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How to think about the initial state factorization — QED

analogy

@ Weizsacker-Williams field — Highly
contracted in the z direction

@ Coulomb potential in the rest frame of the
charge

@ In the moving frame

- O\Q A = Qe

A (XT) = NA(x(X))

@ The coordinate in the moving frame
x" = (t,x,y,z). This corresponds to the
rest frame position
x=(v(t—2zv),x,y,v(z — tv)). Oy
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How to think about the initial state factorization — QED

analogy

@ Weizséacker-Williams field — Highly
contracted in the z direction

@ Coulomb potential in the rest frame of the
charge

A° = Q/Ir]
@ In the moving frame
Q(7,0,0,yv)
\/(z — Vt)242 +x2

A=

O/
— o —=
<
!
)
§

= _——

@ Pure gauge inthe v — 1 limit
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|z — vt
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How to think about the initial state factorization — QED

analogy

Jeon (McGill)

®)

@ Weizséacker-Williams field — Highly
contracted in the z direction

FH¥ ~ 0 unless z ~ vt

@ In the rest frame: Coulomb field is made
up of space-like virtual photons

9"q, = —9° with go = 0.

@ In the Lab frame:
q* = (g*sinhn,q., g* coshn)

@ For large 7,
|AE| =g~ —|q|| ~ e"9?/q;

= At~ 1/|AE| ~ €"q;/q®? = vi
photons look almost like real photons! s .
&
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How to think about the initial state factorization — QED

analogy

Jeon (McGill)

®)

@ Weizsacker-Williams field — Highly
contracted in the z direction

FrY ~ 0 unless z ~ vt

@ To a first approximation, the approaching
particles do not know about each other
until they are on top of each other.

@ Initial photon momentum distribution
factorizes: F(x1,x2) = f(x1)f(x2)
but this is not exact.

@ In QCD, color neutrality of hadrons he@
O
L3

Qualitative Arguments Huada QCD School 2018 3/81



Factorization Theorem

hadron / Jet Hadron-Hadron Jet production
scheme:

g =
/ faya(Xa, Qr)fo/8(Xb, Qf)
abcd

X Uab—)cdDC/c(ZCa Q)

hadron

& B &
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Factorization Theorem

@ How realistic pQCD calculations are done

Oh—CX = /b . ax1Axefa/n(X1, Qf)foyw (X2, Q)0 ab—cd(Qr)Deye(Ze, Q)
abc

@ fa/n(x1, Qr): Parton distribution function. Probability to have a
parton type a with the momentum fraction x; in a hadron h.
Depends on the factorization scale Qy.

® 0. .cq4(QR): Parton-parton scattering cross-section.

® D¢/c(zc, Q;): Fragmentation function. Probability to create a
hadron type C our of parton type c carrying the momentum
fraction z;.
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Rough Understanding of the Factorization Theorem

Example: Electron-Hadron collision

P

_—

. el

— = .-

Jeon (McGill)

@ No interaction before the

Ap

collision

AL = YA ey @ Interaction vis exchaning a

virtual photon with the
virtuality Q

© Hard scattering:
Probability to find a single
quark within d ~ 1/Q with

e

2R/y

Qualitative Arguments

a momentum fraction x
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Rough Understanding of the Factorization Theorem

Example: Electron-Hadron collision

P

_—

. el

— = .-

Jeon (McGill)

Ap

@ Probability to find two

AL = YA treg

e

2R/y

Qualitative Arguments

quantum mechanically
interfereing quarks within
7 a? 1
P(r<d)~ i (QR?
Smallif @ > 1/R

— Probability picture for

single particle collisions
valid =—> PDF
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Rough Understanding of the Factorization Theorem

Example: Electron-Hadron collision

- P

~1/ o
k Qi i @ Scattering time scale:
— = ;- AL = YA treg Terossing = F?/ry
© Hadronization time scale:

v/Aocp > R/y = No
interference =—> Proability

% % ficture valid —> FF

2R/y
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QGP Properties
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QCD Phase Diagram
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Picture credit: GSI (www.gsi.de) N/
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»Nobelprize.org

QCD is asymptotically free.

