Interview for Chung-Yao Chao Fellowship

Chikuma Kato TDLI, SJTU 27 March, 2018

Resume

- Current position
 - Postdoctoral researcher at TDLI, SJTU, 2018-
- Education
 - PhD at ICEPP, University of Tokyo, 2014–2018
 - Master at ICEPP, University of Tokyo, 2012–2014
 - Bachelor at Tokyo Metropolitan University, 2008–2012
- Publication
 - "Evidence for the H→bb decay with the ATLAS detector", ATLAS Collaboration, 2017, arXiv:1708.03299,
 - "Search for heavy resonances decaying to a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36.1 fb⁻¹ of pp collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector", ATLAS Collaboration, 2017, arXiv:1712.06518

Resume

- Talks
 - "Searches for new phenomena in leptonic final states using the ATLAS detector", International Workshop on Baryon and Lepton Number Violation, 2017, Case Western Reserve University
 - "Kinematic Fit for VHbb", ATLAS Hbb Workshop, 2017, Stony Brook University
 - "Search for the VHbb in pp collisions at 13 TeV using the ATLAS detector", ICHEP 2016 ATLAS Approval, CERN
 - "Lepton Triggers for VHbb", ATLAS Hbb Workshop, 2016, University College London
 - "Phase-1 Endcap Muon Trigger New Sector Logic Board", ATLAS TDAQ Week, 2014, Niels Bohr Institute
- Posters
 - "World LHC Computing Grid", Society of Scientific Systems, 2012, Kobe

Previous work and achievements

- ATLAS
 - Muon Trigger
 - Upgrade studies
 - Preparation for Run2
 - VHbb analysis
 - b-jet energy correction
 - Evidence for $H \rightarrow bb$
- $ZH \rightarrow llbb$ (2-lepton) channel

- Introduction
 - The Higgs boson was discovered by ATLAS and CMS experiment
 - However, the most dominant (58%) decay of the Higgs boson, H→bb was not observed in Run1
 - The rate is important to test the SM and also sensitive to new physics
 - Therefore, the measurement is followed with great attention in Run2

- Thin Gap Chamber (TGC) is used to select events with high p_T muons
 - Most of events at the LHC are multi-jet background (10^{11} pb)
 - Trigger rate must be < 20 kHz while the bunch crossing rate is 40 MHz
- In order to reduce fake triggers (proton, low p_T muon), a coincidence logic for the inner station was enabled from Run2 (left)
- New trigger board prototype was developed for Run3 (right)

Muon trigger preparation for Run2

- In 2012 at Weizmann institute, we made new chambers to replace broken ones and recover efficiency
- In 2014 at CERN, we replaced the broken chambers (left), and achieved about 90% efficiency (right)
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1MuonTriggerPublicResults</u>
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults</u>

b-jet energy correction

arXiv:1708.03299

- Muon-in-jet: Add semileptonic decay muon back to the jet after subtracting energy loss in the calorimeter (13%)
 - PtReco: Apply p_T dependent correction factor for semileptonic decay neutrino and outof-cone effect (18%)

- **Kinematic Fit**: Constrain llbb system to be balanced in the transverse plane, and improve b-jet energy correction (42%)
- Achieved about 40% gain in the Higgs mass resolution

Evidence for the H \rightarrow bb

arXiv:1708.03299

- 2-lepton Run2 cut-based analysis results (left)
- 0, 1, 2-lepron, Run1, Run2 multivariate analysis combined results (right) - Observed (expected) significance: 3.6 (4.0) standard deviations - $\mu = 0.90^{+0.18}_{-0.18}$ (stat.) $^{+0.21}_{-0.19}$ (syst.)

Working Plan

- Reduce uncertainties to reach 5 standard deviations (left)
 - Muon trigger and software studies
 - ttbar data driven estimation using data in a control region (right)
 - Kinematic Fit to use soft track information

Summary

- Previous work and achievements
 - Muon trigger: 90% efficiency
 - b-jet energy correction: 40% gain in the Higgs mass resolution
 - Evidence for the $H \rightarrow bb$
 - Observed (expected) significance: 3.6 (4.0) standard deviations
 - $\mu = 0.90^{+0.18}_{-0.18}$ (stat.) $^{+0.21}_{-0.19}$ (syst.)
- Working Plan
 - Reduce uncertainties to reach 5 standard deviations
 - Muon trigger and software studies
 - ttbar data driven estimation using data in a control region
 - Kinematic Fit to use soft track information

Thank you!