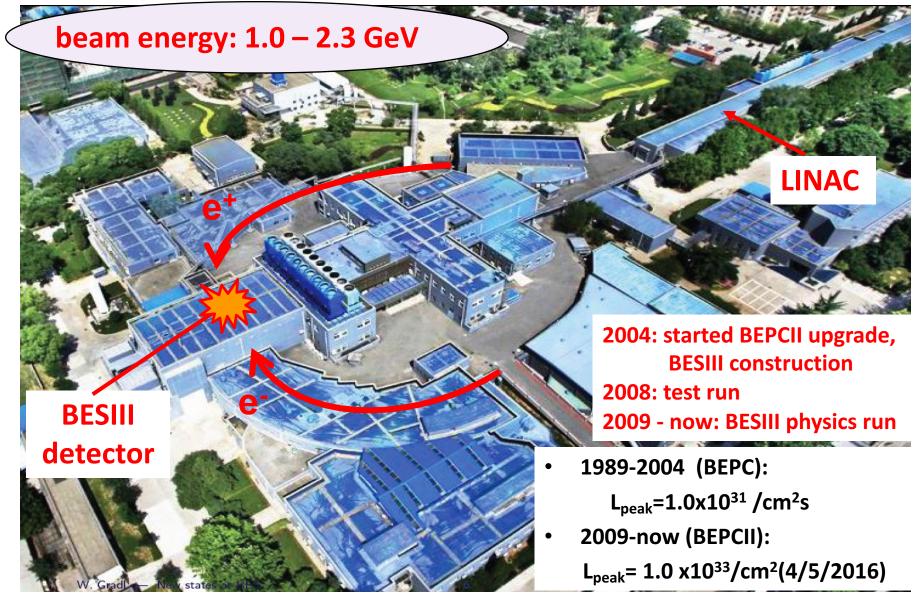


Recent results and prospects at BESIII

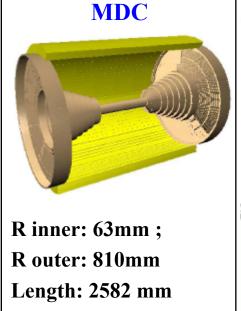
Xiao-Rui Lyu (吕晓睿) University of Chinese Academy Sciences (On behalf of the BESIII collaboration)

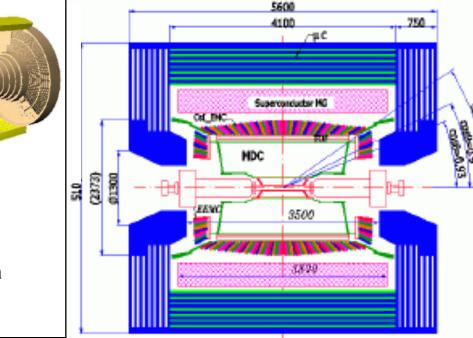
2018年"基本粒子和相互作用协同创新中心"牡丹江论坛 济南大学,山东

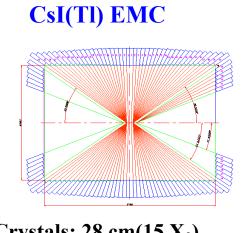


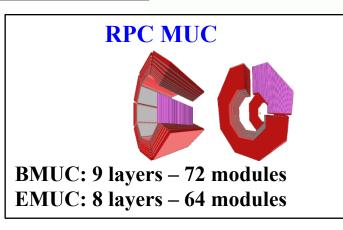
- Introduction
- Recent (selected) results
 - -Hadron spectroscopy and exotics
 - -Charmed hadron decays
 - -Charmed baryon form factor
- Prospects and Summary

EXAMPLE SITE SET UP: SET UP:






BESIII Detector



Layers: 43

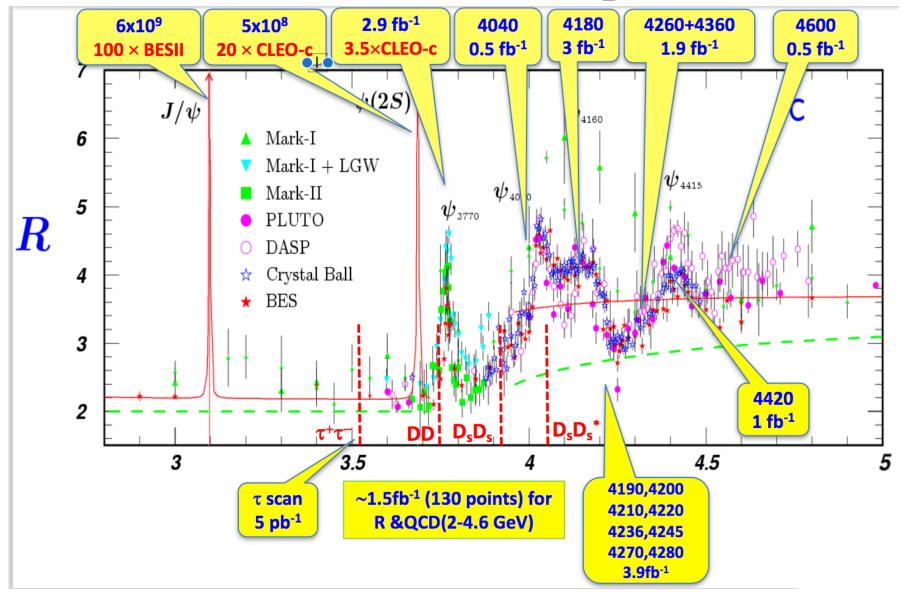
Crystals: 28 cm(15 X₀) Barrel: |cosθ|<0.83 Endcap: 0.85 < |cosθ| < 0.93