% The Nobel Prize in Physics 2004

0.5
"for the discovery of asymptotic freedom in the theory of the
strong interaction" o, (Q)
s y
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At high T

@ Running coupling

127

2\ __
as(Q ) - (33 _ 2Nf) |n(QZ/A6CD)

e When Q ~ Aqcp ~ 200 MeV, the above expression
blows up: Not physical. Indicates breakdown of
perturbation theory. Hadrons.

o Perturbative QCD is a theory of quarks and gluons not
hadrons.

o AthighT,Q~ T.

o Possible phase transition around T ~ Agcp?

o fQ~T — o0, as — 0: Weakly coupled

o At Q ~ few GeV, a5 ~ 0.2 - 0.4 Aoy
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Another estimate of Tiansition

OIS %3
Q .
Lyim O
o O
LowT T ~200 MeV

@ Density: Consider a pion gas.

_ 3
n—S/ eEp/T 1_0.37T

As T becomes larger, more and more pair creation results.
@ Inter particle distance:

her = 0% =1.4/T
At T =200 MeV, hyer = 1.4fm =~ d;
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Hagedorn Temperature

Hadronic density of states p(m) ~ e™/Th:

10° -

10

plm} (Gev™y

10" <

0 1 2

m (GeV)

The smoothed mass spectrum of
hadronic states as a function of
mass. Experimental data:
long-dashed green line with the 1411
states known in 1967; short-dashed
red line with the 4627 states of 1996.
The solid blue line represents the
exponential fit yielding Ty=158 MeV.
CERN Courier, Sept, 2003

° Z/p(m)e‘EP/T: Not well defined when T > T} for hadronic
m “P

matter.

@ Phase transition around Ty: Hagedorn temperature ~ 160 Me\@

=
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Story so far

@ Perturbative calculation possible much above Q = Agcp
@ Q~ TathighT

@ If T is much above the binding energy of hadrons
= Deconfinement

@ At high enough T, the system is a plasma of weakly interacting
quarks and gluons

@ All the above arguments are plausible but not a proof
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=
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Lattice QCD Evidence

| FagTO)T,

A b N A O R, N W A

@ F. Karsch, hep-1at/0403016. The color averaged heavy quark free
energy at temperatures T/T, = 0.9, 0.94, 0.98, 1.05, 1.2, 1.5

(from top to bottom) obtained in quenched QCD. 44
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Lattice QCD Evidence of QGP
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@ From HotQCD Collaboration (C. DeTar, arXiv:0811.2429)

@ “Cross-over” between 185 - 195 MeV
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Expected properties

@ High number density

3
n o~ (24+ 16)/ (gﬂ‘)’s 6P/ 4 T3

T \°, 4
- 4<2oow|ev> fm

@ High energy density

dp o7 4
e ~ (24+16) (27r)3pe ~12T

T \* 3

L3
&
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Simple Estimates

Withhi=c=1
@ 1 mole of hydrogen atom: 6.02 x 1023 atoms = 1 g (Avogadro’s
number)

@ 1 hydrogen atom mp =~ (1/6) x 10723 g = (1/6) x 1026 kg
@ mp =940 MeV ~ 1GeV
@ E=mc? 1GeV ~ (1/6) x 1026 kg

2.4GeV/fm® = 0.4 x10"%kg/(10" "3 cm)?

= 0.4 x 10726+39kg/cm3
4 x 102 kg/cm?3

@ Typical human: ~ 100 kg

2.4GeV/fm® ~ 4 x10'°human/cm? e
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Simple Estimates

Withh=c=1
@ Another way of looking at the energy density

2.4GeV/fm® =4 x 10'?kg/cm®
@ Restoring ¢ =3 x 108 m/s,
2.4GeV/fm3 = 4 % 102 x (9 x 10'®) J/em® = 3.6 x 10%° J/cm®
@ World energy consumption (2008):
144pWh = 144 x 10" x 3.6 x 103J = 5.2 x 10%0J

@ A cubic centimeter of QGP can power the world for about 70
million years.
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Simple Estimates

Withh=c=1
@ Pressure P~ ¢/3

P =0.8GeV/fm® ~ 1.3 x 10"2kg/cm® = 1.3 x 10" kg/m?

@ Sl Unit for pressure: Pa = N/m? = kg/m/s?

@ Restoring ¢ = 3 x 108 m/s,

P~ 1.3x 10" x (9 x 10'®) kg/m/s? ~ 10% Pa ~ 10%° atm
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How do you achieve high temperature?

