
1 Introduction

In this series of 5 lectures, we will study the jets in heavy ion collisions. The
systems we would like to study are inevitably quantum systems since the
entities we deal with are microscopic subatomic particles. In this lecture, I
will emphasize not only the quantitative aspects of the jet studies, but also
the qualitative aspects. This is because without qualitative understanding of
a complicated calculation or a phenomena, no real understanding of phyiscs
takes place even though the derived formula can describe nature.

Why do hard probes
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Relativistic Heavy Ion Collisions

Why do it?
To study QGP
Most extreme environment ever created: T ⇠ 1 GeV.
This existed only at around 1 microsecond after the Big Bang

How do we understand it?
Theory: Many-body QCD
Experimental probes:

Soft
Hard
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Hard Probes are useful

Hard Probes ⇠ Large momentum/energy phenomena

pQCD applies – We know how to do this

Produced before QGP is formed in the same way as in
hadron-hadron collisions

Difference between pp, pA and AA tells us about the medium.

Caveat: How well do we know the nuclear initial state?
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What do we want to learn?

Medium properties
What is it made of? Quarks? Gluons? Hadrons?
Thermodynamic properties – Temperature, Equation of state, etc.
Transport properties – Mean-free-path, transport coefficients, etc.

Tools
Jets
Hard Photons
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Outline

1 pQCD
2 Jet Quenching
3 Hard Photons

My goal for these lectures: Qualitative understanding
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What is a hard probe?

Early hard probe experiments

Jeon (McGill) Hard Probes Stony Brook 2013 8 / 33

What is a hard probe?

Early hard probe experiments

System

Detector

Object identification

Signal

Probe
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What is a hard probe?

Early hard probe experiments

Rutherford’s ↵ scattering experiment
(1911)
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Small angle scattering dominates
d�/d cos ✓ / 1/✓4

But backscattering prob. is finite,
favoring Rutherford’s model over
Thompson’s (which causes no
backscattering)

Jeon (McGill) Hard Probes Stony Brook 2013 8 / 33

Fast-forward to the present

ATLAS: Intact dijets in Pb+Pb ATLAS: One jet is fully quenched in
Pb+Pb

Simplest conclusion to draw: The medium is opaque.

We want to know much more than that!
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Hard Probe Requirements

Must be known & calculable using pQCD.

Must be created before QGP forms

Both requirements satisfied if the energy scale is much large
compared to ⇤QCD ⇡ 200 MeV and the length (time) scale is much
shorter than ⇠ 1 fm.

Example: Jets (high energy partons) with E � 1 GeV and Heavy
quarks (c, b) with M � 1 GeV
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Hard Probes

Probes
Propagation of hard partons or “Jets”

Quarkonium suppression

High pT electromagnetic probes (real and virtual photons)
Goal

To characterize QGP

To characterize initial state (nPDF, CGC?)
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Review of some basic concepts

Review of some basic concepts

Basic unit:

~c = 197.3 MeV · fm ⇡ 0.2 GeV · fm

With ~ = c = 1

Units
Mass: GeV/c2

Momentum: GeV/c
Energy: GeV
Length: ~c/GeV

200 MeV $ 1/fm

1 fm $ 1/(200 MeV)

Thermal energy kB = 8.617 ⇥ 10�5eVK�1

With kB = 1,
1 eV = 11, 605 K or 290 K ⇡ 1

40 eV

Jeon (McGill) Hard Probes Stony Brook 2013 14 / 33

The unit system we are going to use is what’s often referred to as the “natural
unit” where we set ~ = c = 1. You must have heard about it and perhaps
used it in your studies already. But what do these mean? That is, what does
setting the presumably dimensionful quantity

~ = 1 and c = 1 (1)

mean?
To figure that out, we need to see where ~ and c appears. The speed of

light appears in Special Relativity as the ultimate speed limit. That is, no
particle, nor information, can travel faster than c. Furthermore, it is constant
across all inertial frames. That is, it does not matter where in the universe
you measure it. As long as you are in an approximately inertial frame (The
surface of the Earth is obvioulsy not an inertial frame, but close enough since
the acceleration is relatively small), the value of c you measure is exactly the
same. In the KMS unit system, it is defined to be exactly

c = 2.99792458× 108 m/s (2)
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Now note the unit. It is measured in meter per second. Hence, knowing the
speed of light, one can easily convert time to length and vice versa as in

∆z = c∆t (3)

But what’s so special about this relationship? I can always write down such
a relationship with any constant speed v.

The difference of course is that due to the fact that nothing can move
faster than the light, space and time actually mixes up

t′ = γt− γβz
z′ = γz − γβt (4)

where

β = v/c (5)

is the speed of the moving frame and

γ =
1√

1− β2
(6)

is the Lorentz γ factor. Why is this so special? Well, consider the usual
space and the rotation that transforms (x, y) to (x′, y′) as

x′ = cosφx+ sinφ y

y′ = cosφ y − sinφx (7)

Note that the new x′ is a mixture of the old x and y. One can do this
because both x and y are spatial distances. All you are doing here is to
re-define which direction you would like to call “south-north” and which one
“east-west”. Physics should not change just because you’ve re-defined the
axis. In particular, this transformation does not change the distance

x2 + y2 = x′2 + y′2 (8)

Now take another look at this relationship

t′ = γt− γβz (9)

It says that the time measured in a moving frame is related not only to
the time in the rest frame but also the position where it was measured.
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This is very peculiar, but Einstein’s bold conclusion was that under this
transformation that mixes space and time, physics should be the same. In
other words, space and time are not two independent quantities. They can
mix up. Therefore they must represent coordinates of a unified single 4-
dimensional space. If one defines

x0 = ct (10)

then all components of the 4-vector

xµ = (ct, x, y, z) (11)

can be measured with the lengh unit. This, of course, is a prelude to the
General Relativity where the geometry of this 4-D space repreresents gravity.
In the subatomic world, the most convenient length unit is the femto meter
or fermi (fm) which is roughly the size of a proton. Hence, setting c = 1 is
tantamount to measuring time in fm. The Lorentz transformation of course
leaves the proper time

τ 2 = xµx
µ = x′µx

′µ (12)

unchanged with gµν = diag(1,−1,−1,−1).
Similarly, Einstein’s famous formula

E = mc2 (13)

relates energy and momentum. We of course know that mass times velocity
squared represents kinetic energy. What Einstein is telling us, however, is
that there is an intrinsic energy that is associated with the mass and one
can actually convert energy into mass or mass into energy. That is, they are
basically the same quantity and the fact that c is constant just reflects that
fact.

What about the Planck constant ~? Does it have a similar meaning?
Well, you probably saw the Planck constant first time in the relationship

p = ~k (14)

or

E = ~ω (15)
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where p and E are the mechanical momentum and the energy of a particle,
and k and ω are the wavenumber and the frequency of a wave. You must
have used these relationship to get through your quantum mechanics exams.
But have you really appreciated them?

In classical physics, there are two ways of transmitting energy-momentum,
equivalently, information. Suppose that the information you want to trans-
mit is in the binary form. That is, 0 or 1. Then one way to convey the
information to another person/detector is to use particles. For instance, you
can make a particle with high mass represent 1 and a particle with low mass
represent 0. Then shoot them in sequence, taking care that the velocity is
the same. Another way to transmit the same information is to use wave, like
your cell phone, where waveform can represent the binary information.

They are clearly different. In the case of the particles, particles physically
move a long distance to carry the information. In the case of the wave (think
of sound), each particle moves only within the mean free path of scatterings,
yet the information can be carried to a long distance. What the Planck and
Einstein relationships above assert is that in the subatomic world, they are
one and the same. The wave number, which has the dimension of 1/[L], is the
same as the momentum which has the dimension [M ][L]/[T ]. The frequency,
which has the dimension of 1/[T ], is the same as the energy which has the
dimension [M ][L2]/[T 2].

Hence, the Planck constant ~ relates the momentum to the length, and
the energy to the frequency. I would like to emphasize how different the
two quantities being related are. The wavenumber controls how many times
the wave oscillates in a unit length. Why should that be the same as the
momentum that can push things around? The frequency controls how many
times the wave oscillates in a given unit time. Why should that be the same
as energy which can heat things up, for instance? Yet, quantum mechanics
says they are because ultimately we are all made of de Broglie wave.

Now recall that c relates the time and the length. Hence, in that unit,
both momentum and the energy carry the same unit – mass. What ~ then
does it for us to be able to measure mass in terms of the length unit, e.g. as
in p = ~k → [M ] = ~/[L].

