Interviewing

Presented by Zhan Zhang

- Name: Zhan Zhang
- Work experience:
 - 2012.10-2017.07 Research assistant at Department of Energy and Electrical Engineering of Uiduk University in South Korea
- PhD education:
 - ✓ 2013.03-2017.06 Uiduk University in South Korea, Mentor: Sangjin Lee(이상진)
 - Research Field: accelerator magnet design, harmonic analysis, beam analysis
- Postdoc:
 - ✓ 2017.12-Present Accelerator center of IHEP, Mentor: Qing Qin(秦庆)
 - ✓ Topic: Design of a 12-T Twin-Aperture Dipole Magnet with 1e-4 Field Uniformity

Design and Beam Analysis of HTS Multi-Pole Magnet for Accelerators

RAON Heavy Ion Accelerator

< Conceptual Design of the RAON >

Motivation

In heavy ion accelerators, the beam can have *radiation* and *heat loads* after being accelerated.
 There can be a high radiation region, called hot cell, at the beginning of the beam transmission system^[*].

<Separator layout of RAON heavy ion accelerator>

• The HTS multi-pole magnets are suitable for application in such an environment^[**].

[*] Dong-O Jeon and Hyung Jin Kim, "Status of the RAON Heavy Ion Accelerator Project", Proceedings of the 27th International Linear Accelerator Conference, 2014. [**] J. P. Cozzolino et al., "Engineering Design of HTS Quadrupole for FRIB" Accelerator Technology, TUP162, Proceedings of Particle Accelerator Conference, New York, USA, 2011.

Iron Yoke of Quadrupole Magnet

- Yoke: hyperbolic pole.
- Coil: there are four coils in total model, each coils have two windings.

<Parameters of yoke of an HTS quadrupole magnet>

Item	Symbol	Value
Inner radius of yoke (mm)	R_{yi}	290
Outer radius of yoke (mm)	R_{yo}	520
Yoke length (mm)	L_y	480
Pole tip radius (mm)	R_{pt}	168
Reference radius of good field region (mm)	$ ho_0$	150
Angle of cutting pole (°)	α	24
Height of chamfer (mm)	H_{c}	0
Angle of chamfer (°)	γ	45

HTS Coil of Quadrupole Magnet

<Parameters of HTS coil of an HTS quadrupole magnet>

Item	Symbol	Value
Number of turns	N	164
Winding thickness (mm)	W_t	36.08
Winding width (mm)	W_w	12
Radius of corner of windings (mm)	R_{cw}	60
Gap of windings (mm)	d	2
Length of coil (mm)	L_c	680.16
Radius of coil (mm)	R_c	173.83
Width of inner winding (mm)	W_i	306.16
Width of outer winding (mm)	W_o	334.16

Normal Conducting(NC) Quadrupole Magnet^[*]

In this section, we establish an NC quadrupole magnet model comparing with the HTS quadrupole magnet model.

<1 arameters of yoke of the quadrupole magnet>		
Item	Symbol	Value
Inner radius of yoke (mm)	R_{yi}	212
Outer radius of yoke (mm)	R_{yo}	300
Yoke length (mm)	L_y	200
Pole tip radius (mm)	R_{pt}	30.5
Reference radius of good field region (mm)	$ ho_0$	30.5
Angle of pole (°)	α	18.365

<Parameters of yoke of NC quadrupole magnet>

<Parameters of voke of NC quadrupole magnet>

NC Quadrupole Magnet^[*]

<Parameters of coil of NC quadrupole magnet>

Item	Symbol	Value
Number of turns	N	46
Radius of coil (mm)	R_c	212
Radius of corner of windings (mm)	R_{cw}	26
Width of inner winding (mm)	W_{i}	90
Width of outer winding (mm)	W_o	168
Inside length of coil (mm)	L_{ci}	220
Length of coil (mm)	L_c	298

<parameters of coil of NC quadrupole magnet: (a)</pre> section view of the conductor, (b) section view of the NC coil, and (c) size of coil>

[*] D. Einfeld, "Specifications, quality control, manufacturing, and testing of accelerator magnets", CELLS-ALBA, Barcelona, Spain, 2016.

In our previous study, the total magnetic field *B* of the magnets was separated into the <u>coil-induced magnetic field</u>, B_s and the <u>iron-induced magnetic field</u>, B_c for magnetic field analysis^[*] as the following

$$B = B_s + B_c$$

• The ratio of iron-induced field, B_c by the total field *B* is defined using the main field components $B_{1,2}$

[*] Zhan Zhang, Sangjin Lee, and et al., "Magnetic Field characteristics from HTS Quadrupole Magnet of In-Flight Separator for a Heavy Ion Accelerator", Superconductivity and Cryogenics, Vol.17, No.3, pp. 23–27, 2015.

