CV	Context	Work experience and Achievements	Future plan
00	00	000000	000

Interview for Chung-Yao Chao Fellowship 2018

Lagarde François Supervisors : Haijun Yang & Jun Guo

Shanghai Jiao Tong University

27 March 2018

CV	Context	Work experience and Achievements	Future plan
\odot			
Curriculum Vitæ			

Curriculum Vitæ in a nutshell

2008-2012 : Bachelor of Physics (FRANCE + 1 year in SPAIN).
2012-2014 : Master in Subatomic Physics, Lyon.
2014-2017 : PhD in Particle Physics, Lyon :
Characterization of Resistive Plate Chambers Detectors of Low
Resistivity Glass for the Upgrade of CMS.
2017-2018 : Research and Teaching Assistant, Lyon.

Presentations and Publications

Talks :

- Talk on R&D at RPC2016 (Ghent, BELGIUM) on behalf of CMS.
- Talk on R&D at RPC2018 (Mexico city, Mexico) on behalf of CMS.
- Invited talk (Puebla, Mexico) Feb.2018

Publications :

- Proceeding of the 13th Workshop on Resistive Plate Chambers and Related Detectors (RPC2016) : High Rate, Fast Timing Glass RPC for the High η CMS Muon Detectors ,*Journal of Instrumentation, Vol. 11*
- Proceedings of the Vienna Conference on Instrumentation 2016 : High Rate, Fast Timing Glass RPC for the High η CMS Muon Detectors, Nuclear Instruments and Methods in Physics Research Section A, Vol 845
- Technical Design Report : The Phase-2 Upgrade of the CMS Muon Detectors.
- Posters at IEEE 2016, Vienna Conference of Instrumentation 2016.
- Search for Two Higgs Bosons in Final States Containing Two Photons and Two Bottom Quarks in Proton-Proton Collisions at 8 TeV, *Phys. Rev. D*

CV	Context	Work experience and Achievements	Future plan
	0		
RPC studies for CMS upgrade			

High Luminosity LHC (2023-2035)

 $\mathcal{L}_{HL-LHC} = (\times 3 \text{ to } 4)\mathcal{L}_{LHC}$ \Rightarrow Higher particles fluxes. \Rightarrow CMS Muon Upgrade Project.

New forward muon detectors in the four stations

- Gas Electron Multiplier.
- improved Resistive Plate Chamber. -

- Background mitigation and improved muon reconstruction.
- Increase the redundancy.

cv oo	Context O	Work experience and Achievements Future 000000 000	þ
Resist	ive Plate Chambers		
	CALICE ILD SDHCAL Design (Single gap)	Current CMS RPC (Double gap)	
	Areade glass (1mm) + insolitive caviting Glas pap (1,2mm) Cablede grass [mm] + residence caviting Glass fiber frame (1,2mm) Mylare (175um) Ceramic ball spacer Mylare (55ym)	Copper Single Maddadt	

improved Resistive Plate Chambers

To sustain the particle flux in the RE3/1, RE4/1 regions : \sim 700 Hz cm⁻² \Rightarrow Must be qualified for 2 kHz cm⁻² (×3 security factor). Reduce the produced charge and evacuate it faster.

Doped Glass-RPC : one of the options considered in CMS

- Reduce the charge q created by the avalanch : Reduce the gas gap $2 \text{ mm} \rightarrow \sim 1 \text{ mm}$. Fast electronics with low noise (Omega, IPNL) \rightarrow Lower Threshold.
- Evacuate the charge faster : Reduce the electrode thickness $d: 2 \text{ mm} \rightarrow 1 \text{ mm}$. Reduce the electrode resistivity : Low Resistivity Glass (Tsinghua University) 1 to $5 \times 10^{10} \Omega$ cm.

CV	Context	Work experience and Achievements	Future plan
		• 00 000	
Prototype for CMS			

SDHCAL RPC with doped glass electrodes

Transfer of the SDHCAL technology to test the Doped Glass RPC

• SDHCAL Electronics : HARDROC2B.

- Same Read-out : 1 cm×1 cm Pads.
- SDHCAL DAQ : DIF, SDCC.

CV	Context	Work experience and Achievements	Future plan
		00000	
Prototype for CMS			

I was heavy involved in beam tests at CERN (PS, SPS, GIF++) to compare the efficiency of the Low Resistivity GRPC with respect to the "float glass" RPC :

- Hardware installation
- Beam test shift
- Run coordination
- Analysis software development
- Production of analysis results

Efficiency vs HV at GIF++ (CMS electronics, Double Gap)

\Rightarrow Reaches CMS specification.

CV	Context	Work experience and Achievements	Future plan
		000000	
iRPC electronics			

New electronics : use timing to improve spatial resolution.

The new electronics

- Goal : time resolution < 100 ps.
- No η segmentation (A,B,C).
- Reading from both side to measure the position along the strip.

$$Y = \frac{L}{2} - \frac{v(T_2 - T_1)}{2}$$
(1)

Bonus : Time of flight !