Now at the end of the calculation, one must revert to the usual units. For
this, you can memorize

~c = 0.1973 GeV fm ≈ 0.2 GeV fm (16)

The approximation ~c ≈ 0.2 GeV fm is accurate up to 1.5 % and can be used
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for estimation puroposes. This is basically the uncertainty principle

∆x∆p ≥ ~
2

(17)

Hence, all dimensionful quantities, length, time, mass, momentum, energy
can be measured with one unit, either fm or GeV, since, naturally, the length
unit 1 fm is related to the energy unit 0.2 GeV as

0.2 GeV ≈ 1

1 fm
(18)

Consequences of the uncertainty principle

Review of some basic concepts

Spatial resolution: �x�p � 1/2

Shorter the wavelength (larger the momentum) sees spatial
details up to �x ⇡ �.
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Consider the uncertainty principle

∆x∆p ≥ 1

2
(19)

and let’s look at what it means.
Suppose you want to investigate a system which has the size of L. How

do you study such a system? Well, how do you study any physical system?
Answer: You need a probe.
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Think of the x-ray pictures. The system you want to study is the human
body. The way to study it is to bombard it with the high frequency light:
x-ray. You then study how each part of the human body response to x-ray.
Soft tissue will let it pass easily but bones will stop it. So by detecting the
response of the system to the probe by making a photographic image of it,
you can now study the human body. Now in this case, the x-ray is like a
bullet. One does not really need to know that the x-ray is a wave. It could
very well be a collection of small particles. This is because the wavelength
of the x-ray is from

E = ω = k =
2π

λ
(20)

is much smaller than the human scale

λ ∼ 2π

keV

=
2π

keV
2× 105 keVfm

∼ 106 fm = 10−9 m (21)

The ultra-sound scan, however, is a different matter. The usual ultra-
sound scan uses the vibration frequency of about 5 MHz. The speed of sound
in water is about 1,500 m/s. Hence, the wavelength λ is

cs =
λ

T
= λf (22)

or

λ ≈ 0.3 mm (23)

and you can’t really see any detalis smaller than that scale. Why is that?
This is because the sound wave cannot really distinguish an obstacle that

is of the size of the wavelength or smaller. Recall that when scattered, a
wave undergoes diffraction. If the object is smaller than the wavelength,
however, there is no diffraction, meaning that the object is invisible to the
wave. The uncertainty principle is exactly that statement: One cannot obtain
information on the position of an object that is smaller than the wavelength
of the wave. Hence, to see smaller and smaller details of an object, one must
use higher and higher wavenumber. As long as the speed of the wave is
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roughly constant (in the case of the sound wave) or constant (in the case of
light), this means higher frequency and that means higher energy.

Review of some basic concepts

Energy-Time uncertainty: |�E |�t � 1/2

�E = p0 �
p

p2 + m2.

If �E = 0, then pµpµ = m2: On-shell

If �E 6= 0, the pµpµ 6= m2: Off-shell

Interpretation
An off-shell state can exist only for �t ⇠ 1/|�E |.

2

p  = m

k  = 0

p’  = m

k’  = 0

q  = m

2 2

2

2 2

2 2

This interaction lasts �t ⇠ 1/|(|p| + |k| �
p

(p + k)2)|
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Now consider the statement

E = ~ω (24)

Writing ω = 2πf = 2π/T , where f is the frequency and T is the period, we
get

ET = h (25)

which can be similarly interpreted that the time resolution depends on the
energy scale.

How can this be used? Let’s write it this way:

∆E∆t ≥ 1

2
(26)

One can interprete this in many ways. One way to interprete is the accuracy
of the energy (frequency) measurement. If you just mesaure the amplitude
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of wave between one zero amplitude and the next zero amplitude, how ac-
curately can you know the actual frequency of the wave? Well, since you
have observed the behaviour only once, you can’t really be sure and the un-
certainty is large. If you haven’t even observed one full oscillation, then you
are only looking at a small part of the curve and your uncertainly accord-
ingly goes higher. If you have observed a very small amount of time, you
cant be sure at all of its frequency. On the other hand, if you have observed
the wave for many ups and downs, you can measure the frequency pretty
accurately although you can never shrink the uncertainty to zero (you never
know exactly what the next time interval will bring!).

Another way to interprete this relationship, which is more useful to us,
is the relationship between the “off-shell-ness” of a particle and its life time.
If a particle is on-shell that means it satisfies

pµpµ = E2 − p2 = m2 (27)

where m is the particle mass. (We use the mostly negative metric convention
gµν = diag(1,−1,−1,−1)). In fact, there aren’t that many elementary parti-
cles that actually satisfies this relationship with a single mass parameter m.
For this to be true, the particle must be truly stable. For instance, a proton
or an electron. Any particle that decays into other more stable particles in
a finite life-time cannot be truly on-shell. The reason is that if a particle is
truly on-shell, then we know the energy exactly. That is ∆E = 0. Hence,
the time uncertainty ∆t diverges. It leaves for an indefinite amount o time.

On the other hand, suppose a particle decays. Then the wavefunction of
that particle behaves like (in the non-relativisitc limit)

ψ(t) ∼ e−iEt−Γt/2 (28)

where Γ = 1/τd is the decay rate and τd is the corresponding decay constant.
Fourier transforming, we get

ψ(ω) ∼ Γ

(E − ω)2 + Γ2/4
(29)

which indicates that the energy of the particle is uncertain by Γ. Since E =√
m2 + p2, that means the mass of the particle is not fixed, but distributed

within m ± Γ. One recorvers the Einstein relationship only in the limit
Γ→ 0. One can say that the particle 4-momentum is off-shell by ∼ Γ, then
the lifetime of the particle is ∼ 1/Γ ∼ 1/τd.
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In relativistic quantum mechanics, a particle can not only decay into
other particles but it can also absorb other particle. Consider an absorption
of photon by an electron as in the Compton scattering. When an on-shell
electron absorbs an on-shell photon, the total momentum becomes

p′ = p+ k (30)

and the 4-momentum squared becomes

(p′)2 = p2 + k2 + 2p · k
= m2

e + 2Ep|k| − 2|p||k| cos θ (31)

where θ is the angle between the two momenta. This is clearly not equal to
m2
e. Even though the electron is completely stable, this state of the electron

with (p′)2 > m2
e is not stable. It will eventually become an on-shell electron

and an on-shell photon again. How long this unstable state can live depends
on the on-shell-ness

∆Q2 = (p′)2 −m2
e

= 2Ep|k| − 2|p||k| cos θ (32)

For high energy |p| � me, we have

Ep = |p|+ m2
e

2|p| + · · · (33)

and that gives

∆Q2 = 2|p||k|(1− cos θ) +m2
e

|k|
|p| + · · · (34)

This can be small or large compared to m2
e depending on the angle θ and the

ratio |k|/|p|.
The off-shell-ness can be small if θ � me/

√
|p||k| and |k|/|p| � 1. In

this case, the electron is almost on-shell and it takes a long time until the
photon is finally radiated. On the other hand, if ∆Q2 � m2

e, that means
θ ∼ 1 when |p| � me and |k| � me and this intermediate state is short
lived.

Now ask it another way. Given ∆Q2, what are the possible p and k? We
need to satisfy

∆Q2 = 2|k|(Ep − |p| cos θ) (35)
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This is one equation but has 3 variables, |k|, |p| and cos θ. The angle is given
by

cos θ =
∆Q2

2|k||p| −
Ep
|p| (36)

So when the energies are high, it is more likely that θ will be a large angle
than a small angle.

What is a jet?

First, we should know what a jet is. A jet is a collimated shower of hadrons
that occur in hadron-hadron collisions and electron-positron collisions.

Before we talk about jets, let’s think about what happens when a two
hadrons collide. To talk about that, we first need to talk about what a
hadron is.

A hadron is defined as elementary particles which participate in the strong
nuclear interaction. Good examples are protons and neutrons that make up
the atomic nuclei and pions, kaons, ρ-mesons, ∆-baryons, Λ-baryons, etc
that appear only in the interaction of the protons and neutrons (collectively
called the nucleons).

What is a hadron?

As mentioned above, a hadron is a particle that participate in strong nu-
clear interaction. One can say that the history of hadrons start with Hideki
Yukawa. In 1935, Hideki Yukawa first published his idea on why the nuclear
force between the nucleons is strong but short-ranged. His idea was that
just like the electro-magnetic force is mediated by virtual photons, the nu-
clear force is also mediated by virtual “mesons”. And he figured out that
the range of the force is inversely proportional to the mass of the meson
and the fact that the range of the nuclear force is about 1 fm indicates that
the mass of the meson is about 0.2 GeV. And if there is a virtual particle
in this interaction, there must be the corresponding real particle. The pions
are subsequently discovered in Cosmic Ray experiments (1940’s equivalent
of particle accelerator experiments) and Yukawa got his Nobel prize in 1949.

After the initial discovery, there followed a plethora of hadrons discovered
in the Cosmic Ray experiments as well as accelerator experiments. The
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question then became: Why so many? Where did they all come from? Is
there any organizing principle in analogy with the atomic periodic table?

This was answered partially when Gell-Mann and Zweig introduced the
concept of quarks and their flavors, that is, u, d, s and fully answered by Han,
Naumbu, Fritzsch and Gell-Mann when they wrote down the theory of quark
interactions as a modern SU(3) gauge theory of colours called the Quantum
Chromodynamics (QCD in short).

We now know that the integer spin mesons are made of one quark and
one anti-quark and half-integer spin baryons are made of three quarks.

Quantum Chromodynamics

Perturbative QCD (pQCD)

q
g g

g g

q
g

g

− Interaction of quarks and gluons
QCD 

g

g

Nf flavors of quarks

N2
c � 1 gluons
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Perturbative QCD (pQCD)

q
g

g g

O(g) O(g^3)>>

Perturbation Theory when g << 1

Less soMore important

gq

g

q q

g

Calculate physical quantities as an expansion in the small
coupling constant g

Corrections to vertices

Corrections to propagators
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Quantum Chromodynamics (QCD) is the theory of strong nuclear interac-
tion. In this theory, the interaction Lagrangina is given by

L = q̄f,ai /Dqf,a −
1

4
Ga
µνG

µν
a (37)

where a is the color index, qf,a is the spinor corresponding to the quark of
the flavor f ,

Gµν =
1

ig
[Dµ, Dν ] (38)

is the field strength tensor of gluons (QCD equivalent of photons) and Dµ =
∂µ + igAµ is the covarient derivative with Aµ = Aaµτa being the gluon field.
The matrices τa are the 8 generators of the SU(3) group.