Analysis for NC Magnet

<Harmonic components w.r.t. current for NC Magnet>

Analysis of HTS Magnet

<Harmonic components w.r.t. current for HTS Magnet>

- A triplet system is designed in this section. The triplet is considered for only uranium ⁺⁷⁹U²³⁸. Generally, the properties of a quadrupole doublet are better than that of matched a quadrupole triplet to requirements, but a quadrupole triplet will preserve more of the axial symmetry in an initially symmetric beam than will a doublet^{[*][**]}.
- The triplet system composes of three quadrupole magnets Q1, Q2, and Q3, where Q1 and Q3 are totally same.

<An iron yoke triplet system>

[*] Ragnar Hellborg, Electrostatic Accelerators Fundamentals and Applications, Sweden, 2005.

[**] Y. S. Choi, H. M. Chang, and et al., "Design of cryostat for superconducting quadrupole magnets in In-Flight fragmentation separator", Progress in Superconductivity and Cryogenics, Vol.17, No.3, pp.62-66, 2015.

Designed Results

• Harmonic matching (HM) Method can be used for iron core HTS quadrupole magnet design.

<Field quality of Designed Q1/Q3>

<Field quality of Designed Q2>

Item	Value	Item	Value
G	12.1 T/m	G	7.37 T/m
OF	0.0338 %	OF	0.0289 %
$b_{ ho 6}$	-1.238E-2 %	$b_{ ho 6}$	0.527E-2 %
$b_{ ho 10}$	-1.878E-2 %	$b_{ ho 10}$	1.991E-2 %
$b_{ ho 14}$	-0.267E-2 %	$b_{ ho 14}$	0.377E-2 %
I_{op}	329.328 A	I_{op}	376.520 A
$L_{\rm eff}$	558.528 mm	$L_{\rm eff}$	898.784 mm

Initial Model for Q1/Q3

- The larger width coils created the *positive* 6th component.
- The smaller width coils created the *negative* 6th component.
- Therefore, <u>the HM Method can be used for air core HTS</u> <u>quadrupole design</u>.

• Q1/Q3:

- Three coils should be employed for target field gradient.
- Q2:
 - ✓ Two coils should be employed for target field gradient.

Comparison between Iron Core Magnet & Air Core Magnet

(a)	
(b)	

<Solid view of quadrupole magnet Q1/Q3: (a) air core, and (b) iron core>

	Item	Air Core Model	Iron Core Model
G		12.1 T/m	12.1 T/m
	b_6	-1.566E-2 %	-1.238E-2 %
	b_{10}	-7.457E-2 %	-1.878E-2 %
	b_{14}	-0.190E-2 %	-0.267E-2 %
	OF	0.0921%	0.0338 %
I_{op} Turns per Pole L_{eff} B_{max} on HTS		381.052 A	329.328 A
		1200	328
		552.848 mm	558.528 mm
		4.063 T	2.807 T
B _{max_normal} on HTS Length of magnet Radius of magnet Coil Volume		2.758 T	2.527 T
		621.00 mm	650.16 mm
		263.928 mm	400.00 mm
		18.5255 E+6 mm ³	5.744976 E+6 mm ³
	Iron Volume	0	0.18623168 E+9 mm ³
Iron Weight		0	1.4664 ton

The density of iron is 7.874 E-9 ton/mm^{3.[*]}

[*] https://en.wikipedia.org/wiki/Iron

Comparison between Iron Core Magnet & Air Core Magnet

<Solid view of quadrupole magnet Q2: (a) air core, and (b) iron core>

	Item	Air Core Model	Iron Core Model
	G	7.37 T/m	7.37 T/m
	b_6	-0.058E-2 %	0.527E-2 %
	b_{10}	-0.545E-2 %	1.991E-2 %
	b_{14}	0.030E-2 %	0.377E-2 %
	OF	0.0632 %	0.0289 %
	I_{op}	392.345 A	376.520 A
	Turns per Pole	640	200
L_{eff} B_{max} on HTS B_{max_normal} on HTS		900.386 mm	898.784 mm
		3.004 T	2.121 T
		1.844 T	1.364 T
	Length of magnet	951.00 mm	972.00 mm
	Radius of magnet	240.1687 mm	400.00 mm
	Coil Volume	14.380435 E+6 mm ³	4.8895504 E+6 mm ³
	Iron Volume	0	0.27623648 E+9 mm ³
	Iron Weight	0	2.1751 ton
	The outer radius	s of air core model	is less than that of
	iron core model		