@ Temperature = energy (1 eV =~ 12, 000K)

@ More usefully, the energy density:

d®p “EyT . 39 14
— P ~ —
€ g/ (@r)? Epe 2 T

@ To get high temperature: Get high energy density —> Cram
maximum possible energy into the smallest possible volume while
randomizing the momenta —> Relativistic heavy ion collisions.

@ What to expect: dN/dn and dE/dn grow something like (In s)”
with n ~ 1 = T should behave something like (In s)"” with n ~ 1

\ e S
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Observable Consequence

High temperature —> Thermal photons

High density =—> Jet quenching

High pressure —> Hydrodynamic flow
e The size of the eliptic flow depends on the shear viscosity 7.
o If weakly coupled, /s > 1 : ~ Ideal gas
e If stronlgy coupled, /s < 1 : ~ Perfect (Ideal) fluid.

Neutrality => Tight unlike-sign correlation

Critical point =—> Large momentum fluctuations

\ e S
=
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Jet Quenching

— Schematic Ideas
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Hadronic Jet production

/Zf
hadron Jet Hadron-Hadron Jet
/ production scheme:

o _
dt

/ faya(Xa, Qr)fo/8(Xb, Q)
abed

do ab—cd
hadron \‘ T D(z, Q)
\Jet
RY
\

L3
&

pQCD process

Jeon (McGill) Qualitative Arguments Huada QCD School 2018 25/81



Heavy lon Collisions

What we want to study:

@ How does QGP modify jet
property?
QGP
Nucleus
\‘
X

Nucleus

& B &
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&
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Heavy lon Collisions

What we want to study:

@ How does QGP modify jet
property?
- Complications:
Nucleus How well do we know the initial
condition?
\
X

@ Nuclear initial condition?

@ What happens to a jet
between the production
and the formation of
(hydrodynamic) QGP?

X1
0
X2

Nucleus

L3
&
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Heavy lon Collisions

Schematically,

doag / /
at geometry J abed

Qap X faya(Xas Qf)fo/8(Xb, Qf)
doap_scd
5 o
3Q X P(xc — Xx,| T, ut)
x D(z¢, Q)

Nucleus

P(xec — x4 T, u*): Medium
modification of high energy
parton property —> Jet

X quenching B

L3
&

Nucleus
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Elastic Energy Loss
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Mandelstam variables

y ’

p p p p D 14
\/ \
k/&{ ’ D< ’ ]/ |
t —channel u—channel s —channel
P=p-pf  u=(p-kPp §=(p+k)
U-“K
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Elastic scattering rate

Coulombic t-channel dominates

P P P P
Q Q
K K" K K’
P PPyyyrvvigvvyyy P
Q Q
K K"K K’
Must be cut-off at a medium soft scale |tyi,| ~ m% \Cw;
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Physical origin of Debye mass mp

@ E&M
@ Potential in a thermal system
V20(r) = —po(r) — 3p(r)
@ Medium composed of many charged particles
5p(r) = qn-(r) - qn_(r)
@ Boltzmann Density:

dk -E/T

(2m)3

_ / Ak iEnE graon) T

(2m)3

_ nO(T)e¢qd>(")/T

no(T)(1 F qo(r)/T) Oy

ne(r) =

Q
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Physical origin of Debye mass

e E&M

@ Boltzmann Density:
ns(r) = no(T)(1 + g®(r)/T)
@ Linearized equation for the potential:
V20 — mid ~ —po(r)
where
mp = 2¢°(no(T)/T) ~ aT?

@ For a static point particle source,

L3

Range: ~ 1/mp >
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Rough Idea - Elastic energy loss(Following Bjorken)

q~gT + others
~T

E
@ What we want to calculate: d—

. at
@ Mean free time

1
—— = Ngcatt Oel Vrel
Tmft

@ Energy loss rate

GE _ aE
dt - Tmft

where AE is the average energy loss per collision.

