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Y weights / GeV

¥ weights - fitted bkg

Higgs Plots

« This Is a beautiful mass distribution. But where are the
data come from and how ?

e In detector we only have electronic info
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Higgs - ZZ - 4l

In Rea|ity ? .. a bit more complicated

N | CATLAS

l <) A EXPERIMENT
ZZ*_’4IJ Candldate E|5 . . Run Number: 183081, Event Number: 10108574

Date: 2011-06-05 17:08:03 CEST
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Challenging

_ _ _ O LHC v¥s=14TeV L=10*tm’s’ Fiakes
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Challenging
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Challenging

* 1in 10,000,000,000:
- Like looking for a single
drop of water from the Jet
d'Eau over 30 minutes
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Trigger ?!

* Trouble: We must analyze and reject most LHC collisions
prior to storage

e Solution: Trigger

* Should be:
- Fast processing
- High rejection factor

- High efficiency for interesting physics
- If most of signals are killed, why we do all the thing ??
- Flexible

- Affordable

| July/2018, ISTEP2018, Wuhan | Jike Wang | Data Processing for Particle Physics | Page 7



Trigger Objects
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Trigger Setup

40 MHz

40 MHz

Detectors Detectors

U

Front end pipelines Front end pipelines

— [ 100 kHz [ 100 kHz

Readout buffers Readout buffers

Cj Switching network Cj Switching network
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Reduce the data
volume in stages

Processor farms
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Trigger Setup

e Level 1: Custom hardware and firmware:
- Reduces the rate from 40 MHz to 100 kHz
- Advantage: speed

* Level 2: Computing farm (software):
- Further reduces the rate to a few kHz
- Reconstruct a region surrounding the L1 trigger object
- Advantage: Further rejection, still relatively fast

* Level 3: Computing farm (software):
- Store events passing final selection for offline analysis
- Advantage: The best reconstruction

High Level Trigger
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L1 Trigger

 Custom electronics designed to make very fast

decisions:
- Application-Specified Integrated Circuits (ASICSs)
- Field Programmable Gate Arrays (FPGAS)

 Must be able to cope with input rate of 40 MHz:
- Otherwise trigger wasting time (and money), as new events keep arriving
- Event buffering is expensive, too

* L1 Trigger: Pipeline
- Process many events at once
- Parallel processing of different inputs as much as possible
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L1 Calorimeter Trigger

Trigger
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L1 Muon Trigger
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Global

« We still need a global decision
- We have the information, does the event pass?
- Decision needs to be made quickly

Muon Detectors Electromagnetic Calorimeters

Forward Calorimeters
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High Level Trigger

* From L1 we expect a large rate (up to 100 kHz) of
events that “might be interesting”

e These events are not kept yet (rate too high for
storage), but sent to the HLT for additional filtering

- Massive commercial computer farm

- ATLAS: L2 and L3 handled by separate computing farms
Roughly 17k CPUs that can be freely assigned to either
CMS: Single computing farm (roughly 13k CPUSs)

High Level Trigger Farm

 Parallel processing, each CPU
processes individual event

e Resources are still limited
- Offline: Full reconstruction takes
seconds (minutes)
- Online latency: milliseconds
(input rate dependent)

| July/2018, iISTEP2018, Wuhan | Jike Wang | Data Processing for Particle Physics | Page 15



Should Be Fast

 HLT is composed of hundreds of trigger algorithms
- Software design, so no strict limit on the number of algorithms
- Each designed with a specific physics signature in mind

 Algorithm speed enhanced by various checkpoints
- Opportunity to reject early and save processing time

Calorimete_r
Reconstruction

NO

YES

Track
Reconstruction

_>
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HLT Electrons/Photons

- Start from L1 ely seed with
sufficient ET Reconstruct the
cluster in EM Calorimeter

15000 T

01

"~ —— Data 2010
i Simulation
| ATLAS u

10000} [~ -

- Is there enough energy to continue?

- Does the cluster shape look like that of an
electron/photon?

- Make sure the cluster is not a hadron
(check Hadronic Calorimeter)

- Is the candidate isolated in the
calorimeters?

