首先需要登录交大服务器

输入

ssh -Y <u>inpactest@bl-1-1.physics.sjtu.edu.cn</u> password: inpac123456

Step1 Training

- 首先进入/Erec_tuto/tmva 路径下的 TMVARegression.C cd /Erec_tuto/tmva vi TMVARegression.C
- 2. 设定 MVA 中所使用的方法。1 表示打开, 0 表示关闭。本次所使用的方法为 MLP 和 BDTG 所以请确保 MLP 和 BDTG 方法打开。将程序调整为下图所示。

```
// --- Mutidimensional likelihood and Nearest-Neighbour methods
73
   Use["PDERS"]
74
                     = 0:
    Use["PDEFoam"]
75
                       = 0;
76
   Use["KNN"]
                    = 0;
77
   ||
    // --- Linear Discriminant Analysis
78
   Use["LD"] = 0;
79
80
    11
81 // --- Function Discriminant analysis
   Use["FDA_GA"] = 0;
82
83
    Use["FDA_MC"]
                       = 0;
84
   Use["FDA MT"]
                      = 0;
85
    Use["FDA GAMT"] = 0;
86
    11
    // --- Neural Network
87
88
    Use["MLP"] = 1;
89
   - //
   // --- Support Vector Machine
90
   Use["SVM"]
91
                    = 0:
92
   - //
    // --- Boosted Decision Trees
93
   Use["BDT"]
                   = 0;
94
    Use["BDTG"]
                   = 1;
95
    // -----
96
```

 创建 factory object. 之后你可以对不同的 factory 选择不同的 TMVA 的方法。如果 程序用作回归,请将第一个选项调整为"TMVARegression",用作分类请调整为 "TMVAClassification"。本次重建能量用作回归,所以将程序调整至下图所示。

```
137 TMVA::Factory *factory = new TMVA::Factory( "TMVARegression", outputFile,
138 "!V:!Silent:Color:DrawProgressBar");
```

4. 定义输入变量,这些输入变量将被应用到 MVA 的 training 中。你也可以使用一些变量的组合类似于"3*var1/var2*abs(var3)"。下图为我们所使用到的 12 个输入变量。

请确保你的程序和下图相同。

- -第一个选项是该变量在 root 文件中的名字。
- -第二个选项是你希望在输出结果中显示的名字。
- -第三个选项是该变量的单位。

-第四个选项是该变量的数据类型。"I"表示"Int", "F"表示"Float"……

- 149 factory->AddVariable("nHit", "nHit", "units", 'F');
- 150 factory->AddVariable("nHit1", "nHit1", "units", 'F');
- 151 factory->AddVariable("nHit2", "nHit2", "units", 'F');
- 152 factory->AddVariable("nHit3", "nHit3", "units", 'F');
- 153 factory->AddVariable("nHough", "nHough", "", 'l');
- 154 factory->AddVariable("nCluster", "nCluster", "", 'l');
- 155 factory->AddVariable("nTrack", "nTrack", "", 'l');
- 156 factory->AddVariable("nLayer", "nLayer", "", 'l');
- 157 factory->AddVariable("density", "Density", "", 'F');
- 158 factory->AddVariable("meanRadius", "meanRadius", "", 'F');
- 159 factory->AddVariable("nInteractingLayer", "Interlayer", "", 'l');
- 160 factory->AddVariable("begin", "begin", "", 'l');
- 5. 定义作为 target 的变量。本次是为了重建能量。因此将 energy 作为程序的 target。
- 175 factory->AddTarget("energy");
- 6. 添加用作 TMVA training 的 MC 数据文件。在路径/Erec_tuto/trainingfile/root_training 下面,我们为你提供了四个 pi-的 root 文件,它们的区别仅在于数据量的不同,分别 为 1k, 5k, 1w, 5w。在本程序中我们添加的为数据量为 1w 的文件,但你也可以改 变为其他文件,观察数据量不同所导致的结果的差异,当然数据量越大,程序运行 的时间就越长。
- 183 TFile *input(0); 184 TString fname = "../trainingfile/root_training/pi-_1w.root";
- 7. 添加所使用的 root 文件中的 tree。
- 198 TTree *regTree = (TTree*)input->Get("tree");
- 8. 设置 TMVA 中各个方法的参数。本次所示用的方法是 MLP 和 BDTG,因此只需要 设置这两个方法的参数即可。下图为本程序中 MLP 方法的设置选项。
- 268 if (Use["MLP"])
- 269 factory->BookMethod(TMVA::Types::kMLP, "MLP", "!H:!V:VarTransform=Norm:NeuronType=tanh:NCycles= 5000:HiddenLayers=10,2:TestRate=6:TrainingMethod=BFGS:Sampling=0.3:SamplingEpoch=0.8: ConvergenceImprove=1e-6:ConvergenceTests=15:!UseRegulator:LearningRate=0.001");

