheses H_0 is rejected. We claim discovery.
- Local p0
 - Local ->Regardless Look elsewhere effect
 - P₀ -> tested (bkg only) hypotheses H₀

For discovery

*when we say "raise significance", it means raise Z. Z= $\Phi^{-1}(1-p_0)$

For exclusion

S+B模型能够解释实验数据的概率 过小则不承认这里有Higgs 不断排除区间以设置"排除上限" upper limits

=P(result is compatible with the tested (signal+bkg) hypotheses)

• when p < 0.05

95% Confidence Level(CL)

• The alternate hypotheses H1 is rejected.

We exclude this region at 95% CL.

Statistic errors

- Type-1 Error_{第一类统计错误}
 - P(reject the tested(null) hypotheses when it is true)
 - $\alpha = P(reject H_0 | H_0)$ α ~significance=p-value
- Type-2 Error_{第二类统计错误}
 - P(accept the null hypothesis when it is wrong)
 - $\beta = P(accept H_0 | \overline{H_0}) = P(reject H_1 | H_1)$
- Power, reject null when alternate is true
 - Power=1- β Power~sensitivity
 - Given same significance, methods with higher Power is better.

$\ensuremath{\text{CL}}\xspace_s$ issue for exclusion

- Usually we calculate CL_{s+b} for exclusion.
- Sometimes distribution b and s+b are close
 - Usual CL method (compare $p_{s+b} < \alpha$) has low sensitivity Define
 - $CL_s = \frac{CL_{s+b}}{CL_b} = \frac{p_{s+b}}{1-p_b}$
 - If $CL_s < \alpha$
 - Reject s+b Hypothesis: *H*₁

How to calculate?

Use likelihood model to quantify.

- Signal strength $\mu \equiv \frac{\sigma_{obs}}{\sigma_{exp}}$
- For each bin,

$$E(n) = \mu * s_i + b_i$$
 Poisson

Basic form:

$$L(\mu) = \frac{(\mu s + b)^n}{n!} e^{-(\mu s + b)}$$

- Add nuisance parameters (NP) to model.
 - besides POI(parameter of interest, here is μ)
 - describe uncertainty, bkg parameterization, anything we need.

Likelihood function: an example

$$\mathcal{L} = \prod_{i} \left\{ \frac{e^{-\nu_{i}}}{n_{i!}} \prod_{j}^{n_{i}} \left[\nu_{i}^{sig} \mathcal{F}_{i}^{sig} \left(m^{j}, \theta; m_{H} \right) + \nu_{i}^{bkg} \mathcal{F}_{i}^{bkg} \left(m^{j} \right) \right] \right\} \times \prod_{l} G_{l}(\theta)$$

• Function form:
$$f = N \cdot \begin{cases} e^{-\frac{1}{2}\alpha_L^2} \cdot \left[\left(\frac{\alpha_L}{n_L}\right) \left(\frac{n_L}{\alpha_L} - [\alpha_L + x]\right) \right]^{-n_L}, x < -\alpha_L \\ e^{-\frac{1}{2}x^2}, & -\alpha_L \le x \le \alpha_H \\ e^{-\frac{1}{2}\alpha_H^2}, \left[\left(\frac{\alpha_H}{n_H}\right) \left(\frac{n_H}{\alpha_H} - [\alpha_H - x]\right) \right]^{-n_H}, x > \alpha_H \end{cases}$$

- \mathcal{F}^{sig} : pdf(probability distribution function) of signal, describe the signal shape.
- \mathcal{F}^{bkg} : pdf of background
- Function minimizes the bias observed in the extracted signal yield
- The bkg model with the least parameters is chosen
- *G_l*: Uncertainties.

Powerful likelihood model

• Easy to do combination each channels/categories.

Times the subpart directly!

$$L(\mu,\theta) = \prod_{i} L_{i}(\mu,\theta_{i})$$

- uniformed, simultaneous statistical procedure and framework
- can easily include necessary correlations Share the same name
- Final model can be very complicated to consider all info from the analysis.
- Maximize Likelihood (ML) estimation/fit
 - Determine all the parameter's value.

Profile likelihood ratio

Larger λ , better agreement data & hypothesis

• Test statistics

 $q(\mu) \equiv -2 \ln \lambda(\mu)$ Higher q, less incompatible.

To reject background-only ($\mu = 0$) hypothesis using

•
$$q_0 = \begin{cases} -2 \ln \lambda(0) & \hat{\mu} \ge 0 \\ 0 & \hat{\mu} < 0 \end{cases}$$

Even physically $\mu > 0$, we allow $\hat{\mu} < 0$ for convenience.

•
$$p_0 = \int_{q_0,obs}^{\infty} f(q_0|0) \,\mathrm{d}q_0$$

Currently the shape of f is unknown, later I'll show an approximation.