Comparison between Iron Core Magnet & Air Core Magnet

<Field quality of designed Q1/Q3:(a) air core, and (b) iron core>

<In processing HTS quadrupole of the RAON>

¹/₄ Triplet SCALA Model in OperaTM

Beam Trajectory in Ideal Triplet

<Beam trajectory in ideal triplet>

Iron & Air Core HTS Quadruple Triplet

Published List

- [1] Zhan Zhang, Sangjin Lee*, Hyun Chul Jo, Do Gyun Kim, and Jongwon Kim, "A Study on the Optimization of an HTS Quadrupole Magnet System for a Heavy Ion Accelerator Through Evolution Strategy," *IEEE transactions on applied superconductivity*, Vol. 26, No. 4, June 2016.
- [2] Zhan Zhang, Shaoqing Wei, and Sangjin Lee*, Jo, Hyun Chul; Kim, Do Gyun; Kim, Jongwon, "Harmonic analysis and field quality improvement of an HTS quadrupole magnet for a heavy ion accelerator," *Progress in Superconductivity and Cryogenics*, Vol.18, No.2, pp.21-24, 2016.
- [3] Zhan Zhang, Shaoqing Wei, and Sangjin Lee*, "Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator," *Progress in Superconductivity and Cryogenics*, Vol.18, No.4, pp.35-39, 2016.
- [4] Zhan Zhang, Sangjin Lee*, Hyun Chul Jo, Do Gyun Kim, and Jongwon Kim, "Magnetic field characteristics from HTS quadruple magnet of in-flight separator for a heavy ion accelerator," *Progress in Superconductivity and Cryogenics*, Vol.17, No.3, pp.23~27, 2015.
- [5] Shaoqing Wei, Zhan Zhang, Sangjin Lee*, Do Gyun Kim, and Jang Youl Kim, "Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator," *Progress in Superconductivity and Cryogenics*, Vol.18, No.4, pp.40~43, 2016.
- [6] Shaoqing Wei, Zhan Zhang, Sangjin Lee*, and Sukjin Choi, "A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators," *Progress in Superconductivity and Cryogenics*, Vol.18, No.2, pp.25~29, 2016.
- [7] Shaoqing Wei[#], Zhan Zhang, Sangjin Lee^{*}, "A Study on the Sextupole Design with Iron Yoke inside Solenoids for 56 GHz ECR Ion Source," IEEE Transactions on Applied Superconductivity, 2017.11.09, 28(3): 4001905
- [8] Jeyull Lee[#], Junseong Kim[#], Geonwoo Baek[#], Yojong Choi[#], Yoon Hyuck Choi[#], Yoon Do Chung[#], Hyoungku Kang[#], Haigun Lee[#], Sangjin Lee[#], Zhan Zhang[#], Tae Kuk Ko[#], "Comparative Study of Magnetic Characteristics of Air-Core and Iron-Core High-Temperature Superconducting Quadrupole Magnets", IEEE Transactions on Applied Superconductivity, 2017.12.22, 28(3): 4601005

Postdoc study

Design of a 12-T Twin-Aperture Dipole Magnet with 1e-4 Field Uniformity

12-T Hybrid Common-Coil Dipole Magnet

<parameters dipole="" magnet="" of="" yoke=""></parameters>			
Item	Symbol	Value	
Outer diameter of the magnet (mm)	D_{mo}	620	
Length of the magnet (mm)	L_m	630	
Outer radius of yoke (mm)	D_{yo}	500	
Length of yoke (mm)	L_y	210	
Gap of yoke (mm)	G_y	4	
Gap between yoke and pads (mm)	G_{yp}	8	
Diameter of rod of yoke	D_{ry}	24	
x coordinate of rod of yoke	x_{ry}	173	
y coordinate of rod of H-pad	${\cal Y}_{ry}$	80	
Thickness of each piece of yoke	T_y	6	
Radius of inner chamfer of yoke	R_{icv}	4	

<Section views of a12-T hybrid common-coil dipole magnet>

12-T Hybrid Common-Coil Dipole Magnet

<pre><parameters of="" pre="" yok<=""></parameters></pre>	e of Pads>		
Item	Symbol	Value	$\overline{}$
Height of H-pad	H_{hp}	45	$=$ $B_{hvp}/2$
Shorter base of H-pad	B_{shp}	257.2	V-pad
longer base of H-pad	B_{hhp}	317.2	$y_{yh} - H_{vp}$
Diameter of rod 1 of H-pad	D_{rh1}	20	\leftarrow H-pad
<i>x</i> coordinate of rod 1 of H-pad	x_{rh1}	102	$B_{svp}/2$
y coordinate of rod 1 of H-pad	\mathcal{Y}_{rh1}	50	yx_{rh2}
Diameter of rod 2 of H-pad	D_{rh2}	10	
<i>x</i> coordinate of rod 2 of H-pad	x_{rh2}	102	$B_{shp}/2$ $B_{shp}/2$
y coordinate of rod 2 of H-pad	\mathcal{Y}_{rh2}	100	y_{rh1}
Height of V-pad	H_{vp}	30	
Shorter base of V-pad	B_{svp}	144	
longer base of V-pad	B_{hvp}	234	
Diameter of rod of V-pad	D_{rv}	10	x_{vh} x_{rh1}
x coordinate of rod of V-pad	x_{vh}	47.5	<section a12-t="" hybrid<="" of="" td="" views=""></section>
<i>y</i> coordinate of rod of V-pad	${\cal Y}_{vh}$	143.6	common-coil dipole magnet>