/D = γµ
(
∂µ + igAaµτa

)
(39)

is the covariant derivative contracted with the Dirac gamma matrices. The
quarks have finite masses, but for the purpose of this lecture, we can set
them to zero.
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For quark, the color index runs from 1 to 3 or RGB since it is in the
fundamental representation. For gluons, the color index runs from 1 to 8. It
is in the color-anti-color combination except that there is no gluon with the
color neutral combination RR̄ +GḠ+BB̄.

The QCD Lagrangian above looks similar to the QED Lagrangian, but
the big difference is in the way gluons interact. In QED, the field strength
tensor is

Fµν = ∂µAν − ∂νAµ (40)

and hence, the photon Lagrangian −FµνF µν/4 does not contain any interac-
tion. Photons interact directly with only the charged matter particles. Any
photon-photon interaction must be mediated via a fermion loop. Not so with
the gluons. The non-Abelian field strength is

Ga
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν (41)

and the gluon Lagrangian LG = −Ga
µνG

µν
a /4 does contain the cubic and the

quartic interactions among gluons.
QCD is a non-Abelian gauge theory because the color symmetry group is

SU(3). Let’s talk about that for a moment.

2 Gauge field

How do particles interact? The free-particle Hamiltonian operator for a
many-body system is

Ĥ0 =
N∑

i=1

p̂2
i

2mi

(42)

There is no reason why the world cannot be like that. But then it would be
boring. Nothing will ever happen in this world. Even the “position” of a
particle isn’t a well defined concept because there is no way to measure it.
The Hamiltonian above is invariant under any amount of translation in space,
xi → xi+ai. Hence, pin-pointing the position of any particle is meaningless.
So the question is, how can one make particles interact?

An obvious answer to this question is just to add the interaction potential:

ĤV =
N∑

i=1

p̂2
i

2mi

+
∑

i>j

V (xi − xj) (43)
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But why? Why is this the “obvious” way for particles to interact? This
may seem a bit of a silly question to ask. Classically, this is tantamount to
asking why the force in the Newton’s law F = ma is given by F = −∇V . In
classical mechanics, they are actually just definitions. The force is defined to
be what causes acceleration. The potential energy is defined to be a quantity
that gives F = −∇V . There is no sense asking why they are so.

What we are asking here is a bit different. It is almost philosophical.
We are asking to justify the existence of the potential energy in quantum
mechanics given the kinetic energy exists.

Let’s start with the free Hamiltonian again

Ĥ0 =
p̂2

2m
(44)

That is, this world entirely consists of a single particle. One may ask: What
do we mean by time in this case? What do we mean by position and momen-
tum? What do we mean by the phase of a wavefunction? Well, they don’t
mean a thing in this case. For these concepts to be meaningful, it must be
in relation to other particles. OK. Let’s add another particle.

Ĥ0 =
p̂2

1

2m1

+
p̂2

2

2m2

(45)

Now the concept of total and relative momenta may be formulated in a
meaningful way, but the question of “position” is still a meaningless one. In
the wavefunction

ψ(x1,x2) = Aeip1·(x1−x0)+ip2·(x2−x′
0) (46)

the positions x1 and x2 can be measured against two arbitrary points x0

and x′0 and it would still make perfect sense. Note that the combined factor
eip1·x0+ip2·x′

0 is a constant, pure phase. Therefore, another way of stating
the same thing is that the wavefunction is defined only modulo an arbitrary
phase.

This comes about because the Schrödinger equation is a linear equation
and the probability density of the particle is given by

P (t,x) = ψ∗(t,x)ψ(t,x) = |ψ(t,x)|2 (47)

If one extracts a pure phase from ψ

ψ′(t,x) = eiαψ(t,x) (48)
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one still has

|ψ′(t,x)| = |ψ(t,x)| (49)

Hence, the physical probability density distribution does not change even if
the phase changes by an arbtrary amount.

Now if we are to add meaningful interaction between the two particles, the
concept of relative position should be made meaningful although the concept
of absolute position is still ambigous. But that’s OK. So how does one go
about adding an interaction? That is, how can the two particle “know about
each other”? For that, we borrow some concepts from geometry. The idea
here is that the presence of a particle changes the geometry of some manifold
which then forms the background of the motion of the second particle. For
the General Relativity, it is actually the geometry of space-time that changes
in the presence of any form of energy. For other interactions, it’s a bit more
subtle. By the way, this was originally Weyl’s idea. He extended GR to
include a scale factor and could argue the necessity of a vector poential
which looked very much like the 4-vector potential of E & M. However, it
turned out that in this way, E & M and GR mixes up in such a way that
the behavior of a atomic clock can depend on the trajectory of the clock.
Experimentally, this is not the case. So we need to find an alternative way.

If the geometry of the space-time is out of the picture, what other ge-
ometry is available? In classical mechanics, there is no other. In quantum
mechanics, however, there is another possibility. It’s the phase of the wave-
function. It may be somewhat odd to think of a phase having a geometry. It
can be made a little bit more familiar if you think of a complex number as a
2-D vector.

The value of a complex number ψ(xµ) = f1(xµ) + if2(xµ) at a fixed
space-time position xµ = (t,x) can be represented by a 2-D vector ψ =
(f1(xµ), f2(xµ)). Using the basis vectors, we have

ψ = f1(xµ)e1(xµ) + f2(xµ)e2(xµ) (50)

where e1 is the real direction and e2 is the imaginary direction. Now suppose
we make a transformation of the basis

e′1 = cosαe1 − sinαe2 (51)

e′2 = cosαe2 + sinαe1 (52)
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Inversely,

e1 = cosαe′1 + sinαe′2 (53)

e2 = cosαe′2 − sinαe′1 (54)

Hence

ψ = f1(cosαe′1 + sinαe′2) + f2(cosαe′2 − sinαe′1)

= (f1 cosα− f2 sinα)e′1 + (f2 cosα + f1 sinα)e′2 (55)

That is,

f ′1 = cosαf1 − sinαf2 (56)

f ′2 = cosαf2 + sinαf1 (57)

and

f1 = cosαf ′1 + sinαf ′2 (58)

f2 = cosαf ′2 − sinαf ′1 (59)

And if we write

ψ′ = f ′1e
′
1 + f ′2e

′
2 (60)

then obviously

ψ = ψ′ (61)

Now in the complex number space, the above transformation is equivalent
to

ψ′ = f ′1 + if ′2
= (cosα + i sinα) (f1 + if2)

= eiαψ (62)

and it looks like that they represent two different numbers. This would
be the case if we rotated the vector instead of using different basis vectors.
Without the concept of the basis vectors, this is the only way to interprete.
However, if one applies the concept of the tangent space (or more technically
correct way, the fibre bundle), then ψ and ψ′ obviously represent the same
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quantity but expressed in different basis. Quantum mechanically, we know
that ψ and ψ′ represent the same physical probability distribution. Hence,
the interetation that ψ and ψ′ reprsent the same quantity is more natural
than regarding ψ and ψ′ as equivalent modulo a phase.

These “basis vectors” at each xµ are an additional concept on top of the
concept of the complex number. It represents the possibility that what we
call the “real” function space and the “imaginary” function space do not
have to be the same at different space-time points. Is there a way to use
this to represent interactions between two particles? If there are only free
particles, there is no reason why the basis vectors e1 and e2 should depend
on the space-time point. But if they interact, that is, if they “know about
each other”, then one can express the phase of one wavefunction with respect
to the other. In other words, ψ1 can be expressed in the basis defined by the
wavefunction ψ2 and vice versa.

If the two particles are in a relative motion, then the basis vectors e1

and e2 seen by, say particle 2, does not need to remain constant. They will
actually be a function of time and space. For particle 2, the wavefunction
can be represented by

ψ(xµ) = f1(xµ)e1(xµ) + f2(xµ)e2(xµ) (63)

where the basis vectors e1 and e2 depends on what the particle 1 is doing.
The change in the wavefunction in xν direction is

Dνψ ≡ lim
dxν→0

ψ(x+ dxν)−ψ(x)

dxν
(64)

This derivative now includes the effect of the changing axis. We have now

Dνψ =
ψ(x+ dxν)−ψ(x)

dxν

= e1∂νf1 + e2∂νf2 + f1∂νe1 + f2∂νe2

= e1∂νf1 + e2∂νf2

+ f1e1(eT1 ∂νe1) + f1e2(eT2 ∂νe1) + f2e1(eT1 ∂νe2) + f2e2(eT2 ∂νe2)

(65)

Since eT1 e1 = eT2 e2 = 1, eT1 ∂e1 = eT2 ∂e2 = 0 and

e1
T∂e2 = −(∂eT1 )e2 = −eT2 (∂e1) (66)
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Hence

Dνψ = e1

(
∂νf1 + f2(eT1 ∂νe2)

)
+ e2

(
∂νf2 − f1(eT1 ∂νe2)

)
(67)

Let

Aijν = eTi ∂νej = ei · ∂νej (68)

then

Aijν = JijAν (69)

where Aν = e2 · ∂νe1 and

J =

(
0 −1
1 0

)
(70)

is the matrix version of i since(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
(71)

and

J

(
f1

f2

)
=

(
−f2

f1

)
(72)

Then

ei ·DνΨ = ∂νfi + AνJijfj (73)

Hence as a complex number

Dνψ = ∂ν(f1 + if2) + iAν(f1 + if2)

= (∂ν + iAν)ψ (74)

Therefore the presence of another particle manifests itself as a non-zero 4-
vector Aν . So far, however, we have not talked about how Aν depends on
the other particle. We’ll do that later.