Entries /0

5000~

e Electrons: T T —

- Is there a track matched to the cluster? $2°015 01 005 0 005 D"E~a§éé§ 5
- Is the electron isolated in the tracker? r /B (L2)

e Photons:
- Check for tracks pointing to the cluster
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Pileup
« Simulation of 300 GeV H- ZZ - eepp
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Pileup

« LHC Design: 20 collisions per crossing
e Today:

———— 2011 data, Vs=7TeV, L=5.1 fb"

2012 data, Vs=8TeV, L=5.1 fb™
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L1 at high pileup

e L1 Trigger must cope with high collision rate
- Tighten trigger requirements to reject extra background
- Trade-off: Possible loss of signal efficiency

« Multiple collisions per crossing impacts the L1 trigger

« All this was “known” already, as part of the LHC detector

design
- HL-LHC: New challenges
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Evolution of Trigger

* The trigger is by design very flexible:

- Should always be able to respond to the present physics demand
- And demands can change quickly!

(e.g. 2010~ 2012
increase of 1,0000)

‘r:;qt
(81
I

Burj Khalifa (828 m)
Dubai, UAE
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Trigger at Experiments

 LHC experiments have much higher trigger
requirements than previous experiments

High Level-1 Trigger

(1 MHz)
} LHCb High No. Channels
High Bandwidth
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Trigger Interface with Analysis

- Physicists start with an
analysis idea:
- Determine what you want to look for

(i.e. where you want to go)
- Then figure out how to select the data

* There is little point in trying to
do an analysis if every
“Interesting” event fails the trigger

« Want to build a trigger that has |
loose requirements that you
tighten up offline

« Design a trigger to meet
analysis goals, but ... (next page)
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Competing

* There are hundreds to thousands of physicists on a

LHC collaboration

- All are competing for the same resources
- Only O(100) Hz of collision data available
- At L = 10734, this is roughly the rate of W - |v production!

- How do you make sure your (very important) data is

kept for later analysis?
- Need to meet physics needs with limited bandwidth

e Cutting at the trigger level throws away data forever
- Potential bias to events that you analyze
- Loss of interesting data

“The Trigger does not determine
which Physics Model is right,
only which Physics Model is left”

| July/2018, iISTEP2018, Wuhan | Jike Wang | Data Processing for Particle Physics | Page 24



Move to Reconstruction

Muon
Spectrometer

Hadronic
Calorimeter

e neutrinos

Proton h d

= |eave undetected

= missing transverse energy
Electromagnetic . g o JE‘tS
Calorimeter - .
i . = bundle of showers in
Solenoid magnel HHE A calorimeter
Transition A .
Radiation o = bundle of charged particles
Tracking Tracker _ .

PixelUSCT A in tracker
detector , "
® vertex
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Tracking
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Tracking

 Tracking is concerned with the F=¢vxB
reconstruction of charged
particles trajectory (tracks)

* in experimental particle
physics the aim is to measure
(not a full list):

SIAYaYs
‘5‘ Y / \Y »p = 0.3-B-R secondary vertex

K U U U primary vertex
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Track Fitting
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A Trajectory of a Charged Particle

 in a solenoid B-field a charged
particle trajectory is describing

a helix
- a circle in the plane perpendicular to

the field (Ro)
- a path (not a line) at constant polar

angle(0) in the R-Z plane

— a trajectory in space is defined by
S parameters
— the local position (11, 12) on a plane, a
cylinder, on the surface or reference system
— the direction in 8 and @ plus the
Curvature g/pT
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The Perigee Parametrization

track track

p=(.1,.60,¢.0/P)

plane
surface:

perigee:

IZV p’ane

7 Plang

l_j = (dO,AZ,9,¢,Q/P)

To express the track parameters near the production vertex or on plane
surface
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Following the Particle Trajectory

- basic problems to be solved
In order to follow a track through rack

a detector:

= next detector module that it intersects?

= What are its parameters on this surface?

what is the uncertainty of those parameters

?

= for how much material do | have to
correct for ?