L3
&

Jeon (McGill) Qualitative Arguments Huada QCD School 2018 32/81



Rough Idea - Elastic energy loss(Following Bjorken)

k
~T

@ Kinetic theory def: (Recall n(x) = / (d®k/(27)®) f(x, k))

1 d®k
- = <nscatt Vrel Jel> = / 73fscatt(xa k) Vrel(p7 k)o'el(p, k)
Tmft (277)

@ Mean free time in the massless limit
1 d®k ~ doe
— = | —— fulk) (1 — 0 —
Tinft /(27r)3 wan(f)(1 = cos pk)/dt dat

@ Energy loss per unit time in the massless limit

dE AE _/ Bk
(

~d & B8 &
?)3 fscatt(k) (1 — COS ka)/dt

Oel
—(Ep — Ey
o7 (Eo ok
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Estimation of /1,

2
2mog
1

@ Elastic cross-section (Coulombic) C:;; ~ Cgr
@ With thermal f..«(X, k), this yields

27Ta ~aeT

1 ey
L / Gy s (1 = cosi) / diCn

Tmft

with the IR cut off given by the Debye mass scale sz ~ agT?

L3
&
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Rough Idea - Elastic energy loss(Following Bjorken)

do 2ra?
@ Elastic cross-section (Coulombic) d; ~ Cgr 7;?3

@ When |p| > |K|, one can approximate (1 — cos 0,)AE ~ —1/2k
@ With thermal ..« (X, k), this yields

dE A3k
<dt> ~ / oy e K) /k/dt ~ a2 T2 In(ET /)
coll

More precisely,

dE 1
== = / 5 p+k — o' — K) (Eo — Ex)|MP f(EQ)[1 £ f(Ep)]
dt 2Ep k’k17p/

= Cma2T? [ln(ET/mg) + D

where C, and D, are channel dependent O(1) constants. Ny
For instance, see Qin et al. Phys. Rev. Lett. 100, 072301 (2008)
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Before | begin...
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McGill is in Montréal, Québec, Canada
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McGill is in Montréal, Québec, Canada

Mr. McGill going home after a hard day’s work.
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McGill is in Montréal, Québec, Canada

A. THE NATURE
OF ALPHA RAYS

Rutherford carried out his Nobel (1908) winning work at McGill
(1898-1907).
His original equipments on display *
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McGill Team

@ Chanwook Park
@ Mayank Singh
@ Scott McDonald

@ Charles Gale

@ Sangyong Jeon o
_ @ Siggi Hauksson
@ Liyan
_ ) @ Igor Kozlov
@ Alina Czajka
_ @ Rouzbeh Modarresi-Yazdi
@ Dani Pablos

@ Shuzhe Shi
(Joining in September) @ Matt Heffernan

@ Melissa Mendes
(Joining in September)
Alumni: G .Qin, A .Majumder, B. Schenke, G. Denicol, M. Luzum,

C. Shen, G. Vujanovic, J.F. Paquet, S. Ryu, ... Ay

@ Jessica Churchil
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Radiational Energy Loss
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Process to study

@ Radiative (Inelastic) energy loss via collinear gluon emission

L3
&
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Incoherent emission

Z;i Zivl Z;i Zivl

Tt

zZ; Zist zZ; z;
O 1D Tal* =) ITaf"
n

i+1

2

@ Interference terms T, T,, with n # m negligible. (Large phase

change between scatterings)

@ Single emission probability scales like the number of scatterers:

PNSC ~ Nscp1

@ In a unit length, there are N,. =

mfp

number of scatterers.

\ e S
=
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Coherent emission

@ If there is a destructive interference,

§ gg % + % ? ? % éi
Z; Zivi Zix2 Z; Ziv1 L2 Z; Zit2

@ Single emission probability scales like

NSC

PNSC - Ncoh

where N, is the number of scattering centers that destructively
interfere. (Small phase change between scatterings)

@ The medium’s power to induce radiation is reduced.
—> Landau-Pomeranchuck-Migdal (LPM) effect

@ Define the coherence length

P

‘ V;‘K
Leoh = gmfp Ncoh
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Effective Emission rate

@ Incoherent Emission rate:

apP C
o Ty

@ Coherent Emission rate:

ap . C
dt Ngcoh

Pr

@ P;: Bethe-Heitler (BH, Single emission off of one scatterer)

Py~ R
dw |gy Tw

K“K
for small w
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Coherent scattering can be important

Following BDMPS

k>>H

0~k,/k

p>U

Imtp

@ What we need to calculate Rax:
Differential gluon radiation rate w——-

dwdt
Medium dependence comes through the scattering time (length)
scale
ng oY dNg .