In summary, the Hamiltonian

Ĥ =
p̂2

1

2m1

+
p̂2

2

2m2

ψ (75)

in the presence of interaction becomes

Ĥ =
(p̂1 −A1)2

2m1

+
(p̂2 −A2)2

2m2

+ A0 (76)

where A1 is the vector potential caused by particle 2 and A2 is the vector
potential caused by particle 1. A0 is the potential energy between the two
particles coming from i∂t → i∂t − A0.
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3 Gauge Invariance

Consider a situation where the second particle is much heavier than the first.
Then this particle is not going to be influenced by the presence of the second
one. Hence Aµ for the second particle can be regarded as fixed, or external.

The time-dependent Schrödinger equation in this case

i(∂t + iA0)ψ =
(p̂−A)2

2m
ψ (77)

posseses an obvious symmetry. If ψ is a solution of this equation, then
ψ′ = eiαψ is also a solution provided that α is constant.

But what if α(t,x) is a function of space-time? Certainly, |ψ′(t,x)| =
|ψ(t,x)| is still valid. Hence, the classical physics described by both functions
are the same. Another way of saying it is, if one get the corresponding
classical trajectory from the two functions following the maximum, they will
be exactly the same. It may sound then reasonable to demand that the two
function satisfies the same Schrödinger’s equation. But that’s not possible.
The function ψ′(t,x) defined in Eq.(48) does not satisfiy the same Schrd̈inger
equation since

∂µψ = ∂µ(e−iαψ′)

= e−iα (∂µ − i∂µα)ψ′ (78)

Hence, ψ′ satisfies

i (∂t + iA0 − i∂tα)ψ′ =
1

2m
gij(∂i + iAi − i∂iα)(∂j + iAj − i∂jα)ψ′ (79)

Our metric is gµν = diag(1,−1,−1,−1). Clearly, ψ′ depends on α. Hence,
we have a situation where infinitely many different Schrödinger’s equations
describe exactly the same classical physics. This also means that the poten-
tial energy is not unique. Huh? How can that be? What happened to the
energy consevation?

What did we do wrong? Algebraically, nothing. Geometrically, yes, we’ve
done something wrong: We forgot to rotate the basis vectors as well as the
components. Recall that a complex number ψ = f1 + if2 can be regarded as
a 2-dimensional vector ψ = (f1, f2) defined in a 2-D plane anchored at (t,x).
We’ve seen that if we transform

e′1 = cosαe1 − sinαe2 (80)

e′2 = cosαe2 + sinαe1 (81)
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and at the same time

f ′1 = cosαf1 − sinαf2 (82)

f ′2 = cosαf2 + sinαf1 (83)

then

ψ′ = ψ (84)

So in the system where e′1,2 are used, we get,

(Dνψ)′ = (∂ν + iA′ν)ψ
′ (85)

not (∂ν + iAν)ψ
′. Note that the 4-vector potential also changed from Aν to

A′ν . Of course, here ψ′ = f ′1 + if ′2 and A′ν = −e′1
T∂νe

′
2. But this should

be exactly the same as Dνψ since ψ′ and ψ are the same, just expressed in
different basis. Therefore, there must be a consistent relationship between
Aν and A′ν .

To find the relationship between Aν and A′ν , we start with Dνψ and
transform the basis from ei to e′i and then back to ei as follows

e′i = Rijej (86)

e′if
′
i = Rijejf

′
i = (f ′iRij)ej (87)

or

fj = RT
jif
′
i (88)

∂µeifi

= ei∂µfi + (∂µei) · ejejfi
= ei∂µfi + (∂µej) · eieifj
= ei (∂µfi + (∂µej) · eifj) (89)

Let

Aijµ = −ei · (∂µej) = −Ajiµ (90)
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Then

Dµfi = ∂µfi + Aijµ fj (91)

In 2D

Aµij = JAµ (92)

where Aµ = e2 · (∂µe1) is the common function.
Now changing basis to the primed one,

∂µ(eifi) = ∂µ(RT
ije
′
jfi)

= (∂µR
T
ij)e

′
jfi +RT

ij(∂µe
′
j)fi +RT

ije
′
j(∂µfi)

= (∂µR
T
ij)e

′
jfi + e′kR

T
ij

[
(∂µe

′
j) · e′k

]
fi +RT

ije
′
j(∂µfi) (93)

To project it back to the unprimed basis,

∂µ(eifi) = (∂µR
T
ij)Rjlelfi +RklelR

T
ij

[
(∂µe

′
j) · e′k

]
fi +RT

ijRjlel(∂µfi)

= (∂µR
T
ij)Rjlelfi +RklelR

T
ij

[
(∂µe

′
j) · e′k

]
fi + el(∂µfl) (94)

which gives

Dµfl = ∂µfl +RT
lkA
′kj
µ Rjifi + (RT

lj∂µRji)fi (95)

and

Aliµ = RT
lkA
′kj
µ Rji +RT

lj∂µRji (96)

In 2D,

(
cosα − sinα
sinα cosα

)(
0 −1
1 0

)(
cosα sinα
− sinα cosα

)
=

(
cosα − sinα
sinα cosα

)(
− sinα cosα
− cosα − sinα

)

=

(
0 −1
1 0

)
(97)

is invariant. Hence

RT
lkA
′kj
µ Rji = JA′µ (98)
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The additional matrix
(

cosα − sinα
sinα cosα

)
∂µ

(
cosα sinα
− sinα cosα

)
=

(
cosα − sinα
sinα cosα

)
(∂µα)

(
− sinα cosα
− cosα − sinα

)

= (∂µα)

(
0 1
−1 0

)
= −(∂µα)J (99)

so that

Aµ = A′µ − ∂µα (100)

Therefore,

Aν = A′ν − ∂να (101)

From our derivation, it is clear that these two connections, Aν and A′ν =
Aµ−∂να, must be equivalent since α is just an arbitrary reparametrization of
underlying geometry. This is called the “gauge freedom”. Physical quantities
must be then “gauge invariant” meaning that they should not depend on the
choice of α.

If one can find a α in such a way that

Aν + ∂να = 0 (102)

then there exists a frame where A′ν = 0. Since what we did was a mere
re-definition of the frame, geometry (and hence physics) should not depend
on our choice α. So if one can really set A′ν = 0, then the space must be a
free-space.

Since Aν is not unique due to this gauge freedom, in geometry, the phys-
ical quantity that uniquely represents the non-flat nature of the geometry is
the curvature tensor

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ (103)

Since [∂µ, ∂ν ] = 0, it is trivial that ∂να term disappears in Fµν . Classical
physics does not directly depend on the 4-vector potential Aµ, it only depends
on Fµν .

We’ve argued that the presence of non-trivial Aµ or a non-zero “curva-
ture” Fµν necessarily implies the presence of other particles. Question to ask
here is how? This is a question of dynamics. As such, one needs a Lagrangian
to answer that.
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The Lagrangian-density for the Schrödinger’s equation is

L = iψ∗∂tψ −
∇ψ∗ · ∇ψ

2m
− V (x)ψ∗ψ (104)

One can easily see that changing ψ → eiαψ leaves L intact. That is, it does
not depend on α. What is the consequence of this invariance? To find out,
we start with the Lagrangian. A change in ψ leads to

δL = L(ψ + δψ, ∂µψ + ∂µδψ)− L(ψ, ∂µψ)

= δψ
∂L
∂ψ

+ (∂µδψ)
∂L
∂∂µψ

+ δψ∗
∂L
∂ψ∗

+ (∂µδψ
∗)

∂L
∂∂µψ∗

= δψ∂µ
∂L
∂∂µψ

+ (∂µδψ)
∂L
∂∂µψ

+ δψ∗∂µ
∂L

∂∂µψ∗
+ (∂µδψ

∗)
∂L

∂∂µψ∗
(105)

where we used the Euler-Lagrange equations

∂µ
∂L
∂∂µψ

=
∂L
∂ψ

and ∂µ
∂L

∂∂µψ∗
=

∂L
∂ψ∗

(106)

The above then becomes

δL = ∂µ

(
δψ

∂L
∂∂µψ

)
+ ∂µ

(
δψ∗

∂L
∂∂µψ∗

)
(107)

Suppose

δψ = eiαψ − ψ (108)

Now we know that

L(ψ + δψ, ∂µψ + ∂µδψ) = L(ψ, ∂µψ) (109)

since L does not depend on a constant α. Hence, using δψ ≈ iαψ and
δψ∗ ≈ −iαψ∗, one can easily see that

∂µ

(
ψ
∂L
∂∂µψ

− ψ∗ ∂L
∂∂µψ∗

)
= 0 (110)
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That is, there is a conserved current. This is, of course, Noether’s theorem
(Emmy Noether, 1918). We define

Jµ =
i

2

(
ψ
∂L
∂∂µψ

− ψ∗ ∂L
∂∂µψ∗

)

=

(
ψ∗ψ,− i

2m
(ψ∗∇ψ − ψ∇ψ∗)

)
(111)

which you should recoginze as the probability current in quantum mechanics.
Now suppose α is a function of space-time. Then,

∂µψ
′ = ∂µ(eiαψ)

= eiα (∂µ + i∂µα)ψ (112)

Therefore

L(ψ′, ∂µψ
′) 6= L(ψ, ∂µψ) (113)

and

δL = ∂µ

(
iαψ

∂L
∂∂µψ

)
− ∂µ

(
iαψ∗

∂L
∂∂µψ∗

)

= 2∂µ(αJµ)

= 2(∂µα)Jµ + 2α∂µJ
µ

6= 0 (114)

and hence the conserved current does not result. But this is not good. Charge
is conserved and probability is conserved. So there must be a conserved
current. So what is one supposed to do?