® Measurement

Predicted tracl

* requires:

= a detector geometry track surfaces
for active detectors passive material
layers

= a method to discover which is the
next surface (navigation)

= a propagator to calculate the new
parameters and its errors
often referred to as “track model”
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Tracking

« Almost all High Energy experiments done at accelerators have a
magnetic spectrometer to measure the momentum of charged
particles

The equation of motion for a particle ap 0 < B
with charge q in magnetic field B: dt
: 2. [ d e\ 2 ]
Can be written as set of (f]_ﬁ — fiR ii‘jigx_ 1+ (‘j’]_l) )B?}Jr‘jigz
differential equations for motion S G R @z @z ]
along z with x(z) @_ER - dy\? Bm—@dﬁBy—@BZ
dz? P dz dz dz dz

- No analytical solution for
iInhomogeneous B-field, requires
numerical integration

- numerical integration done using
Runge-Kutta technique
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Track Propagation in realistic B-Field

3
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Well, not only B-field

* Energy loss
- Impact on the momentum

e Multi-scattering
- Increases uncertainty on direction of track
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Detector Geometry

G4 simulation

e interactions in detector
material limiting tracking
performance:

= | HC detectors are complex
require a very detailed description
of their geometry

= experiments developed geometry
models (translation into G4

Simulation) huge number of volumes
EErE T
reach LHC goals (e.g. W
mass) ATLAS GeoModel
pipe at % level el 2.7 M
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Weighing Detectors during
Construction

* Huge effort in experiments:
= important to reach good description in
simulation and reconstruction

AU CMS estimated from simulation
= each individual detector part was put on measurements _

balance and compare with model

= CMS and ATLAS measured weight of »Re #58 |2
full detector 6350 kg 6173 kg )

their tracker and all of its components
= correct the geometry implementation in

simulation and reconstruction ATLAS
simulation
measurements
W A > - \ Pixel package 201 kg 197 ke
| SCT detector | 672 15 kg 672 kg
TRT detector | 2961 +14 kg 2962 kg
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Simulation (Geant4)

» Geant4 is based upon:
- stack to keep track of all particles produced and stack manager
- extrapolation system to propagate each particle

— transport engine with navigation Same concepts as
- geometry model track reconstruction
- B-field

- set of physics processes describing interaction of particles with matter
- a user application interface

stack
manager

B-field

loop map

user ovel

application particle clgdle S8
stack .
transport @)
- \ - geometry
engine @P

push add secondaries produced :
primaries physics
processes

h )
]
n
]
n
]
]
]
]
1
1
]
1
1
1
1
]
]
]
]
]
]
]
n
]
n
]

Geant4 and record hits
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Fast Simulation
* CPU needs for Geant4: R

= simulation strategies of experiments 100 —
mix full G4 and fast simulation .

fast sim.

| CMS Full Simulation

0 50 100 150 200 250 300

ATLAS

;'|

(ttbar events, in seconds)
120

» fast simulation engines: 100
= fast calo. simulation 80
(parameterisation, showers libraries, ...) 60
= simplified tracking geometries ' | ‘

]]l]l]lllllll

= simplify physics processes w.r.t. G4 “
= output in same data model as full sim. 20 ‘ CMS Fast Smul
= able to run full reconstruction (trigger) , ,=,|, || A ast Simulation

0 S0 100 150 200 250 ‘ 300 yd

I[]]]]
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From Measurements to Track Fitting

» A measurement model is like:
my =h,(q)+ vy

with: h; ~ functional dependency of
measurement on e.g. track angle

Yk ~ error (noise term)

H, = gmy. Jacobian, often contains only

dqx  rotations and projections

Measurements mk. In practice those mk
are clusters, drift circles ...

e Task of track fit: /
- estimate the track parameters from a set measurements

« Examples of fitting technigues:
- Least Square; Kalman Filter
- Gaussian Sum Filter or Deterministic Annealing Filters
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Classical Least Square Track Fit

Construct and minimise the x"2
function:

- Carl Gauss is credited with developing the
fundamentals of the basis for least-squares
analysis in 1795 at the age of eighteen

- Legendre was the first to publish the method,

however
dk(po
. 4o
=\Vrite down Least Square function: \m;\\

¥ = ZAkaG;Amk with:  Am, =m, —dk(p)
k
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Classical Least Square Track Fit

 Allowing for material effects in fit:
= can be absorbed in track model,
provided effects are small
= for substantial multiple scatting, allows
for scattering angles in the fit

* Introduce scattering angles on

material surfaces:
= 0N each material surface, add 2 angles
00 | as fee parameters to the fit

e Results in additional term in x2 equations:
x = ZAkaG;(IAmk + 2(59£TQ;1595
k i

with: Am, =m, —d, (p,06,)
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The Kalman Filter Track Fit