下表中为 MLP 方法中各个参数的意义和解释,你可以根据下表中的信息,对上图中的各个 参数进行一定的修改和调试。你也可以参照 TMVA_Users guide 进行进一步了解。

Option	Array	Default	Predefined Values	Description
NCycles	_	500	_	Number of training cycles
HiddenLayers	_	N,N-1	_	Specification of hidden layer architec- ture
NeuronType	_	sigmoid	linear, sigmoid, tanh, radial	Neuron activation function type
NeuronInputType	_	sum	sum, sqsum, abssum	Neuron input function type
TrainingMethod	_	BP	BP, GA, BFGS	Train with Back-Propagation (BP), BFGS Algorithm (BFGS), or Genetic Algorithm (GA - slower and worse)
LearningRate	_	0.02	_	ANN learning rate parameter
DecayRate	_	0.01	_	Decay rate for learning parameter
TestRate	_	10	_	Test for overtraining performed at each $\#$ th epochs
Sampling	_	1	_	Only 'Sampling' (randomly selected) events are trained each epoch
SamplingEpoch	_	1	_	Sampling is used for the first 'Sam- plingEpoch' epochs, afterwards, all events are taken for training
SamplingImportance	_	1	_	The sampling weights of events in epochs which successful (worse estima- tor than before) are multiplied with SamplingImportance, else they are di- vided.

Option	Array	Default	Predefined Values	Description
SamplingTraining	_	True	_	The training sample is sampled
SamplingTesting	_	False	_	The testing sample is sampled
ResetStep	_	50	_	How often BFGS should reset history
Tau	_	3	_	LineSearch size step
BPMode	_	sequential	sequential, batch	Back-propagation learning mode: se- quential or batch
BatchSize	_	-1	_	Batch size: number of events/batch, only set if in Batch Mode, -1 for Batch- Size=number_of_events
ConvergenceImprove	_	0	_	Minimum improvement which counts as improvement (<0 means automatic convergence check is turned off)
ConvergenceTests	_	-1	_	Number of steps (without improve- ment) required for convergence (<0 means automatic convergence check is turned off)

下图为本程序中 BDTG 方法的设置选项。

280 if (Use["BDTG"])

281 factory->BookMethod(TMVA::Types::kBDT, "BDTG",

282 "!H:!V:NTrees=2000::BoostType=Grad:Shrinkage=0.1:UseBaggedBoost:BaggedSampleFraction=0.5: nCuts=20:MaxDepth=3:MaxDepth=4");

下表中为 BDTG 方法中各个参数的意义和解释,你可以根据下表中的信息,对上图中的各个参数进行一定的修改和调试。你也可以参照 TMVA_Users guide 进行进一步了解。

Option	Array	Default	Predefined Values	Description
SeparationType	_	GiniIndex	CrossEntropy, GiniIndex, GiniIndexWithLapl: MisClassification SDivSqrtSPlusB, RegressionVariance	Separation criterion for node splitting ace, Error,
nEventsMin	_	max(20,NEvtsTr	ain/NVar ² /10)	Minimum number of events required in a leaf node (default uses given for- mula)
nCuts	-	20	_	Number of steps during node cut opti- misation
PruneStrength	-	-1	_	Pruning strength
PruneMethod	_	CostComplexity	NoPruning, ExpectedError, CostComplexity	Method used for pruning (removal) of statistically insignificant branches
PruneBeforeBoost	-	False	_	Flag to prune the tree before applying boosting algorithm
PruningValFraction	-	0.5	_	Fraction of events to use for optimizing automatic pruning.
NNodesMax	-	100000	_	Max number of nodes in tree
MaxDepth	-	100000	-	Max depth of the decision tree allowed