We start with our Lagrangian that includes the 4-vector potential. Then
it is easy to see that the Langrangian is invariant under gauge transformations

L′ = iψ′∗(∂t + iV ′)ψ′

+
gij

2m
[(∂i + iA′i)ψ

′]
∗ [

(∂j + iA′j)ψ
′]

= iψ∗(∂t + iA0)ψ

+
gij

2m
[(∂i + iAi)ψ]∗ [(∂j + iAj)ψ]

= L (115)
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where we have identified V with the time component of a 4-vector Aµ which
transforms A′µ = Aµ − ∂µα.

With Aµ added, the Euler-Lagrange equations are

∂µ
∂L
∂∂µψ

=
∂L
∂ψ

(116)

and

∂µ
∂L

∂∂µψ∗
=

∂L
∂ψ∗

(117)

Check:

∂t(−iψ) + ∂i
[
(∂i + iAi)ψ

]
/2m = −iAj(∂j + iAj)ψ/2m− A0ψ (118)

or

i(∂t + iA0)ψ = − 1

2m
(∇+ iA)·(∇+ iA)ψ (119)

Now under a gauge transformation,

δL = ∂µ

(
δψ

∂L
∂∂µψ

)
+ ∂µ

(
δψ∗

∂L
∂∂µψ∗

)
+ δAµ

∂L
∂Aµ

= ∂µ

(
iαψ

∂L
∂∂µψ

)
− ∂µ

(
iαψ∗

∂L
∂∂µψ∗

)
− (∂µα)

∂L
∂Aµ

= 0 (120)

With an arbitrary α, this gives 2 equations. The coefficient of α must vanish:

∂µ

(
ψ
∂L
∂∂µψ

− ψ∗ ∂L
∂∂µψ∗

)
= 0 (121)

The coefficient of ∂µα must vanish:

i

(
ψ
∂L
∂∂µψ

− ψ∗ ∂L
∂∂µψ∗

)
=

∂L
∂Aµ

(122)

From

L = iψ∗(∂t + iA0)ψ +
gij

2m
[(∂i + iAi)ψ]∗ [(∂j + iAj)ψ] (123)
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We have

i

(
ψ
∂L
∂∂tψ

− ψ∗ ∂L
∂∂tψ∗

)
= i (ψiψ∗ + ψ∗iψ)

= −2ψ∗ψ (124)

i

(
ψ
∂L
∂∂iψ

− ψ∗ ∂L
∂∂iψ∗

)
= i

(
ψ[(∂i + iAi)ψ]∗/2m− ψ∗[(∂i + iAi)ψ]/2m

)

(125)

∂t(−2ψ∗ψ) = −2(∂tψ
∗)ψ − 2ψ∗(∂tψ)

= −2i[(−D†iD†i )ψ/2m+ A0ψ]∗ψ + 2iψ∗[(−DiDi)ψ/2m+ A0ψ]

=
i

m

[
ψ(∂i − iAi)(∂i − iAi)ψ∗ − ψ∗(∂i + iAi)(∂i + iAi)ψ

]

=
i

m

[
ψ(∇2 − i(∇ ·A)− 2iA · ∇)ψ∗ − ψ∗(∇2 + i(∇ ·A) + 2iA · ∇)ψ

]

=
i

m
∂i

[
ψ(∂i − iAi)ψ∗ − ψ∗(∂i + iAi)ψ

]

(126)

Hence we recover a conserved current. Charge conservation is safe. The
requirement that the coefficient of ∂µα vanishes just provides the consistency
check for the form of Jµ.

The fact that demanding gauge invariance led to a conserved current
does not tell us anything about the dynamics of the gauge field Aµ. We need
additional piece of physics to get that.

Note that the classical physics is embedded in Schrödinger equation as
the 0-th order equation for S if one writes ψ = eiS/~. Let’s try that. The
Schrödinger equation in the presence of Aµ is

(i∂t − A0)ψ = −gij(−i∂i + Ai)(−i∂j + Aj)ψ/2m (127)

Letting ψ = eiS, we get for the LHS,

(i∂t − A0) eiS = eiS (−∂tS − A0) (128)
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For the RHS,

(RHS)2m = −gij(−i∂i + Ai)(−i∂j + Aj)ψ

= (−i∂i + Ai)(i∂
i − Ai)ψ

=
(
−∇2 + i(∂iA

i) + iAi∂i + iAi∂
i − AiAi

)
ψ

=
(
−∇2 + i(∇·A) + 2iA·∇+ A2

)
ψ

=
(
−~2∇2 + i(~∇·A) + 2i~A·∇+ A2

)
eiS/~

= eiS/~
(
(∇S)·(∇S)− i~(∇2S) + i~(∇·A)− 2A·∇S + A2

)

≈ eiS/~
(
(∇S)·(∇S)− 2A·∇S + A2

)
(129)

Upon identifying ∇S with the classical momentum p, one can then see that
this leads to the classical Hamilotonian

Hcl =
(p−A)2

2m
+ A0 (130)

Therefore, it is natural to identify Aµ with the classical electromagnetic
4-vector potential. The classical 4-vector potential of course satisfies the
Maxwell equations.

OK. Let’s recap. What did we just see? We started with the non-
relativistic Schrödinger equation and the corresponding Lagrangian. Then
we saw that the phase of the free-particle wavefunction can be freely changed
without changing any observables. Then we argue that the presence of elec-
tromagnetic force changes the functional space in such a way that one must
introduce a “connection” which relates the basis vectors at one point to the
basis vectors at another point. And then demanding that the physics of both
the connection and the Schrd̈inger equation remains the same, we ended up
with the full set of Maxwell equation. This is the simplest prototype of gauge
theories.

Now suppose we have two species of particles. They are identical except
for the eigenvalue of one Hermitian operator. The wavefunction of the two
species can be represented by the vector (Note: 2D complex space – different
2D space)

Ψ =

(
ψ1

ψ2

)
(131)

Suppose that the physics of these two species are the same. That is, as long
as the transformation is unitary, the linear transformation

Ψ′ = UΨ (132)
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does not change physics. Now the 2× 2 complex matrix U must be unitary
since we don’t want to mess with the norm of the wavefunction. Hence
demanding

(Ψ′)†Ψ′ = Ψ†Ψ (133)

gives

U †U = UU † = 1 (134)

That is, the matrices U form the U(2) group. If we now specify only the
matrices satisfying DetU = 1, we have the special unitary group SU(2).

If one uses the matrix identity

log DetA = Tr logA (135)

one can say that

Tr logU = 0 (136)

Hence, we should be able to represent U in the exponential form

U = exp (iG) (137)

where G is a traceless 2× 2 matrix. The factor i in front of G is customary.
The fact that UU † = U †U = 1 then demands that

G = G† (138)

That is, G is a traceless and Hermitian 2× 2 matrix. It has the general form

G =

(
c a− ib

a+ ib −c

)
= a

(
0 1
1 0

)
+ b

(
0 −i
i 0

)
+ c

(
1 0
0 −1

)
(139)

which you should recognize as the Pauli matrices. So the most general form
of the element of the SU(2) group is

U(θ) = exp (iθ · τ ) (140)

where

τ =
1

2
σ (141)

34



are called the generators of the SU(2) group or the Lie algebra of SU(2).
Now we repeat the E&M gauge theory consideration. The Schrödinger

equation

i∂tΨ = −∇
2

2m
Ψ (142)

is obviously invariant under the transformation

Ψ = U †Ψ′ (143)

when U † is constant. We are using U † here to conform with the most textbook
definition of the gauge tranformation. It does not matter whether you use U
or U †. But it is convenient to agree on the convention.

What about the case when U is not constant but varies from a space-time
point to another? In that case,

∂µΨ = ∂µ(U †Ψ′)

= (∂µU
†)Ψ′ + U †∂µΨ′

= U †
(
∂µ + U∂µU

†)Ψ′ (144)

Now since U †U = 1,

U∂µU
† = −(∂µU)U † (145)

Hence U∂µU
† is anti-Hermitian. Furthermore, in the definition of the deriva-

tive

U∂µU
† = lim

h→0
U(x)

U †(x)− U †(x− h)

h

= lim
h→0

1− U(x)U †(x− h)

h
(146)

the matrix U(x)U †(x− h) is an element of the SU(2) group. Hence, it must
have a representation

U(x)U †(x− h) = exp (iθ · τ ) (147)

Furthermore, we must have θ → 0 as h → 0. Therefore, expanding the
exponential we get

U∂µU
† = lim

h→0

iθ

h
(148)
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and it is an element of the SU(2) algebra.
Again, for free particle wavefunctions, these transformations cannot mat-

ter. One can always redefine the phase of the wavefunction to absorb the
“pure gauge” vector potential of the form U∂µU

†. Now consider an analogue
of electromagnetic force acting on this system. We can again divide the real
and the imaginary part of ψ1 and ψ2 and their changes in space and time.
However, that is overly complicated and does not really give one any addi-
tional insight. We’ll simply assert that all that can be done and the result is
“covariant derivative”

∂µΨ→ DµΨ =
(
∂µ + iAaµτa

)
Ψ (149)

