

报告人: 张玄同

2017年3月

内容提要

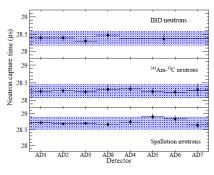
- 个人简历
- 既往期间研究内容和成果
- ■发表的文献和专著
- ■未来工作计划

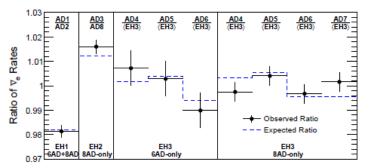
个人简历

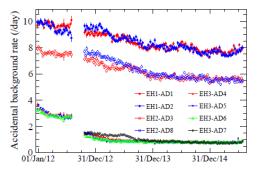
■ 教育与科研经历

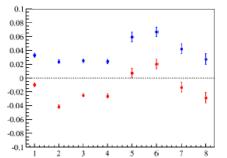
- 2009/09 2013/06: 凝聚态物理专业, 学士
 - 南京大学物理学院
 - 导师: 祁鸣 教授
- 2013/09 2018/06 (预计): 粒子物理与原子核物理专业,博士
 - 中国科学院高能物理研究所
 - 导师: 王贻芳 研究员

大亚湾实验误差和本底研究

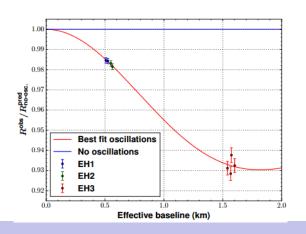

■ 工作内容:


- 探测器误差分析与改进,探测器相对误差从0.2%降低到0.13%(合作)。
 改进side-by-side方法,抵消探测器绝对误差(独立)。
- 大亚湾实验本底分析与降低,偶然符合本底误差的降低(合作),Am-C本底误差的降低(独立)。

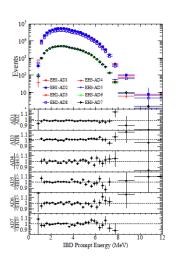

工作意义:

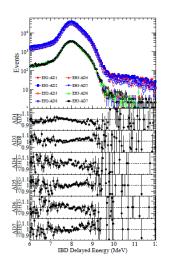

- 这些改进成为17年大亚湾实验分析 选用的探测器误差和本底数据。
- 进一步提高了大亚湾实验精度,使得系统误差降为约原先的60%。

	Efficiency	Correlated	Uncorrelated
Target protons	-	0.92%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	92.7%	0.97%	0.08%
Prompt energy cut	99.8%	0.10%	0.01%
Multiplicity cut		0.02%	0.01%
Capture time cut	98.7%	0.12%	0.01%
Gd capture fraction	84.2%	0.95%	0.10%
Spill-in	104.9%	1.00%	0.02%
Livetime	-	0.002%	0.01%
Combined	80.6%	1.93%	0.13%


大亚湾实验事例挑选与参数分析

■ 工作内容


- 挑选1230天中微子事例(独立)。
- 振荡参数分析,振荡角 $\sin^2 2\theta_{13}$ 精度从621天的6%提高到3.8%; 质量平方差 $|\Delta m_{32}^2|$ 精度从621天的 4%提高到3.3%(独立)。

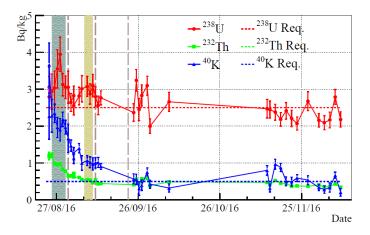

■ 工作意义

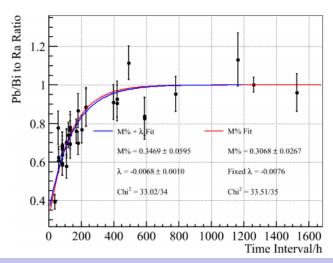
- 挑选的中微子事例数据成为17年 大亚湾实验分析所用数据。
- 保持目前世界最精确的中微子第三振荡角和质量平方差测量。

	EH1 EH2		H2	EH3				
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\Delta N_{ m p}$ [%]	0.00 ± 0.03	0.13 ± 0.03	-0.25 ± 0.03	0.02 ± 0.03	-0.12 ± 0.03	0.24 ± 0.03	-0.25 ± 0.03	-0.05 ± 0.03
	Selection A							
$\overline{\nu}_e$ candidates	597616	606349	567196	466013	80479	80742	80067	66862
DAQ live time [days]	1117.178	1117.178	1114.337	924.933	1106.915	1106.915	1106.915	917.417
ϵ_{μ}	0.8255	0.8221	0.8573	0.8571	0.9824	0.9823	0.9821	0.9826
$\overline{\epsilon}_{ m m}$	0.9744	0.9747	0.9757	0.9757	0.9759	0.9758	0.9756	0.9758
Accidentals [day ⁻¹]	8.46 ± 0.09	8.46 ± 0.09	6.29 ± 0.06	6.18 ± 0.06	1.27 ± 0.01	1.19 ± 0.01	1.20 ± 0.01	0.98 ± 0.01
Fast neutron [AD ⁻¹ day ⁻¹]	0.79	± 0.10	0.57	± 0.07		0.05	± 0.01	
⁹ Li, ⁸ He [AD ⁻¹ day ⁻¹]	2.46 ± 1.06		1.72	1.72 ± 0.77		0.15	0.15 ± 0.06	
²⁴¹ Am- ¹³ C, 6-AD [day ⁻¹]	0.27 ± 0.12	0.25 ± 0.11	0.28 ± 0.13		0.22 ± 0.10	0.21 ± 0.10	0.21 ± 0.10	
²⁴¹ Am- ¹³ C, 8-AD [day-1]	0.15 ± 0.07	0.16 ± 0.07	0.13 ± 0.06	0.15 ± 0.07	0.04 ± 0.02	0.03 ± 0.02	0.03 ± 0.02	0.05 ± 0.02
$^{13}\text{C}(\alpha, \text{n})^{16}\text{O} [\text{day}^{-1}]$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
$\overline{\nu}_e$ rate, $R_{\overline{\nu}}$ [day ⁻¹]	653.03 ± 1.37	665.42 ± 1.38	599.71 ± 1.12	593.82 ± 1.18	74.25 ± 0.28	74.60 ± 0.28	73.98 ± 0.28	74.73 ± 0.30