Context 00 Work experience and Achievements

Spatial Resolution along the strips

CMS RPC prototype with new electronics

- Gas gap : 1.4 mm
- Bakelite electrodes : 1.4 mm.
- 32 strips, 50 cm long,4 mm pitch

\Rightarrow Improves by a factor 15 CMS RPC best spatial resolution.

CV	Context	Work experience and Achievements	Future plan
		000000	
Summary			

Summary

- Participation at 8 beam tests at CERN, managed 3 of them.
- Participation in the installation, data-taking and data analysis.
- Talks on R&D at RPC2016 (Ghent,BELGIUM) and RPC2018 (Mexico city, Mexico) on behalf of CMS.
- I worked with SDHCAL, CMS RPC electronics.
- I have tested the iRPC electronics. It is selected as baseline in the CMS Muon Detector TDR.

CV	Context	Work experience and Achievements	Future plan
00	00	000000	000

Starting my Post-doc on May 2018 at Shanghai Jiao Tong University

• ATLAS Phase-2 Upgrade :

Strong collaboration with University of Science and Technology of China (USTC) and Shangdong University (SDU).

• Circular Electron Positron Collider (CEPC).

CV	Context	Work experience and Achievements	Future plan
			000
Timing			

Study impact of improved time resolution on particle flow algorithms for SDHCAL \Rightarrow Could follow particles in the shower layer by layer.

Timing could be an important factor to separate showers, better reconstruct their energy and separate them from background and noise. \Rightarrow Need to go to Multi-Gap RPC

Multi-gap RPC

Excellent fast timing detectors. Several were designed and built (Korea). Excellent efficiency when tested with HARDROC ASICs (SDHCAL electronics).

Next step : use PETIROC (< 20 ps time jitters) to single out neutron contributions.

Future plan	Timing	27 March 2018	13 / 14

CV	Context	Work experience and Achievements	Future plan
			000
Cooling			

SDHCAL prototype uses power pulsing to reduce power consumption and avoid the use of a cooling system.

The power pulsing is unusable for CEPC, so the power consumption of the electronics must be reduced or a cooling system must be installed.

Water cooling inside the absorber layers

Simulation was performed to see the feasibility of inserting a cooling system inside the absorber layers of the SDHCAL.

Next step : Study the effects of such cooling system on the energy resolution, efficiency and multiplicity etc.

BACKUP...

Doped Glass Characteristics

- Bulk resistivity : $10^{10} \Omega$ cm
- Thickness: 0.5 mm to 2 mm
- Thickness Uniformity : 0.02 mm
- Roughness : <10 nm
- Maximal sizes : 32 cm×30 cm

Single Gap Chamber

- Electrode Thickness 1 mm
- Gas gap 1.2 mm

Transfert of the SDHCAL technology to test the Doped Glass RPC

- SDHCAL Electronics : HARDROC2B
- SDHCAL Read-out : 1 cm×1 cm Pads.
- SDHCAL DAQ : DIF, SDCC.
- ILC Data Format (LCIO).

Rate sustainability on large surface

Gamma Irradiation Facility (GIF++)

- Installed on the H4 line (SPS).
- Muon beam 100 GeV.
- Radioactive source : ¹³⁷Cs (13 TBq).
- Test detector efficiency in radiative environment.

The Radioactive source

- γ 661.7 keV
- 3 planes of 3 filters (Attenuator factor 1–46000)
- Uniform γ flux along the xy plane.

Tested up to HL-HLC expected background rate and higher

Installed telescope

- 3 float glass/4 low resitivity
- $\sim 2 \,\mathrm{m}$ from the source

Gamma flux at GIF++

Gamma Flux : $1, 5.10^7 \gamma cm^{-2} s^{-1}$

Conversion factor γ/e^-

GEANT4 simulation with "float glass".

 \Rightarrow 46500 e^- cm⁻² s⁻¹

- Low Resistivity Glass manufacturing are size limited : 32 cm × 30 cm.
- CMS sizes are much bigger.
- $\Rightarrow \mbox{Build bigger size chamber prototypes}: 1.1\,\mbox{m}\times60\,\mbox{cm with the actual CMS RPC electronics (Double gap, strips <math display="inline">\sim1\,\mbox{cm})$

Reaches CMS efficiency specification even at 3 kHz cm^{-2} but at high HV.

Prototype of the new electronics

- 50 cm long
- 32 strips, 4 mm pitch

Electronics

• 2 PETIROC (32 entries each).

• 2 TDC (24 entries each).

Time resolution of the PCB

•
$$\frac{\sigma_{\tau_1+\tau_2}}{\sqrt{2}} = \sigma_{elec} = 30.8 \pm 0.5 \text{ps.}$$

CMS RPC prototype with new electronics

- Gas gap : 1.4 mm
- Bakelite electrodes : 1.4 mm.

Arrival time difference (T2-T1)

Spatial Resolution

 $\nu = 2 \frac{\mathrm{d}Y}{\mathrm{d}<\Delta T>} = 2 * \frac{1}{0.11} = 18.18 \,\mathrm{cm}\,\mathrm{ns}^{-1} => \sigma_Y = \sigma_{T_2 - T_1} \frac{\nu}{2} \approx 1.8 \,\mathrm{cm}$