The gauge transformation then yields

DµΨ = DµU
†Ψ′

=
(
∂µ + iAaµτa

)
U †Ψ′

= U †
(
∂µ + iUAaµτaU

† + U∂µU
†)Ψ′ (150)

Or with Aµ = Aaµτa,

A′µ = UAµU
† − iU∂µU †

= UAµU
† + i(∂µU)U † (151)

The next thing to do is to demand that the physics of Ψ as well as the
physics of Aµ should not depend on U . This would be the case if again the
physical force is represented by the curvature tensor

Gµν = −i[Dµ, Dν ] (152)

where the communtator now includes the matrix part as well. Because Ψ =
U †Ψ′,

DµΨ = U †D′µΨ′ (153)

or

UDµU
†Ψ′ = D′µΨ′ (154)

Hence

D′µ = UDµU
† (155)
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and that means

G′µν = −i[D′µ, D′ν ] = −iU [Dµ, Dν ]U
† = UGµνU

† (156)

Hence, as long as the dyanmics depends only on the trace of the products of
Dµ the dynamics is independent of U . The QCD Lagrangian

L = q̄f,ai /Dqf,a −
1

4
Ga
µνG

µν
a (157)

is exactly in that form.
Now there isn’t much that is really specific to SU(2) in the above analy-

sis. The only thing that is specific to SU(2) is the appearance of the Pauli
matrices. If you had N different species of particles which are identical but in
one aspect, then we will have the SU(N) gauge theory with N2 − 1 different
Aµ. For the strong nuclear force, the number turns out to be N = 3. This
was discovered because of the presence of the ∆++ baryon. It contains 3 u
quarks and has the 3/2 spin. One can then show that the wavefunction is
symmetric. This violates the Pauli Exclusion principle. The only way out is
that there are actually 3 different kinds of u quark. A red u quark, a green
u quark and a blue u quark. They are identical in all other aspects, but
they do differ in the “color charge”. The the wavefunction can be properly
anti-symmetrized by anti-symmetrizing the color labels. In SU(3), there are
8 generators

τa =
λa
2

(158)

where λa are the Gell-Mann matrices.
So, what is the “color” then? Of course, it is not really the literal red,

green and blue colors. The name color (or Chromo) was attached to it
because it has 3 components just like the 3 fundamental colors and also
because it turned out that the observed hadrons are all in the color neutral
(white) state. The “color” simply denotes the 3 different states which are
distinguished by the eigenvalues of the 2 diagonal Gell-Mann matrices

λ3 =




1 0 0
0 −1 0
0 0 0


 and λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 (159)

All the terms in the Standard Model are generated this way.
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Now one should ask: Can we see color? The analogous of color in the
Abelian gauge theory is simply the electric charge. We can certainly see and
feel the electric charge. But what about colors? Can we see them? To answer
this question, one should answer this question first: What do we mean by
“see”? Again, going back to the E&M the way we “see” the effect of the
EM fields is to experience the electric and the magnetic forces. That is, we
detect the presence of electric charges, moving or stationary by having a test
charge and “see” it reacting.

In this regard, the important fact is that the gauge transformation cannot
change the fact that the electron has the negative charge and the positron
has the positive charge. This is because in this case, the number of different
charges is really 1. The other one is the charge of the anti-particle or the
anti-charge.

Now consider the color. The u quark for instance, should really be rep-
resented by the 3D vector

u =




uR
uG
uB


 (160)

In this case, the RGB are all charges. The anti-u-quark has the anti-color
components ū = (ūR̄, ūḠ, ūB̄). In this case of 3 charges, a gauge transforma-
tion

u′ = Uu (161)

does mix up colors. The “red” component of u′ is the linear combination of
the old red, green and blue. Yet, the physics should remain the same. Hence,
the label “color” has meaning only within the microscopic processes within a
color neutral object and physical objects which should not depend on what
I call “red” must be color neutral objects.

A similar comments goes to the field strength. The reason we can “feel”
the electromagnetic force is that under the gauge transformation, they do
not change at all. But in non-Abelian gauge theory, the field strength tensor
changes:

G′µν = UGµνU
† (162)

The jargon is: They color-rotates. Hence, you cannot directly observe them.
At the end, you can only detect the result of these forces acting on the
color-neutral objects.
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The color neutral objects that can be made out of quarks and anti-quarks
are q̄q and εabcq

aqbqc. The combination q̄q is colorless (gauge invariant) be-
cause of the unitarity, U †U = 1 and the second combination is colorless
because of the matrix identity

εabcU
aa′U bb′U cc′ = εa′b′c′DetU (163)

and the fact that DetU = 1.

Asymptotic freedom

One of the most imporant aspect of non-Abelian gauge theory is how the
strength of the gauge coupling behaves as the interaction energy scale changes.
Consider a bare red quark propagating. Suppose a blue quark wants to in-
teract with it. It can do so by emitting a gluon that carries BR̄ color and
becoming a red quark. The red quark can then absorb the gluon and become
a blue quark. In this way, they have exchanged not only the energy and
momentum but also the color. In this “classical” picture of color interaction,
there is no reason why the strength of the interaction has to depend on the
size of the exchanged momentum. Of course, gluon exchange does not have
to exchange color as there are two gluons that are color neutral (corresponds
to λ3 and λ8).

Quantum mechanically, however, the story is different. Now, before we
talk about the color charges, let’s talk about the electric charge first. Say
an electron interacting with another electron. In this case, the interaction is
mediated by a photon. Quantum mechanically, vacuum is not really empty.
In fact, it is teeming with the briefly lived electron-positron pairs. Recall
that the photon – electromagnetic wave – can only see the objects which
are larger than the de Broglie wavelength. Hence, an exchange photon with
the wavelength λ feels not only the electric charge of the original electron
but also all the e+e− pairs bubbling in and out of the vacuum inside the
wavelength. Because of the electric field of the original electron, these pairs
prefer the orientation in which e+ is towards the original electron and e− is
slightly outside. This is very analoguous to what happens in a polarizable
medium when a charge is dropped into it. Now recall from E&M that in the
polarizable medium with the dielectric constant ε > ε0, the Coulomb field is
given by

V =
1

4πε

q

r
=

1

4πε0

(ε0/ε)q

r
(164)
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which reduces the apparent charge. This is because in any size sphere con-
taining the point charge, there is bound to be more opposite charge part
of the dipole inside the sphere than outside. Hence, the net charge of any
sphere is smaller than the original charge.

In the linear dielectric medium where

P = χε0E (165)

the net charge is always reduced by a factor (ε0/ε). In the vacuum, the
polarization effect due to the virtual e+e− pair “dipole” is a little more com-
plicated. Nevertheless, it should be clear that as one approaches the original
charge, one is bound to see more and more of the original charge strength.
That is, the electromagnetic coupling constant αEM becomes stronger as the
distance scale decreases or the momentum scale increases.

When there are more than a single kind of charges, however, this picture
completely changes. When an electron encounters an e+e− vacuum excita-
tion, it may annihilate with the positron and briefly become a photon and an
electron. The point here is that once you start with an electron your system
always constains an electron no matter what happens.

Now consider a red quark propagating in vacuum. Suppose it encouters
a BB̄ vacuum fluctuation. It can then briefly become RB̄ gluon and a blue
quark. Now suppose a green quark is trying to interact with this red quark
by emitting a GR̄ gluon. If the wavelength of the gluon is large, then it
will see the whole qB + gRB̄ system and a net R charge. However, if the
wavelength of the gluon is sufficiently small, then this GR̄ gluon will either
see the blue quark or the RB̄ gluon. It can’t interact with the blue quark
any more. It can interact with the RB̄ gluon which should then become the
GB̄ gluon and then it goes back to the original quark which now is green.

g

GBR

G R

GR

RB GB

g g

But this process now involves 3 interactions instead of just one. Hence, the
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effective interaction strength is lower than the case where the green quark
could directly interact with the red charge as a whole. This is one way to
understand why as the interaction energy (momentum) goes up, the smaller
the interaction strength becomes. In effect, what happens is that the original
red charge is no longer just associated with the quark. It is effectively spread
out in space. The large wavelength (low momentum) interaction sees the
whole spread-out charge with the net charge R and hence the interaction is
strong. On the other hand, as the wavelength becomes smaller and smaller
(higher momentum), the gluon containing a R̄ sees smaller and smaller vol-
ume which contains less and less red charge. (In contrast, the electron charge
is always located at the position of the original electron.) Hence as the in-
teraction energy goes up, the interaction strength goes down. This property
is known as the asymptotic freedom. Note that this happens because unlike
the photon, gluons carry color charges. Hence, by emitting a gluon, a quark
can actually change its charge.