DataSet	$\sin^2 2 heta_{13}$	$\left \Delta m^2_{32} ight $	χ²∕Ndf
IHEP-P15A(Full)	$0.08463^{+0.00326}_{-0.00327}$	$2.40842^{+0.07954}_{-0.08010} \times 10^{-3}$	368.400/373 = 0.988
IHEP-P15A(6AD)	$0.09149^{+0.00846}_{-0.00854}$	$2.60592^{+0.17430}_{-0.18426} \times 10^{-3}$	134.639/141 = 0.955
IHEP-P15A(8AD)	$0.08374^{+0.00357}_{-0.00359}$	$2.36421^{+0.08807}_{-0.08803} \times 10^{-3}$	204.557/199 = 1.028

江门实验20" PMT低本底玻壳研制

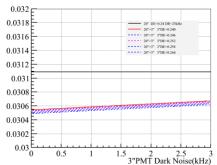

■ 工作内容:

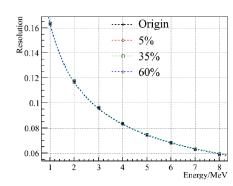

- 研究玻壳本底来源,提出本底压低方法, 改进20" PMT玻壳本底生产工艺,研发 了超低本底的光电倍增管(独立)。
- 解释了玻壳中氡气放射性变化的原因, 估算了氡气逸出比例(独立)。

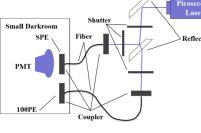
工作意义:

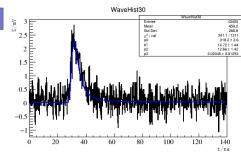
- 使得超低本底PMT成为世界同类PMT中本底最底的PMT,为同类产品的1/3,可以为同类低本底实验提供帮助。
- 降低江门实验本底,将PMT本底降低原来的一半以上,使得PMT本底从原先的第2大本底变成第3大本底。
- 提出了衰变未平衡时就能精确测量U238 含量的方法,帮助实现快速测量。

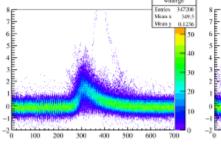
Material	Mass	²³⁸ U	²³² Th	⁴⁰ K	Singles in FV(cps)
Hamamatsu	33t	400ppb	400ppb	40ppb	0.68
NNVT	100t	202ppb	123ppb	3.54ppb	0.79

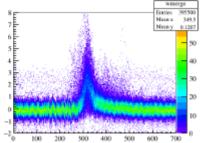

江门实验3"PMT性能研究和测试


■ 工作内容:


- 3" PMT对江门实验能量分辨率的影响,每 3kHz的噪声使分辨率上升0.02%(独立),光阴 及非均匀性对分辨率几乎没有影响(独立)。
- 时间性能测试,搭建测试系统(合作),开发了 波形拟合软件(独立)。
- 分压器分压比研究,3:2:1分压比比3:1:1对时间性能有改善(合作)。
- 材料性能测试,密封用ABS塑料水兼容性测试(独立),玻璃水兼容性和玻璃本底测试(合作)。
- 负责出厂现场抽检工作,长期驻场抽检PMT 性能(合作)。
- 更多工作还在继续(合作&独立)......


■ 工作意义:


- 为江门实验小PMT系统进行性能研究和测试。
- 帮助国产3"PMT改进性能。



发表的文献和专著

■ 主要贡献者或第一作者文章:

- Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Daya Bay Collaboration (F.P. An et al.)
 PhysRevD.95.072006. (主要贡献者)
- 2. Study on the large area MCP-PMT glass radioactivity reduction (Xuantong. Zhang et al.) NIM接收. (第一作者)

会议报告和会议文章:

- Study on the Large Area MCP-PMT Glass Radioactivity Reduction, Xuantong Zhang, talk at the 12th Pacific Rim Conference on Ceramic and Glass Technology, including Glass and Optical Materials Division Meeting. (邀请报告,展报)
- 4. Double Calorimetry System in the JUNO Neutrino Experiment, Xuantong Zhang, poster at the 28th International Symposium on Lepton Photon Interactions at High Energies. (展报)

未来工作计划

- 1. 3" 光电倍增管通过数着火个数的方法重建能量,可以弥补江门实验 20" 光电倍增管系统的能量非线性和位置非线性的不足,形成双量 能器系统,提高江门实验能量分辨率,帮助其完成中微子质量顺序 的高精度测量。(~40%,独立)
- 2. 3"光电倍增管作为独立量能系统,可以对太阳中微子振荡角 θ_{12} 和 Δm^2_{21} 进行精确测量,预计为世界最高精度。 (~40%, 独立)
- 3. 因为3"光电倍增管的高动态范围,可以准确重建高能物理事例,比如宇宙线和大气中微子,帮助江门实验和指导其他实验降低宇宙线带来的本底和误差,提高中微子测量精度。(~20%,合作)

Thanks!