Ydwdt T e dw |y ©
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Length Scales

Following BDMPS

i i+1 Z Zisl

T

i Ziy1
@ If all scatterings are incoherent (¢, > Leon),

+

Z

lsc = Emfp ~ Tmft

L3
&
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Length Scales

Following BDMPS

i Zivr Zi2 i Zix2

i Zisl Zis2

@ If leon > lnfp = LPM effect:
All scatterings within /.., effectively count as a single scattering.

o ZSC = gcoh

L3
&
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Estimation of /1,

2
2mog

[

. . .. ad
@ Elastic cross-section (Coulombic) ?(; ~ Cgr

@ With thermal f.«(X, k), this yields

! S ~ . 27mal
a %/(271-)3fscatt(xa k)(1 —COSka)/dtCR /t\2 S ~ OZST

L3
&
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Estimation of /..,

[ _coh

@ E: Original parton energy

@ w: Energy of the radiated gluon

@ u: Typical transverse momentum transfer
@ E>w>u
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Estimation of /..,

@ The radiated gluon random walks away from the original parton.
Original parton’s trajectory is less affected since w <« E

k3 ‘T
@ From the geometry 6 ~ " and 6 ~

Ecoh
@ Separation condition: /7 is longer than the transverse size of the
radiated gluon: (7 ~ 1/k3
@ Putting together,
w

gcoh (k$)2 ! “‘:‘
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Estimation of /..,

Y
(k7)?
@ After suffering N collisions (random walk),

Lo 2 .
<(k$) > = coh/J/ h Hz = Leon (;) = leon q

gmfp mfp

@ We have: /. =

@ §: Transport coefficient. Momentum transfer squared per elastic collision
—> QGP property

becomes, with § = 1 /émfp and Ejpy = 1 émfp,

w w & 4
écohzgmfp“mzwa L3
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Length scales

14
Coherence length: <" ~ d

~

Linfp Erpm
Key quantity: Eppm = p2lm, ~ T in pert. thermal QCD.

@ L: The size of the medium
@ (2~ md~asT?
@ /mfp ~ 1/(asT): The mean free path for elastic collisions

w

@ leon ~ gmfp ?

@ leoh > mp Whenw > T
@ leon > Lwhenw > Ej with E; = a2T3L2 = T(L/lugy)?

L3
&
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Thin Plasma Radiation Rate
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Length scale hierarchies

Thin plasma L < /ig,
l_coh < L<I_mfp
[_coh
x5 @

p g S
@ w< T(L/lup)? < T

@ Mostly 0 or 1 collision and radiation occurs inside the medium
= The daughter can undergo another splitting

\ e S
=
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Length scale hierarchies

Thin plasma L <l

L <I_coh <[ _mfp
[_coh ®

222 9 8

@ T(L/lwepy)P <w<T

@ Mostly 0 or 1 collision and a single radiation occurs outside the
medium

\ e S
=

Jeon (McGill) Qualitative Arguments Huada QCD School 2018 54 /81



Length scale hierarchies

Thin plasma L < £
L<I_mfp<l_coh

H,(l;ioj;m ®
p : [V
1>
L
e w>T
@ Mostly 0 or 1 collision and a single radiation occurs outside the
medium

L3S
&
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Thin plasma energy loss

Thin plasma L <l
@ Elastic energy loss possible:
dE
— ~a2T?In(ET/m?3)
at
@ Radiational energy loss possible
@ Opacity expansion works
e Since 1 scattering should dominate, the basic process is BH
o Recall that when deriving Fermi’s Golden rule,

Pae(t) /dAEp(E_ AE)|M|21—CALE(2AEU

where p(E — AE) is the phase space of the final state
e Energy conserving é-function appears only in the t — oo limit |
o The (1 — cos(AEt))/AE? part s the finite length (time) correction .
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Thin plasma energy loss

Thin plasma L <l

@ Factor out the t — oo parts. That is, the BH opgy.
@ Thin plasma radiation rate = BH * (Finite length (time) corr.)

ng OésCR
¥ dwat >

1 — cos(AEt)
AE?

/dAE C(AE,w, mp)

where C(AE,w, mp) depends on the process

@ This is basically the GLV (Gyulassy, Levai, Vitev) formalism with a
suitable C(q?) related to v(q.) = 1/(¢% + m?)

