Jetting through the Quark Soup

Au+Au 0-20% pres =21.9651003

Yen-Jie Lee

Massachusetts Institute of Technology

Run-5 Cu + Cu at √s_{NN} = 200 GeV 19-20% cent., 24.3, 10.3 GeV/c dijet

PHENIX

CMS

The 7th Huada School on QCD CCNU, Wuhan, China

ATLAS

Outline

- Lecture 1 Why do we study relativistic heavy ion collisions?
- Lecture 2
 How do we measure jets in heavy ion collisions?
- Lecture 3 Parton energy loss and its parton flavor dependence
- Lecture 4 Modification of jet substructure and medium response
- Lecture 5 Open questions and future direction

Lecture 2

How do we measure jet quenching in relativistic heavy ion collisions?

Jetting through the Quark Soup

Colored Probes:

high energy quarks and gluons, heavy quarks Studies of the medium properties

proton

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Parton Distribution Function (PDF)

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Parton Distribution Function (PDF) Cross-section of $2\rightarrow 2$ process

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Nuclear Parton Distribution Function (nPDF) Cross-section of $2\rightarrow 2$ process

Parton Energy Loss

- Ideally, we would like to measure partons directly
- In reality, we could only measure final state particles which are coming from hard scattered partons

QCD branching:

$$[dk_j]|M_{g\to g_ig_j}^2(k_j)| \simeq \frac{2\alpha_s C_A}{\pi} \frac{dE_j}{\min(E_i, E_j)} \frac{d\theta_{ij}}{\theta_{ij}}$$

• The attempt to invert this process is called jet reconstruction, defined by jet algorithms

Electron-Position Annihilation

ALEPH detector

liī

Charged Particle Multiplicity (LEP1)

Large fluctuation in the produced number of final state particles

Yen-Jie Lee

Jetting through the Quark Soup

12

Event Shape: Thrust

Unfolded Thrust Distribution

Typical e⁺e⁻ annihilation events are more **pencil-like**

A Jet Event in e⁺e⁻ Collisions

A Jet Event in e⁺e⁻ Collisions

Detecting Quarks and Gluons

Dijet event

Trijet event

$e^+ + e^- \rightarrow q + \bar{q}$ $e^+ + e^- \rightarrow q + \bar{q} + g$ Jets (defined by jet clustering algorithm)

are used as a proxy of quarks and gluons

k_T algorithm

Clustering start from low p_T particles. Clustered shape has irregular shape. In heavy ion collisions, the large background fluctuation could affect the clustering more

Anti-k_T algorithm

Cacciari, GPS & Soyez, '08

Clustering start from high p_T particles. Clustered shape has circular shape. Now commonly used in the analysis of heavy ion collision

Jet Reconstruction

Need rules to group the hadrons

A popular algorithm is anti-k_T algorithm Used in ALICE, ATLAS and CMS analyses for jets in pp and heavy ion collisions

 $p_t[GeV]$ anti-k_, R=1

Cacciari, Salam, Soyez, JHEP 0804 (2008) 063

Radius parameter: decide the resolution scale

Large radius parameter → jet spliting

 ΔR = 0.2, 0.3, 0.4, 0.5 are used in LHC analyses

The CMS Detector

Primary sub-detectors: Silicon tracker, ECAL, HCAL, muon chambers

CMS can distinguish stable particles as: $h^{+/-}$, γ , h^0 , μ , e

Jetting through the Quark Soup

Jet composition

Jet Spectra in pp(bar) collisions

ppbar 1.96 TeV

pp 13TeV

Jet spectra with large R parameter from proton-(anti-)proton collisions are well understood. Consistent with NLO calculations.

Jetting through the Quark Soup

Nuclear Parton Distribution Function

Jet for constraining the nuclear parton distribution function

Parton Distribution Function

Yen-Jie Lee

Jetting through the Quark Soup

25

Different interpretation of the pion data

Hadron observables: sensitive to possible modifications of fragmentation function and hadronization \rightarrow Different interpretation of the data!

Yen-Jie Lee

LNS Colloquium

nPDF modification at large Q²

Nuclear modification of hard scattering involving large momentum transfer due to PDF is small (at the order of 10%)

Dijet pseudorapidity in the LAB Frame

$\langle Q \rangle$ Idea: Angular distributions of high p_T dijets

- Jets: Less sensitive to fragmentation functions and hadronization effects
- Can be calculated with pQCD with small theoretical uncertainties
- Normalized distribution: lead to smaller theoretical and experimental uncertainties

3.5 TeV
$$_{P}$$
 $0 \rightarrow 0$ Pb 1.38 TeV
Distribution shift to positive value due to
asymmetric proton and lead ion beam energy
EPJC 74 (2014) 2951

Dijet pseudorapidity in the LAB Frame

 \mathbf{Q} Idea: Angular distributions of high p_T dijets

Observation of gluon EMC effect

• EPS09: hint of anti-shadowing and EMC effect of gluon nPDF

 DSSZ: modification of parton-to-pion fragmentation function in heavy ion collisions and no gluon anti-shadowing

Jet Reconstruction in PbPb collisions

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 CET Run/Event: 262548 / 14582169 Lumi section: 309

PbPb @ 5 TeV (2015)

Underlying event background

Large underlying event from soft scattering

Jetting through the Quark Soup

A jet event in CMS

Background changes with n due to particle density and detector geometry

1. Background energy per tower calculated in strips of η . Pedestal subtraction

Background level

Estimate background for each tower ring of constant η estimated background = $\langle p_T \rangle + n \sigma(p_T)$ • Captures dN/dŋ of background

- n $\sigma(p_T)$: noise suppression. n is a real number
- Misses ϕ modulation to be improved

in strips of η. Pedestal subtraction

Background level

Background level

- A lot of CMS publications are performed with the iterative background subtraction algorithm
 - PRO:
 - Good jet resolution due to noise suppression
 - Stable performance, easy to commission
 - CON:
 - Bias at the low jet transverse momentum near the jet exclusion threshold p_T^{cut}
 - Did not correct for the flow modulation of the heavy ion underlying event
 - Noise suppression and pseudotower could distort the tail part of the jet substructure and reduce the jet substructure resolution

Particle level subtraction with flow modulation

on an η - ϕ grid. Ghosts are given a p_T according to ρ times the area the inhabit, A_g

From Chris McGinn (MIT)

•

Dependence on the Azimuthal Angle

"Jet response" vs. azimuthal angle μ =1: perfectly subtracted

CMS Preliminary Simulation

Large dependence on the azimuthal angle with respect to the event plane

Jetting through the Quark Soup

Constituent subtraction with flow modulation

Estimating Flow Event-by-Event

- Extract an event-by-event v_2 and v_3 by fitting particle flow candidates
 - Charged Hadron candidates, $0.3 < p_T < 3$ and $|\eta| < 1$
 - Fit is employed over all η to model flow
- Extracted v₂(v₃) are used to modulate CS ρ to add ghost particles
 From Chris McGinn (MIT)

Scale Closure vs. Event Plane (R=0.8)

- Jet energy scale closure as function of event plane for R=0.8 w/o flow correction (Left) and with flow correction (Right)
- Significant flattening of scale translates directly to resolution reduction

Fig. From:

From Chris McGinn (MIT)

CMS-DP-2018

Summary of jet reconstruction