In perturbative QCD, this can be calculated:

αS(Q2) =
g2

4π
=

1

((11Nc − 2nf )/12π) ln(Q2/Λ2
QCD)

=
1

((33− 2nf )/12π) ln(Q2/Λ2
QCD)

(166)

where Q2 is the virtuality of the exchanged gluon and ΛQCD ≈ 0.2 GeV is
the intrinsic QCD scale that determines the typical energy scale of hadrons.
It is determined by

αS(M2
Z) ≈ 0.118 (167)

Now in any field theory calculation, the basic calculational tool is the
perturbation theory where physical quantities are expanded in terms of the
small coupling constant. What the above fact about QCD is telling us is
that the high energy part of any QCD process may be calculated within
perturbation theory. However, the low energy part of any QCD process is
out of our reach as the strength of the interaction for that part is nowhere
near small.
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Hadron-Hadron Cross Section

Now consider a hadron-hadron collision at high energy. There are two known
facts. One, experimentally the total cross-section behaves like

σ ∼ a+ b ln
√
s+ c(ln

√
s)2 (168)

Two, perturbative calculation of quark-quark scattering cross-section behaves
like, for instance,

dσud→ud
dt

=
4πα2

S

9

(
s2 + u2

s2t2

)
(169)

where we have introduced the Mandelstam variables

s = (p+ k)2 (170)

and

t = (p− p′)2 = (k − k′)2 (171)

and

u = (p− k′)2 (172)

where p and k are the incoming momenta and p′ and k′ are the outgoing
momenta satisfying the energy-momentum conservation

p+ k = p′ + k′ (173)

These variables satisfy, in the massless limit

s+ t+ u = p2 + k2 + 2pk + p2 + (p′)2 − 2pp′ + p2 + (k′)2 − 2pk′

= 2pk − 2pp′ − 2pk′

= 2p(k − p′ − k′)
= −2p2 = 0 (174)
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Hence the total cross-section is
∫
dt
dσud→ud
dt

=

∫
dt

4πα2
S

9

(
s2 + (s+ t)2

s2t2

)

=

∫
dt

4πα2
S

9

(
2s2 + t2 + 2st

s2t2

)

=
4πα2

S

9

∫ 0

−s
dt

(
2

t2
+

1

s2
+

2

st

)

=
4πα2

S

9

(
2

|tmin|
− |tmin|

s2
− 1

s
− 2

ln(s/|tmin|)
s

)

≈ 4πα2
S

9

2

|tmin|
(175)

where tmin is the IR cut-off. This does not behave at all like what the exper-
iment measures unless somehow the cut-off behaves

|tmin| ∼ 1/(a+ b ln s+ c ln2 s) (176)

But there is no good reason the cut-off should behave this way.
Note that in the CM frame,

s = (p+ k)2

= 2EpEk(1− cos θpk)

= 4E2
p (177)

and

t = (p− p′)2

= −2EpEp′(1− cos θ)

= −s
2

(1− cos θpp′) (178)

The maximum value of |t| is therefor s.
These two facts combined together indicates that the total cross-section

of hadron-hadron collisions is dominated not by pQCD interaction. It must
be then dominated by the interaction of the soft part of the hadrons.

For the exprimentally measured cross-section, Richard Feynman argued

as follows: Suppose the amplitude to emit small x = 2p/
√
s gluon is

1

x1+λ
.
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Then the soft-soft scattering cross-section is

σ ∼
∣∣∣∣
∫

dxa
x1+λ
a

∣∣∣∣
2 ∣∣∣∣
∫

dxb

x1+λ
b

∣∣∣∣
2

∼ (EaEb)
2λ ∼ s2λ (179)

For small λ, this behaves like a series in ln s. Hence, there must be a lot of
soft gluons in a high energy hadron and they dominate the collision process.

What about the perturbative parton-parton scattering, then? Does it
have no relevance in describing hadron-hadron collisions? Fortunately, the
large x partons once in a great while do undergo a large angle scattering.
This part of the scattering cross-section, then should be describable by per-
turbative QCD (pQCD). These are the jets. In most of the hadron-hadron
collisions, jets do not appear. Only in a small fraction of events, hard scat-
terings ocurr and jets appear. When this happens, it is clear that the jets
are very distinct from what’s called the underlying events (UE). They ap-
pear as a clean shower of collimated hadrons whose total energy can be a
good fraction of

√
s. Since the origin of the jets is the hard parton-parton

scattering, one can think of a jet as a hard colored parton that eventually
become a shower of hadrons as it tries to become color neutral.
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What is a jet?

q

These are all at η

These are all at −η

These are      apartπ

jet

jet

and φ jet

and −φ jet

hh

q

A jet is a phenomenon
where a lot of final state
energy is concentrated in a
small angle around a
common axis

Origin: Hard collisions of
partons ==> pQCD
applies

Usually dijet, sometimes
triple-jet (Radiation of a
hard gluon at a large
angle)

Jeon (McGill) Hard Probes Stony Brook 2013 13 / 72

Applying QCD

x1

x2

Q

hadron
Jet

Jet

pQCD process

hadron

Soft scale physics

hard scale
physics

Only the hard scattering is
hard pQCD. Everything
else is soft.

Jeon (McGill) Hard Probes Stony Brook 2013 14 / 72
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Understanding the hadron strcuture - the CGC Way

How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction

Coulomb potential in the rest frame of the
charge

' = Q/|r|

In the moving frame

Aµ(x 0) = ⇤µ
⌫A⌫(x(x 0))

The coordinate in the moving frame
x 0 = (t , x , y , z). This corresponds to the
rest frame position
x = (t� � z�v , x , y , z� � t�v).

Jeon (McGill) Hard Probes Beijing 2013 27 / 139

How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction

Coulomb potential in the rest frame of the
charge

' = Q/|r|

In the moving frame

Aµ =
Q(�, 0, 0, �v)q

(z � vt)2�2 + �x2
?

Pure gauge in the v ! 1 limit

Aµ ⇡ Q(1, 0, 0, 1)

|z � vt | = Q@µ ln |z � vt |

Jeon (McGill) Hard Probes Beijing 2013 28 / 139
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How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction
Fµ⌫ ⇡ 0 unless z ⇡ vt

In the rest frame: Coulomb field is made
up of space-like virtual photons
qµqµ = �q2 with q0 = 0.

In the Lab frame:
q0µ = (qz sinh ⌘, q?, qz cosh ⌘)

For large ⌘,
|�E | = |q� � |q|| ⇠ e�⌘q2/qz
==> �t ⇠ 1/|�E | ⇠ e⌘qz/q2 ==> virtual
photons look almost like real photons.

Jeon (McGill) Hard Probes Beijing 2013 28 / 139

How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction
Fµ⌫ ⇡ 0 unless z ⇡ vt

To a first approximation, the approaching
particles do not know about each other
until they are on top of each other.

Initial photon momentum distribution
factorizes: F (x1, x2) = f (x1)f (x2)
but this is not exact.

In QCD, color neutrality of hadrons help.

Jeon (McGill) Hard Probes Beijing 2013 28 / 139
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So how does one understand the hadron structure? Let’s think about a
proton. In the rest frame of the proton, It is a bound state of 3 quarks, (uud).
That means, if I had magical microscope that can look inside the proton, I will
see that 3 point like quarks interacting with force (potential energy) mediated
by gluons. That is, the whole system is made of 3 real particles (quarks) and
a whole bunch of virtual particles (gluons). These gluons, however, are not
real. It’s just like a Coulomb potential. The Coulomb potential is made of
photons, yet, a charged particle at rest does not shine. To shine, it must
accelerate, thus interrupting the static state and make the signal propagate.

Now just as the Coulomb field is made of virtual photons which only has
the spatial momentum, the force field binding the 3 quarks together as a
proton is also made up of gluons that only has the spatial momentum. Now,
suppose we boost the proton to a high energy. That is, γ � 1. In the moving
frame, the energy is

(q0)′ = γq0 + γvqz

= γvqz

(qz)′ = γqz + γvq0

= γqz (180)

since q0 = 0 in the rest frame. Notice that in this frame, even though the
momentum remains space-like, the gluon appears to have both the energy
and momentum and if γ is sufficiently large, then this virtual particle would
appear to be almost real. As such, a highly boosted hadron can be thought of
being composed of the valence quarks (the original quarks in the rest frame)
and a cloud of virtual gluons promoted to be (almost) real. This is called
the Color Glass Condensate (CGC) picture.

Now special relativity tells us that a highly boosted system exhibits two
important features. It is Lorentz contracted and it is time dilated. Hence, in
this frame, the hadron does not appear as a round object, but as a thin 2D
sheet. Furthermore, due to the time dilation effect, the movement of particles
in the system slows down by a factor of γ. In effect, they are frozen. Now
a hadron is not just a classically bound state of quarks. It is also quantum
mechanical system where vacuum bubbles of qq̄ pairs and gluons pairs pop
in and out all the time. Hence, in addition to the valence quarks and cloud
of virtual gluons, the highly boosted hadron also contains sea-quarks that
are frozen in before they had a chance to go back to vacuum.
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Factorization

Factorization Theorem

x1

x2

Q

hadron

hadron
Jet

Jet

pQCD process

Hadron-Hadron Jet production
scheme:

d�
dt̂

=
Z

abcd
fa/A(xa, Qf )fb/B(xb, Qf )

⇥ d�ab!cd(QR)

dt̂
DC/c(zC , Q0

f )

pQCD is used to calculate �ab!cd
and the evolution of the parton
distribution functions and the
fragmentation functions.

fa/A(x , Qf ): PDF,
d�ab!cd (QR)

dt̂
: PQCD x-section, DC/c(z, Q0

f ): FF

Jeon (McGill) Hard Probes Stony Brook 2013 15 / 72

Factorization Theorem

How realistic pQCD calculations are done

�hh0!C+X =

Z

abcd
dx1dx2fa/h(x1, Qf )fb/h0(x2, Qf )�ab!cd(QR)DC/c(zC , Q0

f )

pQCD controls the evolutions of fa/h(x1, Qf ) and DC/c(zC , Q0
f ). But

pQCD cannot determine the initial data because this is dominated
by IR processes.

pQCD can calculate �ab!cd(QR) when the renormalization scale
QR can be set high (that is, when

p
s is large)

Jeon (McGill) Hard Probes Beijing 2013 26 / 139
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As explained above, only the hard part of QCD interactions are analytially
calculable using perturbation theory. But any interactions that involves
hadrons either in the initial state or in the final state must have soft in-
teractions just because hadrons are soft objects. Then how can we calculate
anything if we can’t really calculate the soft part of QCD from first princi-
ples? Fortunately, quantum mechanics and relativity help us in this regard.
Consider a collision between an electron (to be simple) and a hadron.