[*] "Magnet Capabilities", Fermilab, Technical Division, http://td.fnal.gov/magnet-capabilities/

Magnetic Field Distribution

• Bladder & Key Technology was used for prestress ^[*]

[*] Shlomo Caspi, et al, "The Use of Pressurized Bladders for Stress Control of Superconducting Magnets", IEEE TRAN. ON APPL. SUPE. VOL. 11, NO. 1, 2001. [*] 王呈涛2018年2月9日绘制

Further Work 1: 12-T All Nb₃Sn Coil Dipole Magner

• The design targets

Item	Target
$B_{o1}(z=0)$	≥ 12 T
$\int a_{on}$	< 10 ⁻⁴
$\int b_{\rho n}$	< 10 ⁻⁴
Safety margin of SC wires	> 20%

12-T All Nb₃Sn Coil Dipole Magnet

<parameters coil="" dipole="" magnet="" of=""></parameters>					
Item	Symbol	IHEPW6	IHEPW5	G	
No. turns of single winding	N	28	28		
No. of strands of Rutherford	Ns	34	20		
Operating current (A)	I_{op}	10000	10000	$\mathbf{\mathbf{\vee}}$	
Thickness of Nb ₃ Sn tape	W_{nb}	1.5			
Thickness of insulation in width	T_{iw}	0.2			
Thickness of insulation in width	T_{it}	0.3		0	
Gap between aperture & windings	G_{aw}	0			
Width of coil winding (mm)	W_{cw}	14.45	8.5		
Gap between two windings	$G_{\scriptscriptstyle WW}$	1	1		
Gap at outside of coils	G_{oc}	1.3	2(24.5)		
Length of straight part of coil (mm)	L_s	200	200		
Bending radius (mm)	R_b	60	60		
Thickness of coil winding (mm)	T_{cw}	$(W_{nb}+2*T_{iw})*N$]	
Width of coil (mm)	W_{c}	$(R_b + T_{cw})*2$		(
				(

ers of coils:

on view at first quadrant;

iew. (\mathbf{U}) ΥP

Further Work 2: Optimization

- In this study, the designed dipole only has tangential symmetry. Therefore, the allowed harmonics are
 - \checkmark *normal* terms when n = 1,3,5,7...
 - \checkmark *skew* terms when n = 0, 2, 4, 6...

Skew Harmonics Matching Method

- The analysis shows that
 - The good field regain location could have a great effect on *skew* harmonics.
 - The signs of *skew* harmonics can be changed along the transverse direction.
- Therefore, the integral value of *skew* harmonics along transverse direction could be controlled by adjusting the good field regain location and the magnetic flux density induced by nonlinear material in/out of the Common-Coil. The method can be called *skew* harmonics matching (SHM) method.

 $\rho_0 = 10$

n	z = 0	z = 20	z = 40	z = 60	z = 80	<i>z</i> = 100				
0	-0.048569268	-0.054369367	-0.075638762	-0.130487121	-0.261538343	-0.500245891				
1	-1.15463E-15	-1.15463E-15	-1.43885E-15	-1.63425E-15	-1.26121E-15	-9.41469E-16				
2	0.062963659	0.058681116	0.045265982	0.01924794	-0.014409938	-0.008490276				
3	-5.06127E-16	-4.18492E-16	-2.94235E-16	-2.86689E-16	-3.70097E-16	-5.45251E-16				
4	-0.005264417	-0.005674455	-0.006279606	-0.00732525	-0.008555778	-0.008717459				
5	1.34119E-16	2.39805E-16	-2.51639E-1							
6	-0.000148576	6.56494E-05	-8.40885E-0							
7	1.50862E-16	1.2845E-16	-2.757E-17							
8	-2.92534E-05	-6.48165E-05	4.42078E-0							
9	7.2383E-16	-3.6823E-17	3.39205E-1	c = 100						
10	0.000125501	-0.000224377	-0.00042143							
11	3.89713E-16	-3.6823E-17	5.08782E-1							
12	-0.000218334	-0.0002716	-0.00020944	z = 0						
13	-0.048569268	-0.054369367	-0.07563876							

Manufacturing Error: Space error Winding error \mathbf{v} Winding Width Coil width error \checkmark error error K Coil thickness error Bobbin error \bigcirc Thickness Space error error Bobbin Iron core error **Bobbin**¹ error \checkmark Axis error Iron core Iron error core

Further Work 3: Manufacturing Error Effects

Thanks for your attention!