Interview for Chung-Yao Fellowship 2018

Shaoqing Wei 2018.3.28

中國科学院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

• Name: Shaoqing Wei (魏绍清)

PhD Education

- ✓ 2014.03-2017.08, Uiduk University in South Korea, Doctor of Engineering
- ✓ Main research area : Accelerator magnets design, Beam analysis
- During PhD study, I participated in the development work about the RAON heavy ion accelerator development in IBS in South Korea.

• Work Experience

Time	Position	Mentor	Workplace
2015.10-2017.7	Assistant researcher	Sangjin Lee (이상진)	Uiduk University in South Korea
2017.12-now	Postdoc	王贻芳	IHEP CAS

RAON Heavy Ion Accelerator

 Layout of RAON heavy ion accelerator for the Rare Isotope Science Project of Institute for Basic Science in South Korea

Bird's-eye View of the RAON

Conceptual Design of the RAON

ECR Ion Source

Research on 28 GHz ECR Ion Sources

	<optimization 3="" con="" for="" performance.="" results=""></optimization>					<op< th=""><th>timization</th><th>results for</th><th>ECR zone</th><th>volume</th></op<>	timization	results for	ECR zone	volume
N	$V_{\rm ECR}$	$V_{ m coil}$	$V_{\rm res}/V_{\rm res}$ object			N	$V_{\rm ECR}$	$V_{ m coil}$	V /V	Object
	(mm ³)	(mm ³)	ECR' coil	function 1	nction 1	11	(mm ³)	(mm ³)	$V_{\rm ECR}/V_{\rm coil}$	function 2
3	818563	34433278	0.02377	46.65		3	812733	36174552	0.0225	1.2304e-06
4	858977	36070784	0.02381	47.71		4	820212	41860113	0.0196	1.2192e-06
6	1138372	38304303	0.02972	47.09		6	1298900	51674617	0.0251	7.6988e-07

[1] **Shaoqing Wei**, Sangjin Lee^{*}, "*Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization*," Progress in Superconductivity and Cryogenics, Vol.17, No.2, pp.36-40, 2015.

Design of 18 GHz ECR Ion Sources

<Full LTS 18 GHz ECR ion sources >

Number		I	Hevapole	V _{coil}	$V \times 10^6$	Stored
of	Model	I_0		$ imes 10^{6}$	$V_{ECR} \times 10$	Energy
solenoid		(A)	$\boldsymbol{D}_{max}(1)$	(mm^3)	(11111°)	(kJ)
3	Initial	250	4.24	11.535	0.49606	14.1
3	Final	250	4.18	11.310	0.60821	13.2
Λ	Initial	250	4.29	12.044	0.50234	14.4
4	Final	250	4.14	11.631	0.50862	13.4

If B_{max} in hexapole is more important, 4 solenoid system can be selected. However, if ECR zone volume is more important, 3 solenoid system seems to be better^[2].

[2] **Shaoqing Wei**, Zhan Zhang, Sangjin Lee^{*}, and Sukjin Choi, "A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators," Progress in Superconductivity and Cryogenics, Vol.18, No.2, pp.25~29, 2016.

Research on Hexapole for 18 GHz ECR Ion Sources

[3] **Shaoqing Wei**, Zhan Zhang, Sangjin Lee^{*}, and Sukjin Choi, "*A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators*," Progress in Superconductivity and Cryogenics, Vol.18, No.2, pp.25~29, 2016.

Research on Hexapole for 18 GHz ECR Ion Sources

Design of 56 GHz ECR Ion Sources

- The iron yoke can **provide a structure** for the hexapole and can **clamp down the hexapole** coil.
- The hexapole length was reduced according to the range of $2B_{ECR}$ surface in z direction.
- The design of hexapole, a shorter hexapole surrounded by iron yoke inside solenoid, is proposed.

< axial confinement fields w.r.t yoke length >

Models	$B_{inj}(\mathbf{T})$	$B_{min}(\mathbf{T})$	$B_{ext}(T)$
Only Solenoid	7.22	1.33	4.22
Longer iron yoke	7.23	1.34	4.18
Shorter iron yoke	7.35	1.21	4.03

HTS Hexapole Design

Considering the hexapole size and current, 4 DPC hexapole was selected for the 56 GHz ECR ion source.

hexapole >

< Comparison between LTS and HTS hexapoles for 56 GHz ECRIS >

Hexapole-in-solenoid Structure										
Hexapole	J_e (A/mm ²)	B _{max} (T)	<i>B_{//c}</i> (T)	Safety margin (%)	Outer radius (mm)	L_{hl}/L_{hr} (mm)	$\frac{V_{hex}}{(\times 10^6\mathrm{mm^3})}$	Iron weight (kg)		
LTS shorter yoke hexapole	188.64	10.06	/	36.3	179	122/356	15.73	258.7		
HTS shorter core hexapole	238.64	13.01	5.54	29.8	211	600/600	69.5	37.55		
< LTS shorter yoke			179 m		HTS shorter		21	1 mm		

core hexapole >

[4] Shaoqing Wei, Zhan Zhang, Sangjin Lee^{*}, "A Study on the Sextupole Design with Iron Yoke inside Solenoids for 56 GHz ECR Ion Sources," IEEE transactions on applied superconductivity, Vol. 28, No. 3, November 2017.