- Use $f(q_0|0)$ to announce discovery
- Use $f(q_0|\mu')$ to calculate sensitivity
- Use $f(q_{\mu}|\mu')$ to calculate exclusion

•
$$q_{\mu} = \begin{cases} -2\ln\lambda(\mu)\,\hat{\mu} \le \mu \\ 0 \quad \hat{\mu} > \mu \end{cases} \qquad p_{\mu} = \int_{q_{\mu},obs}^{\infty} f(q_{\mu}|\mu)\,\mathrm{d}q_{\mu}$$

Look elsewhere effect(LEE)

• In local p0 calculation, the m_H is fixed.

$$q_{fix}(\mu) = -2 \ln \frac{L(0,m_0)}{L(\hat{\mu},m_0)}$$

Each mH point has a local p0.

$$p_{local} = \int_{q_{fix},obs}^{\infty} f(q_{fix}|0) \,\mathrm{d}q_{fix}$$

- Suppose we don't know where to find the peak.
 - It can occur anywhere: mass is float.

One region has a glocal p0.

$$p_{global} = \int_{q_{float},obs}^{\infty} f(q_{float}|0) \, \mathrm{d}q_{float}$$

 $q_{float}(\mu) = -2 \ln \frac{L(0)}{L(\hat{\mu}, \hat{m}_0)}$

We can get p_{global} by fit or an "upcrossion" correction.

LEE only in discovery, not in exclusion.

In Higgs finding 2012, the global p_0 is 5.1 sigma.

Global & local p0 max at same point, global a bit lower;

Even global p0 is more "reasonable", we use 5sigma local p0 as symbol.

- Use Asimov dataset in fit
 - Suppresses all stats. uncertainties.
 - Parameters all replaced to their expected value
 - The median of $f(q_{\mu}|H_0)$
 - Can be determined by MC
 - Very useful for approximation

Distribution of q_0

- To estimate -2 $\ln \lambda(\mu)$ Wilks & Wald theorem
- Assuming the Wald approximation
 - NP independent, one degree of freedom

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp\left[-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2\right]$$

• $\mu' = 0$, special "half chi-square" distribution

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp[-q_0/2]$$

• Finally, significance

$$Z = \sqrt{q_0}$$

The conclusion 🙂

Simplified: number counting

• with bkg known, we get significance Z:

•
$$\frac{s}{\sqrt{b}}$$
, for s \ll b

S: signal yields in region. $s_{exp} \& s_{obs}$ b: background yields in region Always use b_{obs}

• or,
$$\sqrt{2\left[(s+b)\ln\left(1+\frac{s}{b}\right)-s\right]}$$

• with uncertainty σ_b : $\left[2((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2s}{b(b+\sigma_b^2)}\right]\right]^{\frac{1}{2}}$

• purity $f_{exp} \equiv \frac{S_{exp}}{S_{exp} + B_{obs}}$ $f_{obs} \equiv \frac{S_{obs}}{S_{obs} + B_{obs}}$

• Z
$$Z_{exp} \equiv \sqrt{2\left(\left(S_{exp} + B_{obs}\right)\ln\left(1 + \frac{S_{exp}}{B_{obs}}\right) - S_{exp}\right)} \qquad \qquad Z_{obs} \equiv \sqrt{2\left(\left(S_{obs} + B_{obs}\right)\ln\left(1 + \frac{S_{obs}}{B_{obs}}\right) - S_{obs}\right)}$$

Actually: simultaneous fit

- Use fit
 - to determine POI: μ .

Number counting is awesome. But we didn't know the real signal yields; And none NP has taken into account! Go back to our model.

- to calculate signal yields, significance and so on.
- to check the influence of NP corresponds to uncertainties
- Use p_0 to announce discovery
- Use CL to set upper limits (exclusion)
- Use μ & m_H 2-dimension fit to determine best μ & m_H

We determine m_H here

Combine channels

Categories

Production Modes(1307.1427, Full Run1)

2018/3/19

Summary plot on 12Atlas result

*126.5GeV is not Higgs Mass!

Exclusion region:

- Exp 95%CL:110-582GeV
- Obs 95%CL:111-122,131-559GeV
- Exp 99%CL:113-532GeV

Obs 99%CL:113-114,117-121, 132-527GeV

Peak:at 126.5GeV Obs local p0:6.0 σ Exp local p0:4.9 σ Global p0 in 110-600GeV:5.1 σ Global p0 in 110-150GeV:5.3 σ

*quiz: before experiment begin, can we calculate the expected local p0 by theory?

Summary plot on 12Atlas result

Conclusion on 2012

(in 1207.7214), ATLAS announced:

 Clear evidence for the production of a neutral boson with a measured mass of

 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.

- A significance of **5.9** standard deviations.
- Considering LEE, the global p_0 is 5.1 sigma.
- The measured signal strength is 1.4 ± 0.3 .
- It is compatible with the production and decay of the Standard Model Higgs boson.
 - We didn't directly say "it is Higgs."
- 2013, after more data collection, LHC announced,

"it strongly indicates that it is a Higgs boson."