\ e S
=
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Thick Plasma Radiation Rate
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Length scale hierarchies

Thick plasma /i, < L
[_coh <l _mfp <L

|_coh
p _ ﬁw‘( (‘? 0,{-{7{“(’
2 - 2 = :9
[_mfp "

@ w< T < T(L/lusp)?
@ Multiple independent collisions and radiations occur inside the
medium
@ Spectrum: Bethe-Heitler per /¢,
GNg | asNe

~ = O(a? |

=

Jeon (McGill) Qualitative Arguments Huada QCD School 2018 59 /81



Length scale hierarchies

Thick plasma /i, < L

I_mfp <l_coh<L

_coh
(O]
p = 2
L= 3 b
[_mfp
L

@ T <w< T(L/lusp)?

@ Multiple elastic collisions can occur and multiple radiations can
occur, too. But coherence matters.

@ The daughter can undergo another splitting
dNg

@ AMY/BDMPS/HT regime
w ~ osNe \/ T \b b
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Length scale hierarchies

Thick plasma /i, < L

I_mfp < L<I_coh | coh
_ (0]
—
P 3 R
3= j% i 3 =
[_mfp L

@ w > T(L/lmpy)?

@ Multiple elastic collisions can occur, but only one radiation outside
the medium

@ The energy at the splitting is not the energy you finally observe
because of multiple 2 — 2 scatterings => Not a free propagation
any more

ng OéSNC

@ The radiation rate;: w——= ~ ——= 54
wdwdl‘ mL \p
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What we learned so far (Thick Plasma)

Leon - w
oty \ Erpm
Key quantity: Ejpy = p2lmsy ~ T in pert. thermal QCD.

Related: § = Evpm/fmip? = 12/ mip (Average momentum transfer
squared per elastic collision)

Coherence length

° gcoh < gmfp
Soft gluon emission, w < 2l ~ T
— Coherence matters not. BH should suffice. No need to
resum.

@ L > leon > lmpp Where Lis the length of the medium
Hard gluon emission, E > w > 20y, ~ T, |
—> Coherence matters. Resummation needed. Oy,
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What we have learned so far (Thick Plasma)

Summary of E-loss rates per scattering
Elastic energy loss

dE

dt

For the emission of a single gluon, while traversing a medium of length
L > Ui ~ 1/(asT) and temperature T

N dN o Qs N,

dwadlt ™ Emfp

dN o Qs Nc /T
Yaodi S o for T<w< T(L/Emfp)

~ a2T?In(ET/m3)

=0(2) for 0O<w<T

dN as N, .
W~ SR for T(L/buy)? < w < E 1f T(L/tugy)? < E
aN_ . as Ne oyt |
a2 w|/T § A
dodt "~ 7wl Emfpe or w < 0 Absorption 044
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Rough Idea — Multiple Emissions (Poisson ansatz)

dN(E,w)

@ Th iati —— 7
e radiation rate dodt

emitted gluon w

Original parton energy E, energy of the

@ The rate equation (for a single process)

dAgtE) - / deo dN(gjd;u - / des dwdt N(E)
[Gain] [Loss]

@ If the rate dN(E,w)/dwdt is independent of E (the large E limit), the
solution is

N(E, t) = /de D(e, t) No(E + )

where

D(e,t) = effd“’fodtldggt’ l ﬁ/dw- /tdt’dN ) e—zn:w' et
’ — 2o e "Jo o dwat A A
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Rough Idea — Multiple Emissions (Poisson ansatz)

@ Poisson Ansatz: Even when dN/dwdt does depend on the parton
energy E, use

N(E, 1) = /de D(e, t) No(E + )

with
~ [ dw /dN(Ew) dN(E
D(e,t) = & oG ! [H/dw’/ ot dwd;}

(5
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Understanding the behavior of Rax
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Rough Idea - The behavior of Rax

N . AN .
dodi and the stiff aor for high pr

@ Raa: Interplay between
particles
@ High pr spectrum with pr = E:

dN 1
No(E) = —
O( ) de En
with n ~ 10
@ At the parton level
Ras /d D(e, 1) N"E(+)€)

- /de D(e,t) (1 +¢/E)™" @
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Rough Idea - The behavior of Rax

aN dN .
@ Rap: Interplay between —— dodi and the stiff % for high pr

particles
@ More generally, let
No(E + ¢)
———— =1-v(e/E
No(E) (“/E)
@ In the limit e < E, one can show

Raa(E) = /\A/:((?) %exp( / dw / dt d’c\l’zj;‘ -\ y’(O)w/E)))
 V/(0)AE(L)

E
where L is the length of the medium.

e /(0): Stiffness of the spectrum. The stiffer the spectrum, the
more sensitive Raato AE/E

@ w < 0: Absorption

R exp

\ e S
=
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Rough Idea - The behavior of Rax

For No(E) ~ 1/E", we have
In Raa(E) ~ — PAEWL)
E
where L is the length of the medium.