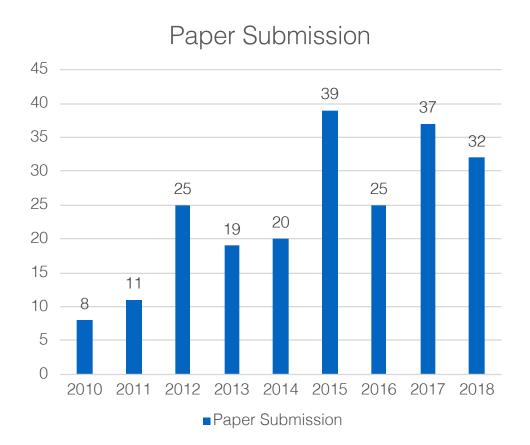
TOF BTOF: two layers ETOF: 48 crys. for each

ES Physics at tau-charm Energy Region

- BES98, PRL 84(2000) 594 MA 161 BES99, PRL88(2002)101802 \$(3.10) CrystalBall 5 R=σ(e⁺e⁻→hadron)/ \bigcirc Gamma2 Markl -0pluto ש 2 $\sigma(e^+)$ Thresholds З Ecm (GeV)
 - Hadron form factors
 - Y(2175) resonance
 - Mutltiquark states with s quark, Zs
 - MLLA/LPHD and QCD sum rule predictions

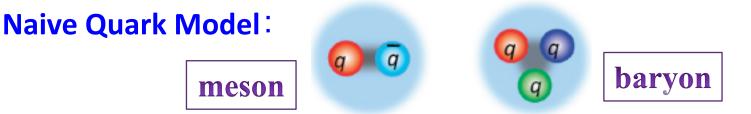
- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

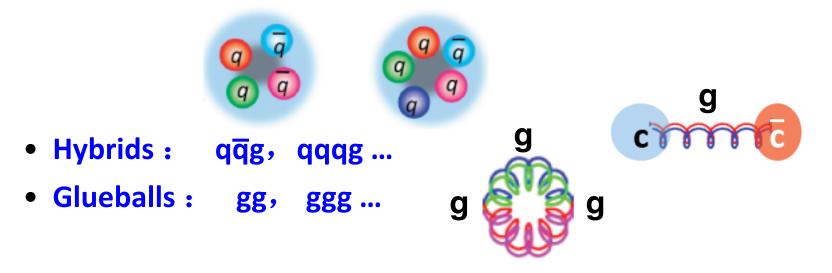

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons


BESIII data samples

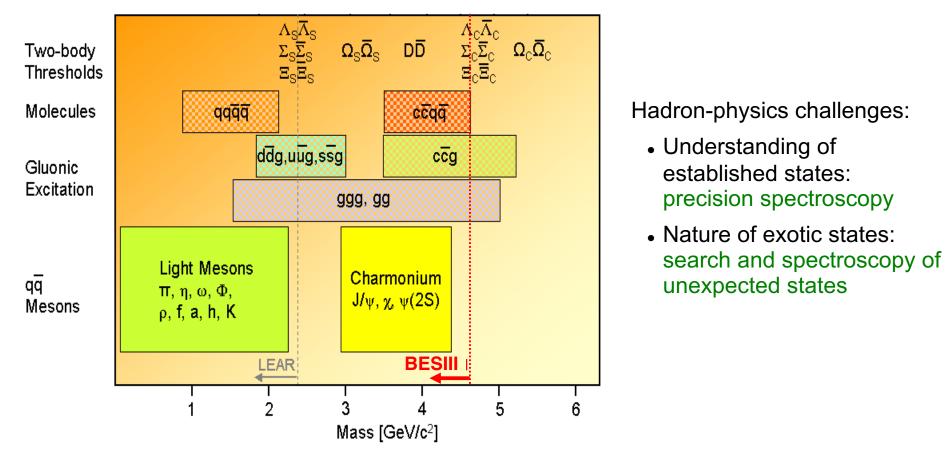
Publications

In total, we have submitted 221 papers out in 9 years. Expect the same pace in the coming years.