Uncertainty

In 1207.7214 uncertainties are not in detail.

List	Dominant
Stats.	*
Integrated Luminosity	
e/mu/gamma PID	*
e/mu/gamma energy scale	*
muon reconstruction	
jet energy scale	
jet energy resolution	
signal predictions	
background normalizations	
background model parameters	
Other theoretic errors	

In ATLAS/CMS experiment, theoretical uncertainties can be 500+. Leading source: $\gamma/e/\mu$, energy resolution/PID High energy interactions' accuracy has potential to improve.

Uncertainty on 1503.07589

Combined Measurement of the Higgs Boson Mass in pp Collisions at sv=7 and 8 TeV with the ATLAS and CMS Experiments

	Uncertainty in ATLAS		Uncertainty in CMS		Uncertainty in	
	results [GeV]:		results [GeV]:		combined result [GeV]:	
	observed (expected)		observed (expected)		observed (expected)	
	$H ightarrow \gamma \gamma$	$H \to Z Z \to 4\ell$	$H ightarrow \gamma \gamma$	$H \to Z Z \to 4\ell$	ATLAS	CMS
Scale uncertainties:						
ATLAS ECAL non-linearity /						
CMS photon non-linearity	0.14 (0.16)	-	0.10 (0.13)	-	0.02 (0.04)	0.05 (0.06)
Material in front of ECAL	0.15 (0.13)	-	0.07 (0.07)	-	0.03 (0.03)	0.04 (0.03)
ECAL longitudinal response	0.12 (0.13)	-	0.02 (0.01)	-	0.02 (0.03)	0.01 (0.01)
ECAL lateral shower shape	0.09 (0.08)	-	0.06 (0.06)	-	0.02 (0.02)	0.03 (0.03)
Photon energy resolution	0.03 (0.01)	_	0.01 (<0.01)	-	0.02 (<0.01)	< 0.01 (< 0.01)
ATLAS $H \rightarrow \gamma \gamma$ vertex & conversion	0.05 (0.05)	-	-	-	0.01 (0.01)	-
	0.05 (0.04)	0.02(0.02)	0.05 (0.05)		0.02 (0.01)	0.02(0.02)
$\Sigma \rightarrow ee$ calibration	0.05 (0.04)	0.03 (0.02)	0.05 (0.05)	-	0.02 (0.01)	0.02(0.02)
CMS electron energy scale & resolution	_	-	-	0.12(0.09)	-	0.03(0.02)
Nuon momentum scale & resolution	_	0.03 (0.04)	_	0.11 (0.10)	<0.01 (0.01)	0.05 (0.02)
Other uncertainties:	0.04 (0.02)				0.01 (0.01)	
$ATLAS H \rightarrow \gamma \gamma$ background modeling	0.04 (0.03)	-	-	-	0.01 (0.01)	-
Integrated luminosity	0.01 (<0.01)	< 0.01 (< 0.01)	0.01 (<0.01)	< 0.01 (< 0.01)	0.01 (< 0.01)
Additional experimental systematic	0.03 (<0.01)	< 0.01 (< 0.01)	0.02 (<0.01)	0.01 (<0.01)	0.01 (<0.01)	0.01 (<0.01)
uncertainties						
Theory uncertainties	< 0.01 (< 0.01)	< 0.01 (< 0.01)	0.02 (<0.01)	< 0.01 (< 0.01)	0.01 (<0.01)
Systematic uncertainty (sum in quadrature)	0.27 (0.27)	0.04 (0.04)	0.15 (0.17)	0.16 (0.13)	0.11	(0.10)
Systematic uncertainty (nominal)	0.27 (0.27)	0.04 (0.05)	0.15 (0.17)	0.17 (0.14)	0.11	(0.10)
Statistical uncertainty	0.43 (0.45)	0.52 (0.66)	0.31 (0.32)	0.42 (0.57)	0.21	(0.22)
Total uncertainty	(/				0.04	(0.04)
	0.51 (0.52)	0.52 (0.66)	0.34 (0.36)	0.45 (0.59)	0.24	(0.24)

Current Higgs (update to Run1)

Mass	$125.09 \pm 0.21 \pm 0.11 \text{GeV}$
Width	$\Gamma < 1.7 Gev, CL\% = 95\%$
Combined signal strength	1.10 ± 0.11
Spin, CP	0++

References

- Statistical issues for Higgs Physics, Eilam Gross
- Asymptotic formulae for likelihood-based tests of new physics, Glen Cowan, 1007.1727
- Statistical Methods for Particle Physics Lecture, Glen Cowan
- Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC, ATLAS Collaboration, 1207.7214
- Combined Measurement of the Higgs Boson Mass in pp Collisions at sv=7 and 8 TeV with the ATLAS and CMS Experiments, 1503.07589
- Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, 1307.1427
- Review of physics, Particle Data Group, Chin. Phys. C, 40, 100001 (2016).