Option	Array	Default	Predefined Values	Description
NTrees	-	200	-	Number of trees in the forest
BoostType	-	AdaBoost	AdaBoost, Bagging, RegBoost, AdaBoostR2, Grad	Boosting type for the trees in the for- est
AdaBoostR2Loss		Quadratic	Linear, Quadratic, Exponential	Loss type used in AdaBoostR2 $$
UseBaggedGrad	-	False	-	Use only a random subsample of all events for growing the trees in each it- eration. (Only valid for GradBoost)
GradBaggingFraction	-	0.6	-	Defines the fraction of events to be used in each iteration when UseBaggedGrad=kTRUE.
Shrinkage	-	1	-	Learning rate for GradBoost algo- rithm
AdaBoostBeta	-	1	-	Parameter for AdaBoost algorithm
UseRandomisedTrees	-	False	-	Choose at each node splitting a ran- dom set of variables
UseNvars	_	4	-	Number of variables used if ran- domised tree option is chosen
UseNTrainEvent	-	N	-	Number of Training events used in each tree building if randomised tree option is chosen
UseWeightedTrees	-	True	-	Use weighted trees or simple average in classification from the forest
UseYesNoLeaf	-	True	_	Use Sig or Bkg categories, or the purity= $S/(S+B)$ as classification of the leaf node
NodePurityLimit	-	0.5	-	In boosting/pruning, nodes with pu- rity > NodePurityLimit are signal; background otherwise.

- 9. 到此为止能量重建 training 部分的程序已设定完毕,退出程序,运行程序即可。 root TMVARegression.C
- 10. 输出结果。当程序运行结束之后会生成一个控制面板。你可以点击相应的选

项来查看不同的输出结果。你需要主要了解的选项如下。

1) 1a 表示输入 variables 和 target 的分布。

(input variables)

(input variables)

(target)

2) 3a 为输入各变量之间的相关度

Corre	elat	ion	Ma	trix										
							Lin	ear co	orrelat	tion c	oeffic	ients	in	[%] 100
begin	-8	-9	-8	-4	6	-12	-7	23	11	-14	-19	100		100
Interlayer	84	85	84	70	36	88	50	63	45	40	100	-19		80
meanRadius	32	34	34	13	23	47	37	9	-8	100	40	-14		60
Density	60	57	57	76	-8	37		28	100	-8	45	11		40
nLayer	58	59	57	48	54	62	43	100	28	9	63	23		20
nTrack	38	40	38	23	84	51	100	43		37	50	-7		0
nCluster	94	95	94	75	39	100	51	62	37	47	88	-12		0
nHough	26	28	26	13	100	39	84	54	-8	23	36	6		-20
nHit3	91	89	89	100	13	75	23	48	76	13	70	-4		-40
nHit2	99	98	100	89	26	94	38	57	57	34	84	-8		-60
nHit1	99	100	98	89	28	95	40	59	57	34	85	-9		-80
nHit	100	99	99	91	26	94	38	58	60	32	84	-8		100
	nH	it nH	ita ⁿ H	itz ⁿ Hi	ita ⁿ H	ough	nTr luster	nL; ack	Der ayer	nsity	Inte anRad	beg triayer	lin	-100
												ZD		

4a 为能量重建 test 的结果。纵轴为重建能量-真实能量,横轴为真实能 3)

(MLP 方法 test 结果)

(BDTG 方法 test 结果)

4c 也是能量重建 test 的结果,但是横轴更换为各个不同的变量,你可以通过 4c 展示 fig 中的分布判断不同变量对能量重建的影响。例如: nHit 对能量重建的影响,如图所示:

5) 6a 为 MLP 的结构图,你可以在步骤 8 中调整这个结构。

Step2 Application

- 首先进入/Erec_tuto/tmva 路径下的 TMVARegressionApplication.C
 cd /Erec_tuto/tmva
 vi TMVARegressionApplication.C
- 2. 设定 MVA 中所使用的方法。1 表示打开, 0 表示关闭。本次所使用的方法为 MLP 和 BDTG 所以请确保 MLP 和 BDTG 方法打开。将程序调整为下图所示。

```
41
           // --- Mutidimensional likelihood and Nearest-Neighbour methods
42
           Use["PDERS"]
                                  = 0;
           Use["PDEFoam"]
43
                                   = 0;
           Use["KNN"]
                                  = 0;
44
45
           11
46
           // --- Linear Discriminant Analysis
47
           Use["LD"]
                                   = 0;
48
           11
49
           // --- Function Discriminant analysis
50
           Use["FDA_GA"]
                              = 0;
                                  = 0;
51
           Use["FDA_MC"]
           Use["FDA_MT"]
Use["FDA_GAMT"]
52
                                  = 0;
53
                                  = 0;
54
           11
55
           // --- Neural Network
           Use["MLP"]
56
                                  = 1;
57
           11
           // --- Support Vector Machine
58
           Use["SVM"]
59
                                  = 0:
60
           11
61
           // --- Boosted Decision Trees
62
           Use["BDT"]
                                  = 0;
63
           Use["BDTG"]
                                  = 1;
61
           11
```

```
    添加变量,这些变量必须和TMVARegression.C中的变量相同
```

