Jetting through the Quark Soup

Au+Au 0-20% pres =21.9651003

Yen-Jie Lee

Massachusetts Institute of Technology

Run-5 Cu + Cu at √s_{NN} = 200 GeV 19-20% cent., 24.3, 10.3 GeV/c dijet

PHENIX

CMS

The 7th Huada School on QCD CCNU, Wuhan, China

ATLAS

Lecture 4 Modification of jet substructure and medium response

Outline

- Lecture 1 Why do we study relativistic heavy ion collisions?
- Lecture 2 How do we measure jets in heavy ion collisions?
- Lecture 3
 Parton energy loss and its parton flavor dependence
- Lecture 4
 Modification of jet substructure and medium response
- Lecture 5 Open questions and future direction

Jet Quenching

Is the jet substructure modified?

Inclusive Jet Shape and Longitudinal Structure

Inclusive Jet Shape and Longitudinal Structure

Charged particle in cone PbPb / pp

Inclusive Jet Shape

Theoretical Interpretation of the Excess

Different explanation of the large angle enhancement in jet shape measurement

- SCET_G: Splitting function (large angle radiation)
- JEWEL & JETSCAPE: medium recoil parton
- CCNU: recoil parton + hydro dynamical evolution
- HYBRID: fully thermalized medium response
 McGill: medium response + shower

Can we test our understanding of small r region by varying the jet flavor?

Photon-Tagged Jet

From Kaya Tatar (MIT)

Decrease the population of gluon jets:
>70% of the tagged jets are quark jets

Inclusive Jet Shape

Jetting through the Quark Soup

10

Inclusive Jet Shape and Longitudinal Structure

Inclusive Jet Longitudinal Structure

The bulk of the jet structure is actually **pretty similar** to that in pp

Jet Longitudinal Structure

- Fragmentation functions Ratio $R_{D(z)}$ between PbPb and pp collisions at 5 TeV
- Enhancement at large z (high p_T particles in jet): smaller gluon/quark ratio in PbPb
- Weak or no dependence on the jet p_T

See discussions in Frank Ma, thesis (2013) arXiv:1504.05169 Martin Spousta, Brian Cole

 \rightarrow If switch to γ -tagged jet (mainly quarks), will this enhancement go away?

Photon-Tagged Fragmentation Function

- Decrease the population of gluon jets:
 >70% of the tagged jets are quark jets
- Observation of modified jet fragmentation function in PbPb with respect to pp
 - No significant high z (or small $\xi = \ln(1/z)$) enhancement observed

Jetting through the Quark Soup

Photon-Tagged Fragmentation Function

ATLAS: Select on jet $p_T > \frac{1}{2}$ Photon p_T

- Larger modification in the central collisions than that in inclusive jets
- Corrected for jet resolution smearing
- Hint of enhancement in PbPb/pp ratio at the high z region

Jet FF with photon p_T as reference

• Almost no modification in 50-100%, significant modification in central events

• Strong modification in central events, compared to **HYBRID** ("Parton level") and **CoLBT**

$\xi_{\mathrm{T}}^{\gamma} = \ln rac{- \mathbf{p}_{\mathrm{T}}^{+} ^{2}}{\mathbf{p}_{\mathrm{T}}^{\mathrm{trk}} \cdot \mathbf{p}_{\mathrm{T}}^{\gamma}} egin{array}{c} HYBRI \\ J. Casalderre \\ JHEP 1 \end{array}$
P P JILF

Yen-Jie Lee

Jetting through the Quark Soup

16

Jet Quenching

Where does the quenched energy go? † Do we see medium response?

Jet Quenching

Measurement of the Quenched Energy Flow

Jetting through the Quark Soup

Missing p_T^{\parallel}

Missing p_T^{\parallel} vs. A_J

if we consider all particles in the event (in both pp and PbPb collisions)

Yen-Jie Lee

Jetting through the Quark Soup

21

Missing p_T^{\parallel} vs. A_J

- Missing p_T from high p_T particles increases as a function of A_J
- In 0-10% PbPb \longrightarrow Balanced by particles with $p_T < 4$ GeV/c

Jetting through the Quark Soup

What is the angular distribution of these particles with respect to the dijet system?