A Kalman Filter is a progressive way of performing

a least square fit
= can be shown that it is mathematically equivalent

surface k

surface k-1
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The Kalman Filter Track Fit

Material effects (multiple scattering and energy loss):

= incorporated in the propagated parameters p k|k-1 (extrapolated
prediction)

= and therefore enters automatically in the updated parameters p k|k at
point k

surfacek-1 [\ surface k
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Filter and Smoother

* Initial parameters could be a bit arbitrary
 Filter, then smoother. Best estimation at IP

\ ql‘

2/ article Physics | Page 44



Fitting for Electron

material in tracker:

= e-Bremsstrahlung and y-conversions electron

trajectory
Electron efficiency limited: /- electron tracks
momentum loss due to Bremsstrahlung leads ' '\
to sudden large changes in track curvature conversion
= loosing hits after Brem. leads to inefficiency y/4
= fit either biased towards small momenta or : [ — Bremsstrahlung

fails completely because of bad x2

true trajectory

Technigues to allow for

Bremsstrahlung in track fitting:

= for Least Square track fit

allow Brem. effect to change curvature,
additional term similar is to scattering angle
= for Kalman Filter

increase correction for material effects in
propagation to allow for Brem.

= petter. Gaussian Sum Filter

ex‘ErapoIation

AN

Bremsstrahlung

28
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The GSF

. . * Bethe-Heitler ?
» Approximate Bethe-Heitler 107 N
distribution as Gaussian mixture g o SR :
10 initial energy ]
» GSF step resembles set of parallel | e 3
Kalman Filters computationally 1
expensive !
107 :
£ [ . |1 AR
5 %90 Residuals GSF 07
E . ) Mean: 0.013 ‘
T L Simplified simulation RMS: 0.133
© 500 p,=10GeV/c
= [~ CDF; mixture
L 12 components
400:_
ool CMS
200[
- KF
- Mean: 0.015 Bremsstrahlung
100 — RMS: 0.152
05! 06
Ap/p »
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Track Finding
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Can you find a 50GeV track ??

Tr”

T L

C r o

~100— . . .

= : K . ) -

0 - .

o B ’ . .

| . :
- R ' ..
0— : ©oone Lot
: s, - L
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-100[—
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Can you find a 50GeV track ?? _

T L
. r .
>100— - . . .
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) 50—_ . . g . . .
: ’ : {;." * '_.; i : L] 3 )
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-50— :
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Track Finding

Transition o ..........................
The task of the track Fadiation o
Tracker o o © o ™

findng 7 2 NN
= identify track candidates inevent 7
= cope with the combinatorial

explosion of possible hit Tk
Candidate

Different techniques: ) L

= rough distinction: local/sequential "

and global/parallel methods

= |ocal method: generate seeds and

complete them to track candidates

= global method: simultaneous

clustering of detector hits into track |

. Nominal

candidates Interaction

Point
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Conformal Mapping

Image space

e Hough transform:
- cycles through the origin in x-y
tranSfOI’m into pOint in u-v >4r Parameter space

g o ~N

- each hit becomes a straight line 3 d

2 61

1 \ 5

« Search for maxima in parameter 0, 5 5 .
space to find track candidates 3 T i
oL

1 E

0_

-1t
0 2 4 6 8
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Local Track Finding

)
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Local Track Finding

find seeds ~ combinations of 2-3 hits
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Local Track Finding

Build roads along the likely trajectory
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In practice

» Reconstruction strategy depends on:
- detector technologies
- physics/performance requirements
- occupancy and backgrounds
- geometry
- technical constraints (CPU, memory)

» Even for same detector setup one
looks at different types of events

 Track reconstruction used by experiments:
- Usually apply a combination of different techniques
- Often iterative ~ different strategies run on after the
other to obtain best possible performance within
- resource constraints
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ATLAS Tracking Chain

vertexing

= primary vertexing
= conversion and VO search

pre-precessing
= Pixel+SCT clustering
= TRT drift circle formation
= space points formation

1

standalone TRT

= unused TRT segments

4+

- A A
LB T et S
Wy 5 A\l
S b .
o
SN

ambiguity solution
= precise fit and selection
= TRT seeded tracks

= since 2012:

= list of selected EM clusters |}
= seed brem. recovery

4+

TRT seeded finder

= from TRT into SCT+Pixels
= combinatorial finder

TRT segment finder

) T—

= on remaining drift circles
= uses Hough transform

combinatorial
track finder

= jterative:
1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds
= restricted to roads
= bookkeeping to avoid
duplicate candidates

. 4

ambiguity solution
= precise least square fit
with full geometry
= selection of best silicon
tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

3

extension into TRT

= progressive finder
= refit of track and selection
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Tracking Iin Dlelnsel B

' problem of cluster merging: ?50'06; ATLAS Simulation | | CCA Clustering _
- merging when track separation 5005 Vs=7 Tev — NN Clustering
reaches single Pixel size “nnal 4-pixel wide clusters -
residual E
_ before and ]
* Neural network (NN) Pixel ofter £ E
clustering splitting ¢ ]
- identify merged clusters and splitting _qgo. S ol A e 2N
them Local x resolution [um)]
- identify merge clusters, split them and > 1 B R R
. € - ATLAS Preliminary
COI’I’eCt pOSItIOﬂS -% B Simulation, T—v,3r*
= L = 2 Shared SCT Clusters
Ud | No Secondaries
-y ] E . -
e Crucial In many areas: £ | e
= p-tagging (especially at high momenta) 2 | aaiins 4
= jet calibration and particle flow " ol Baseine T ]
= 3-prong T identification cL e T
high pt taus +

500 800 1000
T p, [GeV]
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Vertexing

* Vertex fitting techniques play Z. | S ATLAS
an important role: ’ g EXPERMENT

- in reconstruction chain following track
reconstruction

- primary interaction vertex
reconstruction and identification

- in time pileup estimation and pileup
mitigation in particle flow reconstruction

- secondary vertex finding for b-/c-jet
identification, t-reconstruction, photon
conversions finding
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Vertexing Application

» Explores b- and c-hadron lifetime:

ot
__.-"'r.|'.
A0 PR - B g i
= s /D .
— S _ Signal B
- K+ 9
L K™
] b —
— B. P L p - U
7 b=~a. - K

Bs— Dspuv— KKmpuv

| LHCb Preliminary

EVT: 49700980
RUN: 70684

FTTTTTI ‘

III‘[II|I\ | I
D2 L6 !

‘ [T ‘ I lﬂqft\ I
10 12 4 16
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Fraction of jets

Vertexing Application

JVF[jet2,PV1]=0 | | jet
JVF[jet2, PV2] =1

/|

\ . Ny
N
\

JVF[jetl, PV1]=1- f
JVF[jetl, PV2]=f

PV/2

N pT(trk]:t“' , ViX;)

JV F(jet,, vtx;) =

et
En Ez pr (trk]f L vixg,)

0.6
0.5
0.4 JVF for pile-up jets
0.3

0.2

0.1

) 0.8 1
Anti-k- (D=0.4) topo-cluster jets
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Vertex Fitting

» Task of a vertex fit:

= start from a set of measured track \ /
parameters qi mmssssssssssa. ----

= estimate the vertex position v
= and the parameters pi at the vertex

P1 R p:

q.=h(v,p)+e, vertex v

with: hl- ~ dependency of track parameters on p3 p4

vertex V and param eters qi at vertex
reference surface

€; ~ error of g; (noise term) SN R R I
ahi(vapi) B = oh,(v,p;) a j \ a4

Jacobians: Aj =07

Jv dp,
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Vertex Finding

e \Vertex z-scan on beam line:

= histogram technique that searches for peaks in z0 of hit
combinations extrapolated to beam line

= used e.g. to seed primary vertex finding or to constrain HLT
tracking to point to primary vertex

3-layer toy detector vertex position

NV g
AN

1”'4d

4.0

N | \l."f ! ]{

2! '."'.'! Ty ARy
e e s | e
R AR T ,
ik,
4

o ."" .
") f".' '.";'-.'.'.:l .".{ "..r.

I i L
i b LA Y [
# Fs
'

\ ﬂ:’.‘i 1’&.*‘ 1& i WG
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Let‘'s Summarize

* | have briefly went through the techniques for trigger
and tracking.

* Time limited, still miss many recent and interesting

developments like:

- Tracker trigger. Explore tracking at LO/L1
- Machine learning for tracking

- PF reconstruction

- etc ...

* High Energy Physics could tightly connect with all
kinds of fields ...
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