132 133 134

95	Float_t nHit1, nHit2, nHit3 ,nHit ,nHough ,nClusteer ,nTrack ,nLayer ,nInter ;
96	Float_t nbegin,ndensity ,nmeanRadius;
97	reader->AddVariable(<mark>"nHit", &</mark> nHit);
98	reader->AddVariable(<mark>"nHitl</mark> ", &nHitl);
99	reader->AddVariable(<mark>"nHit2</mark> ", &nHit2);
100	reader->AddVariable(<mark>"nHit3</mark> ", &nHit3);
101	reader->AddVariable(<mark>"nHough</mark> ", &nHough);
102	reader->AddVariable(<mark>"nCluste</mark> r", &nClusteer);
103	reader->AddVariable(<mark>"nTrack</mark> ", &nTrack);
104	reader->AddVariable(<mark>"nLayer</mark> ", &nLayer);
105	reader->AddVariable(
106	reader->AddVariable(
107	reader->AddVariable(
108	reader->AddVariable("begin", &nbegin);

 设置重建结束之后输出重建能量分布的参数。其中 100,0,20 分别表示 bin 的数量, histgram 的能量范围,我们将其设定为 0,20。当你重建的能量在此区域之外时可以 适当调整该值。

for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
 TH1* h = new TH1F(it->first.c_str(), TString(it->first) + " method",100 ,0, 20);
 if (it->second) hists[++nhists] = h;

```
5. 添加需要重建能量的 MC/data samples 的路径,我们在路径 Erec_tuto/trainingfile/root_app 下为你准备了 8 个 pi-的 MC root 文件,这些 root 文件 的区别在于它们拥有不同的分立的能量。分别是 10,20,30……80GeV,你可以修改下 面这一行代码,尝试对不同能量的 root 文件进行能量重建。
143 TString fname = TString::Format("../trainingfile/root_app/pi-_10GeV.root");
```

6. 读取 root 中的 tree 和 variables,每一个 variable 都需要与之前所填写的一一对应。

163	TTree* theTree = (TTree*)input->Get("tree");
164	<pre>Int_t Nhit1,Nhit2,Nhit3,Nhit,Nhough,NClusteers,ntrack,Nlayer,NInter;</pre>
165	Double_t nDensity,nRadius,nBegin;
166	<pre>std::cout << " Select signal sample" << std::endl;</pre>
167	<pre>theTree->SetBranchAddress("nHit", &Nhit);</pre>
168	theTree->SetBranchAddress(
169	<pre>theTree->SetBranchAddress("nHit2", &Nhit2);</pre>
170	<pre>theTree->SetBranchAddress("nHit3", &Nhit3);</pre>
171	theTree->SetBranchAddress("nHough", &Nhough);
172	theTree->SetBranchAddress(
173	theTree->SetBranchAddress(
174	theTree->SetBranchAddress(
175	theTree->SetBranchAddress(
176	theTree->SetBranchAddress("meanRadius", &nRadius);
177	theTree->SetBranchAddress(
178	theTree->SetBranchAddress(

- 7. 定义一个新的 root 文件,并将重建能量的分布存储到这个 root 文件中。
 238 TString foutName = TString::Format("TMVARegApp_10GeV.root");
- 8. 退出文件,并运行该文件即可用之前 training 过的软件包对新的数据进行能量重建。 root TMVARegressionApplication.C
- 9. 运行完第7步之后会产生一个新的 tmva 目录下产生一个新的 root 文件,也就是第6步中所定义的"TMVARegApp_10GeV.root"。 打开这个 root 文件。
 root TMVARegressionApp_10GeV.C
 输入
 root [1] TBrowser a
 () 计以的思索

🗙 🚹 ROOT Object Browser		-	×
<u>B</u> rowser <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>O</u> ptions <u>T</u> oo	s		<u>H</u> elp
Files	Canvas_1 🗵 Editor 1 🗵		
🖞 🤰 🍞 🔁 Draw Option: 🔽			
i 📄 root			
PROOF Sessions			
TMVAReqApp 10GeV.root			ļ
BDTG;1			
MLP;1			
	>		
chenwei			
daip			
hanke	×		
□			
Abuduwaili	VV		
AlexisVV	Command		1
Avencast	Command (local):		1
	1		
			11.