For the elastic energy loss,
dE
at

For the radiation rate, use simple estimates

LN as Ne
dwdt T émfp
dN  as e

wm Tore Linppw

dN . Os N 2 5
Yadwat T 7 L for Lopu(L/lnp)” <w < E

AN _as Ne
Ydwdt T T 7 by

= CmaiT? [In(ET/m5) + D]

for 0 <w< émfpu

for Emfpﬂ2 <w< émfp,uz(L/gmfP)z

MM
e /T for w<0 *
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Rough Idea - The behavior of Rax

Lob AuvAu Minimum Bias\5,,/-200Gev Au+AU 0-109\5,,~200GeV
£ PHENIX E PHENIX
H 1 I
H Ll L]
e e e L e e e e 08k E
06F =
09 B i
0.4F ™%, ] E o
LI [ B . L] *
08 B 02f I Ccosssctesees® ©
o7t b Lof. AuvAU 20305 =200GeV AU+AU 40-50%\[5,,;=200GeV
£ PHENIX E PHENIX
H ] I
2(354 Ly L]
o %
06F E -\W
. ey
* 0.4 o™ L] % = 1 I
“otestages™es o &
02F E
03 B
,,,,,,,,,,,,,,,,,,,,, Loy AU 607095 =200GeV AU+AU 80-9296\(5,5,=200GeV
02| \_// 1 i PHENIX ' 1 PHENIX 1 '
-
| | TR )
L i 08
01 .wﬁi;{’ ] L ke ] +
o6F E
ol v v e o E
001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10 20
[ 02f E

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 20
p, (Gevic)

Upper line: Without elastic

Lower line: With elastic

Flat R is produced in both cases up to O(10 7). |

R just not that sensitive to p in the RHIC-relevant range. W
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Rough Idea - The behavior of Rax

CMS:

27,45 (502 ToV op) + 404 " (502 ToV PoPY)
T T

.\ 27.4p0" (5.2 ToV pp) + 404 b (5.2 TV PoPE)
T T T T

cus cus
iy iy

[Ecwussoatov & aucez7stev [cussoamev ¢ Auce278Tov
1of © cusazsTev v amaszrTev 12f o cusazeTev

0 m
P, (GoV) b, (@oV)

27.4 " (502 ToV pp) + 404 (502 ToV PBPY) | 27.4p0" (6.2 ToV pp) + 404 b (5.2 ToV PoPY)

é No longer flat. Slow rise for
#ht &

pr = 10GeV.
Can we understand these
features?

LT

1 ogeer 2740 (502 T pp) 4 404 " (5,02 T PPy
T T T
cms L CMS
[Ecwsse

cussozTav
o cus27sTev

]y

i

i@ ¥

\ e S
=

10 10
b, (GeV) p, (GeV)

arXiv:1611.01664
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Rough Idea - The behavior of Rax

R_AA
°
o

L L
1 10 100 1000
pTIT

@ Red: Elastic on, thermal absorption on

@ Blue: Elastic on, thermal absorption off

@ Green: Elastic off, thermal absorption on

@ Magenta: Elastic off, thermal absorption off

@ Dip, rise, levelling-off roughly reproduced v
L3

o

No dip if thermal absorption is turned off
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Flat then slow rise

We have In Raa(E) ~ _nAg(L)

@ IfE< ELPM = /LZmep ~ T

dN /snwy\ nL [ as Ng
In Raa ~ —L / dwdwdt( )Nf/o dww (WM,)NCOHSL

Flat Raa
0 If T < E < T(L/bws)?,

Q

Erpm
In Raa nt dww (as Ne

_f W Emfp

nL a u2
- N,
E Jg,, Ao (mu ¢ Linppw )

S
_mashe L (5 [T
s Emfp E

with Eppy ~ T. Slowly rising Raa

Q

L3
&
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Plateau at high pr

o If /.on > L, effectively only a single scattering happens. —> Goes
back to BH

If E > T(L/bwsp)? = EL,

Erpm
In Rap ~ nL dww <a5 NC)

_f 0 Eemfp
oL pf (s Ne (B
E Jg TW linfp w
L E L (asNe
E Jg YO\ TO L
~ —n2sNe (4 EL
T E
0L
0y

This is approximately constant for large E.
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What is Raa telling us?