< Comparison of Final LIS ECRISS >	<	Comparison	of F	inal i	LTS	ECRI	Ss >
------------------------------------	---	------------	------	--------	-----	------	-------

			Iron	S	olenoid	l	Н	Hexapole		
Solenoid number	V _{ECR} (mm ³)	V _{coil} (mm ³)	weight (kg)	J_e (A/mm ²)	B _{max} (T)	Safety margin (%)	J_e (A/mm ²)	B _{max} (T)	Safety margin (%)	
3	64.48×10 ⁶	55.5×10^{6}	255.6	200	9.75	37.0	188.64	10.13	35.5	
4	73.48×10^{6}	51.2×10^{6}	294.5	200	9.48	37.7	188.64	9.74	38.1	
5	79.48×10^{6}	$64.0 imes 10^{6}$	274.2	200	11.45	28.3	188.64	10.30	34.9	
6	80.91×10 ⁶	63.4×10 ⁶	273.0	200	11.49	28.1	188.64	10.07	36.1	

< Final model for 3 solenoid LTS ECRIS >

< Final model for 4 solenoid LTS ECRIS >

< Final model for 5 solenoid LTS ECRIS >

< Final model for 6 solenoid LTS ECRIS >

56 GHz Hybrid ECR Ion Sources

< Comparison results of final hybrid ECRISs >

		V _{coil} (mm ³)		So	lenoid		Hexapole			
Hybrid Final models	V _{ECR} (mm ³)		I (A)	B _{max} (T)	<i>B_{//c}</i> (T)	Safety margin (%)	$\frac{J_e}{(\text{A/mm}^2)}$	B _{max} (T)	Safety margin (%)	
3 solenoid	63.35×10^{6}	57.14×10^{6}	528	10.08	7.60	25.6	188.64	9.85	37.6	
4 solenoid	74.72×10^{6}	53.38×10^{6}	528	9.54	6.54	30.4	188.64	9.75	37.7	
5 solenoid	80.76×10^{6}	62.99×10 ⁶	528	10.38	7.27	27.3	188.64	10.15	35.8	

Beam Analysis for Triplet

[5] **Shaoqing Wei**, Zhan Zhang, Sangjin Lee^{*}, Do Gyun Kim, and Jang Youl Kim, "*Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator*," Progress in Superconductivity and Cryogenics, Vol.18, No.4, pp.40~43, 2016.

Beam Analysis for Triplet

Beam Analysis for Triplet

Result for longer triplet model

Future Plans

- Iron-based superconducting material is a new type of superconducting material following the 1986 copper oxide superconducting material (or copper-based superconducting material) and 2001 MgB₂ superconducting material.
- Its average transmission current exceeds 1.3×10^4 A / cm² at a magnetic field of 10 T, which has met the basic requirements of industrial applications.

World's first 100-m class iron-based superconducting wire

Iron-based superconductivity

Future Plans

- The filed of the dipole magnet is over 10 T, which can provide the high field for Iron-based superconductor.
- I plan to test the **quenching behavior** of 100 m-class 122 iron-based superconducting tapes at high field, and then to design the **insert iron-based coil** in high background field.

Published List

- [1] Shaoqing Wei, Sangjin Lee^{*}, "Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization," Progress in Superconductivity and Cryogenics, Vol.17, No.2, pp.36-40, 2015.
- [2] **Shaoqing Wei**, Zhan Zhang, Sangjin Lee^{*}, and Sukjin Choi, "*A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators*," Progress in Superconductivity and Cryogenics, Vol.18, No.2, pp.25~29, 2016.
- [3] **Shaoqing Wei**, Zhan Zhang, Sangjin Lee^{*}, and Sukjin Choi, "*A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators*," Progress in Superconductivity and Cryogenics, Vol.18, No.2, pp.25~29, 2016.
- [4] **Shaoqing Wei**, Zhan Zhang, Sangjin Lee^{*}, "*A Study on the Sextupole Design with Iron Yoke inside Solenoids for 56 GHz ECR Ion Sources*," IEEE transactions on applied superconductivity, Vol. 28, No. 3, November 2017.
- [5] Shaoqing Wei, Zhan Zhang, Sangjin Lee^{*}, Do Gyun Kim, and Jang Youl Kim, "Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator," Progress in Superconductivity and Cryogenics, Vol.18, No.4, pp.40~43, 2016.
- [6] Zhan Zhang, Shaoqing Wei, and Sangjin Lee^{*}, "Harmonic analysis and field quality improvement of an HTS quadrupole magnet for a heavy ion accelerator," Progress in Superconductivity and Cryogenics, Vol.18, No.2, pp.21-24, 2016.
- [7]Zhan Zhang, **Shaoqing Wei**, and Sangjin Lee^{*}, "Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator," Progress in Superconductivity and Cryogenics, Vol.18, No.4, pp.35-39, 2016.

Thanks for your attention!

欢迎指正