Calculate the missing p_T for charged particles that fall in slices of Δ

$$p_{\mathrm{T}}^{||} = \left(\sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{dijet}}\right)\right)|_{R_{\mathrm{down}} < \Delta_{< R_{\mathrm{up}}}}$$

What is the angular distribution of these particles with respect to the dijet system?

Calculate the missing p_T for charged particles that fall in slices of Δ

$$p_{\mathrm{T}}^{||} = \left(\sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{dijet}}\right)\right)|_{R_{\mathrm{down}} < \Delta_{< R_{\mathrm{up}}}}$$

What is the angular distribution of these particles with respect to the dijet system?

Calculate the missing p_T for charged particles that fall in slices of Δ

$$p_{\mathrm{T}}^{||} = \left(\sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}}\cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{dijet}}\right)\right)|_{R_{\mathrm{down}} < \Delta_{< R_{\mathrm{up}}}}$$

$$\Delta = \sqrt{\Delta \phi_{\text{Trk,jet}}^2 + \Delta \eta_{\text{Trk,jet}}^2}$$

Yen-Jie Lee

Jetting through the Quark Soup

Yen-Jie Lee

Jetting through the Quark Soup

31

Where does the Quenched Energy Go?

Jetting through the Quark Soup

Jet Transverse Structure

Jet shapes in pp and PbPb at 5.02 TeV

- Jet shapes and fragmentation functions in pp and PbPb collisions at 5 TeV
- Sensitive to the possible medium response to hard probes and induced radiation

Focus on the hardest substructure

Does the magnitude of quenching depend on the structure of parton shower? One could **remove the soft radiation** (isolate the hard jet core)

Groomed Jets

Jet grooming removes soft divergences and uncorrelated background Common technique in HEP

This analysis is the first one using jet grooming in heavy ion collisions

Jet grooming with Soft Drop

Anti-k_T jet is re-clustered with Cambridge/Aachen (CA) Then decluster the angular-ordered CA tree Drop soft branches

To minimize the smearing effect from PbPb underlying event, $\Delta R_{12} > 0.1$ is applied

Measurement of **momentum sharing** between leading and subleading subjets

Andrew Larkoski, Jesse Thaler (CTP) JHEP 1405 (2014) 1465

Jetting through the Quark Soup

Groomed Jet Substructure with Soft Drop

• CMS: used two grooming settings with ΔR >0.1 cut

Yen-Jie Lee

Jetting through the Quark Soup

Groomed Jet Mass

- Enhancement of large mass when looking at a less aggressive grooming setting
- Results with a "more aggressive grooming"
- No significant modification of the "jet core"

Momentum Sharing of Subjets

(Or small Z_g is enhanced)

Zq

CMS Groomed Jet Splitting Function

arXiv:1708.09429

- **JEWEL**: enhancement of low Z_g jets (due to **medium recoil**)
- SCET_G: modification due to medium induced splitting function
- HT & Coherent antenna BDMPS: Data prefer coherent energy loss
- Measurement of r_g and groomed R_{AA} would help to separate models

PbPb/pp

Lecture 5 Future direction and open questions

Outlook

SPHENIX Physics at RHIC

- Jetting through lower temperature Quark Soup from Gold+Gold collisions at 200 GeV
- Direct comparison with CMS data!

sPHENIX detector

RHIC / LHC Timeline

High Statistics LHC Jet Data

High Statistics RHIC Jet Data

Summary: Quark Gluon Plasma at the LHC

1. >10x denser than the proton or nuclei

2. 1 Trillion Degree!!! = 1 million million (1,000,000,000,000 °C)

3. The stopping power is very strong O(10GeV/fm)

4. It flows like perfect fluid!

Signal in pPb collisions?

45

Jetting through the Quark Soup

Particle Multiplicity

- Collision impact parameter
- Energy density

Azimuthal Anisotropy

- Early thermalization <1 fm/c
- Shear viscosity
- Initial-state geometry fluctuation

- Initial state tagging
- Parton distributions
- Number of hard scatterings

Jet Substructure and Hadrons

- Jet medium interaction
- Medium gluon density, structure
- Medium scattering power
- Temperature

Backup slides

Charged Jet $p_T D$ (Dispersion) and

Yen-Jie Lee

Jetting through the Quark Soup

48

Hadron-Jet Angular Correlation

Jetting through the Quark Soup