@ Dip-rise-flat feature qualitatively understandable
@ Opaque medium
@ Density of the medium

@ Dip in Raa: Could be an indirect indication of the initial
temperature.

@ Plateau at high pr: Could be an indication that /.., > L is reached.

\ e S
=
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Understanding high pr part of v»

27.4p0" (602 TV pp) + 404 b (602 TeV PoPE)
T T T

27,450 (602 TV pp) + 404 b (602 TeV PbPE)
T T T

.
cms cms
s 404 b (5.02 TeV PbPb) s o e ] Frmassen o acese
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e g [ ewssozTev [ oms sz Tov
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] s gt Ty | ety Tev sy
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| , A | , , o 3 3
20 40 60 80 20 40 60 80 50-70%
p; (GeVic) p; (GeVic) i ‘;r @) 10 10 10

[CMS: arXiv:1702.00630]
@ vo and Raa: Is there a relationship?

Jeon (McGill)

[CMS: arXiv:1611.01664]
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Understanding high pr part of v,

This jet loses more energy:
Positive v2

But it radiates more photons:
Negative photon v2
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Understanding high pr part of v»

@ Start with an isotropic distribution of high energy particles
@ After going through the almond:

px = E — AEx
That is, o

p2 ~ E2 — 2AEE

@ Elliptic flow definition:

" (P — P3)
(P2 + %)
2AE E — 2AELE
~ 22
AE, — AEy M
- (F22) !
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Approx. relationship between Ra4 and v, at high pr

o BDMPS: If dN/prdpr ~ 1/p%, In Rag ~ _nAT_E
_ 2 ~ _nasNe L
0 If E< Elpm = o) Emfp, In Rap =~ E = mep

Flat Vo
Ne L E
@ fEEpm< E<E = Lz,uz/fmfp, In Rap ~ —naf‘_ Cﬁ (2 IEM>
mfp
AE, — AE q
L3S
L3

Slowly falling v
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What | have been trying to do

Hopefully,
@ Make you excited about studyig heavy ion physics

@ Make you see the big picture
@ Make you think about physics in general
@ Make you think about jet physics in particular

@ Convince you that understanding physics is a lot of fun and can
lead to new insights and discoveries
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Before | end ...
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Success in your Physics career

Disclaimer: These are my own thoughts. Everyone is different. Take
these with a grain of salt.

@ Passion for Physics!

@ Communication skill — Improve your English

o Writing skill — Writing guide books are actually helpful
A good one: BUGS in Writing: A Guide to Debugging Your Prose,
by Lyn Dupre

e Presentation skill — Have a look at R. Geroch’s “Suggestions for
Giving Talks”, arXiv:gr-qc/9703019v1. Scripts help including
possible Q & A.

e Debate skill — Practice thinking in English. Don’t beat around the
bushes. Get to the point.

e Social communication skill — Read novels (paperbacks are better
watch sitcoms, know the culture, slang, ... @

L3
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Writing/Presentation skill

Approach it as if you're writing a story

Story Article/Talk

@ Introduction — Make the reader @ Introduction — Make the reader
interested in the rest of the interested in the rest of the
story paper/talk

@ Expanding the story — Main @ Expanding the point — Main physics
characters, main events, points, main data, conflicts, puzzles,
conflicts, puzzles, plot twists, ... plot twists, ...

@ Resolution — Story escalatesto @ Resolution — What big physics the
the ultimate resolution by a big new data/theory
battle, saved by the illuminates/resolves. Saved by the
heroes/heroines. heroes/heroines.

@ Ending — Tie up loose ends. @ Conclusion — Tie up loose ends.
Make the reader want to read Make the reader want to read th\
the sequel. sequel. O
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