∆

p

xp
k

~1/Q

2R/γ

t’ =      trestγ∆

As explained above, the hightly boosted hadron has a very thin longitudi-
nal extent and it is full of quarks, anti-quarks and gluons which are basically
static. Hence, the collision of electron and the hadron would proceed in the
following way.

1. Before the collision, the electron and the hadron do not know each
other’s existence.

2. An electron can only directly interact with a quark by exchanging a
virtual photon with the virtuality Q.

3. If only the single parton-electron interaction matters, then this process
can be described with the probability of finding a quark within 1/Q
with a certain momentum fraction x of the original hadron.

4. If quarks are randomly distributed in a disk of radius R, then the
probability density that two particles are at the distance r is roughly
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the area they span divided by the total area.

P (r < d) ∼ d2

R2
∼ 1

(QR)2
(181)

Hence, if Q � 1/R, then this probability is small and we can use the
single particle picture.

5. The interaction happens in the time/length scale of τcrossing = R/γ
because that’s the longitudinal size of the hadron. The interactions
that produces hadrons happen in the time scale of 1/ΛQCD ∼ 1 fm in
the rest frame. In the moving frame, this is also dilated by γ.

6. By the time hadrons start to form from the interrupted remnant of the
original hadron the projectile electron is long gone.

Hence, provided that there is a large scale difference between the hadronic
scale ∼ 1 GeV and the collision energy

√
s, one can construct a probabilistic

picture that starts with the probability of finding a parton (quark or gluon)
inside the highly boosted hadron with a certain momentum fraction x, the
probability to have a hard collision, and then the probability to form a certain
species of hadrons after the electron is gone.

So here is the factorization formula again for the hadron-hadron collisions:

σhh′→C+X =

∫

abcd

fa/h(x1, Qf )fb/h′(x2, Qf )σab→cd(QR)DC/c(zC , Q
′
f )

(182)

4 Heavy Ion Collisions and QGP production

I think we have enough background now to talk about heavy ion collisions.
A heavy ion collision is a collision between two large nuclei. The nuclei we
have used so far include Au197

79 , Pb208
82 , Cu64

32, U238
92 etc.

To think about the nucleus before collisions, we again appeal to the Color
Glass Condensate framework. A nucleus is a collection of protons and neu-
trons. A highly boosted nucleus can be viewed as a collection of large x
partons (∼valence quarks) and the small x partons (sea-quarks and Coulomb
like gluons) radiated by the large x partons.
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So in the beginning, two think pancakes approach. Each pancake is made
up of few hard partons and many soft partons. The density combined with
the running QCD coupling then tells you that majority of the interaction
is going to be between two clouds (CGC gluons) of soft partons. This part
of interaction occurs every time there is a collision regardless of what hard
partons are doing. Within the time scale of soft interaction ∼ 1/ΛQCD, these
part of interaction is going to become chaotic and thermalized. This becomes
the Quark-Gluon Plasma if there is sufficient energy in the system.

While this is going on, once is a great while, two hard partons from two
nuclei may collide at a large angle exchaging momentum of O(

√
s). As we

have argued before, this process is perturbative. The complecation here is
that this is happening while the soft part is thermalizing to become QGP
and the hard partons subsequently need to traverse QGP.

So why is this useful? This is because our primary goal is to study QGP.
The production of two hard partons which will eventually become jets follow
pQCD and calculable. We can also measure it in the proton-proton collisions
which presumably do not produce QGP droplets. Hence by comparing the
properties of jets (hard partons) that emerges out of heavy ion collisions
(through QGP) and those of the pp jets, we can learn a lot about the QGP
medium.
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5 Properties of QGP

Another estimate of Ttransition

T ~200 MeVLow T

~1fm

. . .

Density: Consider a pion gas.

n = 3
Z

d3p
(2⇡)3

1
eEp/T � 1

= 0.37 T 3

As T becomes larger, more and more pair creation results.
Inter particle distance:

linter = n1/3 = 1.4/T

At T = 200 MeV, linter ⇡ 1.4 fm ⇡ r⇡
Jeon (McGill) Hard Probes Beijing 2013 46 / 139

Hagedorn Temperature

Hadronic density of states ⇢(m) ⇠ em/TH :
The smoothed mass spectrum of
hadronic states as a function of
mass. Experimental data:
long-dashed green line with the 1411
states known in 1967; short-dashed
red line with the 4627 states of 1996.
The solid blue line represents the
exponential fit yielding TH=158 MeV.
CERN Courier, Sept, 2003

X

m

Z

p
⇢(m)e�Ep/T : Not well defined when T > TH for hadronic

matter.

Phase transition around TH : Hagedorn temperature ⇡ 160 MeV

Jeon (McGill) Hard Probes Beijing 2013 47 / 139
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Story so far

Perturbative calculation possible much above µ = ⇤QCD

µ ⇠ T at high T

If T is much above the binding energy of hadrons
==> Deconfinement

At high enough T , the system is a plasma of weakly interacting
quarks and gluons

All the above arguments are plausible but not a proof

Jeon (McGill) Hard Probes Beijing 2013 48 / 139

Lattice QCD Evidence
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rσ1/2

(Fqq-Tln9)/Tc-

F. Karsch, hep-lat/0403016. The color averaged heavy quark free
energy at temperatures T/Tc = 0.9, 0.94, 0.98, 1.05, 1.2, 1.5
(from top to bottom) obtained in quenched QCD.

Jeon (McGill) Hard Probes Beijing 2013 49 / 139

54



Lattice QCD – QGP

  0

  1

  2

  3

  4

  5

100 200 300 400 500 600

T [MeV] 

p/T4 pSB/T4

3 flavour
2+1 flavour

2 flavour
pure gauge

QCD is an asymptotically free theory - High T ==> Free quarks
and gluons

Phase transition happens – Hadrons should ‘melt’ at around
T = 170 MeV = 2 ⇥ 1012 K [F.Karsch et al.] “Cross-over”
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Lattice QCD Evidence of QGP
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From HotQCD Collaboration (C. DeTar, arXiv:0811.2429)

“Cross-over” between 185 - 195 MeV
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What it means

Q

Q

Q

Q

g

gg g g

q
q

q

q
g

Q

Low temp: Flux tube extends: F = const

At high T
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Q Kicks from thermal particles

Can’t maintain the flux tube

http://www.physics.adelaide.edu.au/

⇠dleinweb/VisualQCD/Nobel/
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Expected properties

High number density

n ⇡ (24 + 16)

Z
d3p

(2⇡)3 e�p/T ⇡ 4 T 3

= 4
✓

T
200 MeV

◆3

fm�3

High energy density

" ⇡ (24 + 16)

Z
d3p

(2⇡)3 p e�p/T ⇡ 12 T 4

= 2.4
✓

T
200 MeV

◆4

GeV/fm3
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Simple Estimates

With ~ = c = 1
1 mole of hydrogen atom: 6.02 ⇥ 1023 atoms = 1 g (Avogadro’s
number)

1 hydrogen atom mp ⇡ (1/6) ⇥ 10�23 g = (1/6) ⇥ 10�26 kg

mp = 940 MeV ⇡ 1 GeV

E = mc2: 1 GeV ⇡ (1/6) ⇥ 10�26 kg

2.4 GeV/fm3 = 0.4 ⇥ 10�26 kg/(10�13 cm)3

= 0.4 ⇥ 10�26+39 kg/cm3

= 4 ⇥ 1012 kg/cm3

Typical human: ⇠ 100 kg

2.4 GeV/fm3 ⇠ 4 ⇥ 1010 human/cm3
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Simple Estimates

With ~ = c = 1
Another way of looking at the energy density

2.4 GeV/fm3 = 4 ⇥ 1012 kg/cm3

Restoring c = 3 ⇥ 108 m/s,

2.4 GeV/fm3 = 4 ⇥ 1012 ⇥ (9 ⇥ 1016) J/cm3 = 3.6 ⇥ 1029 J/cm3

World energy consumption (2008):

144 pWh = 144 ⇥ 1015 ⇥ 3.6 ⇥ 103 J = 5.2 ⇥ 1020 J

A cubic centimeter of QGP can power the world for about 70
million years.
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Simple Estimates

With ~ = c = 1
Pressure P ⇡ ✏/3

P = 0.8 GeV/fm3 ⇡ 1.3 ⇥ 1012 kg/cm3 = 1.3 ⇥ 1018 kg/m3

SI Unit for pressure: Pa = N/m2 = kg/m/s2

Restoring c = 3 ⇥ 108 m/s,

P ⇡ 1.3 ⇥ 1018 ⇥ (9 ⇥ 1016) kg/m/s2 ⇡ 1035 Pa ⇡ 1030 atm
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How do you achieve high temperature?

Temperature = energy (1 eV ⇡ 12, 000K)

More usefully, the energy density:

" = g
Z

d3p
(2⇡)3 Ep e�Ep/T ⇡ 3g

⇡2 T 4

To get high temperature: Get high energy density ==> Cram
maximum possible energy into the smallest possible volume while
randomizing the momenta ==> Relativistic heavy ion collisions.

What to expect: dN/d⌘ and dE/d⌘ grow something like (ln s)n

with n ⇠ 1 ==> T should behave something like (ln s)n with n ⇠ 1
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