Hadron spectroscopy and exotics


New forms of hadrons

Conventional hadrons consist of 2 or 3 quarks:

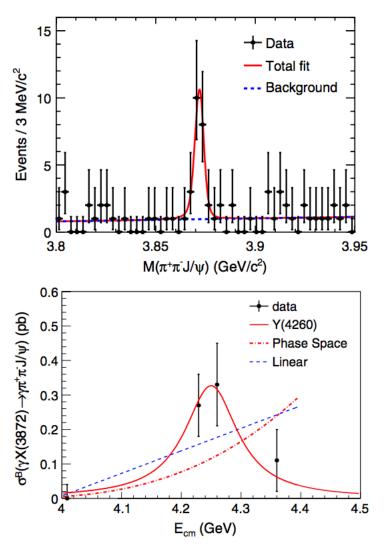

- QCD predicts the new forms of hadrons:
 - Multi-quark states : Number of quarks >= 4

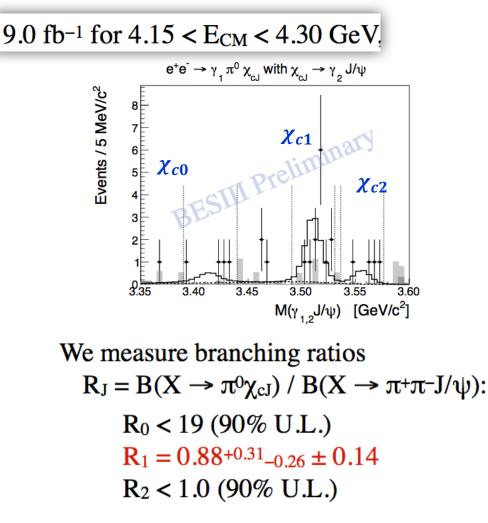
None of the new forms of hadrons is settled !

Hadron Landscape

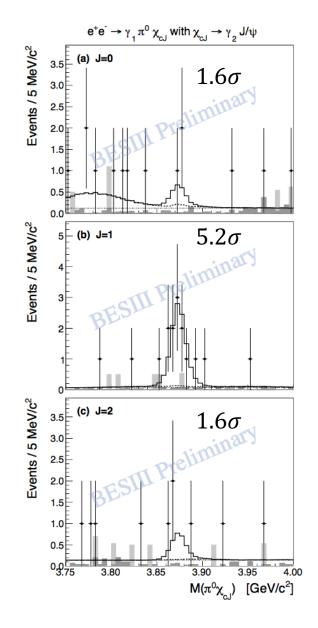
At BESIII, two golden measures to study hadron spectroscopy, esp., to search for exotics

- Light hadrons: charmonium radiative decays (act as spin filter)
- Heavy hadrons: direct production, radiative and hadronic transitions


The X(3872)


A CONTRACTORY OF THE

- BESIII previously observed: $e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow \pi^+\pi^- J/\psi$
- The above process is dominated with $\rho J/\psi$
- Any more Isospin-violating decays?
- If the X(3872) were the $\chi_{cJ}(2P)$ state of charmonium, $\Gamma(X(3872) \rightarrow \pi^0 \chi_{c1}(1P)) \sim 0.06$ keV (*i.e. very small*) If the X(3872) were a tetraquark state: $\Gamma(X(3872) \rightarrow \pi_0 \chi_{c1}(1P))$ should be greatly enhanced.

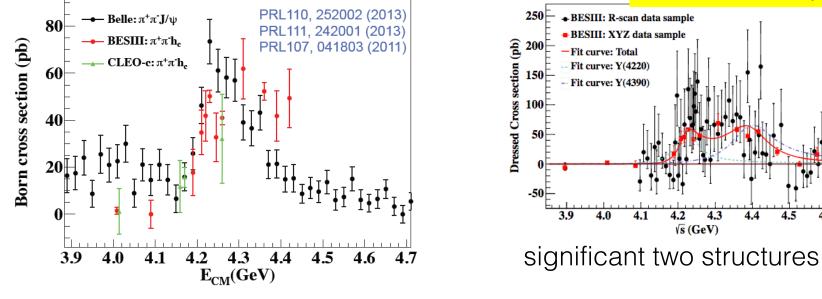

[Dubynskiy, Voloshin, PRD 77, 014013 (2008)]

• The $X(3872) \rightarrow \pi^0 \chi_{cJ}$ decays are sensitive to the internal structure of the X(3872). e⁺e⁻ → γX(3872) with X(3872) → $\pi^+\pi^-J/\psi$ [*BESIII*, *PRL* 112, 092001 (2014)]

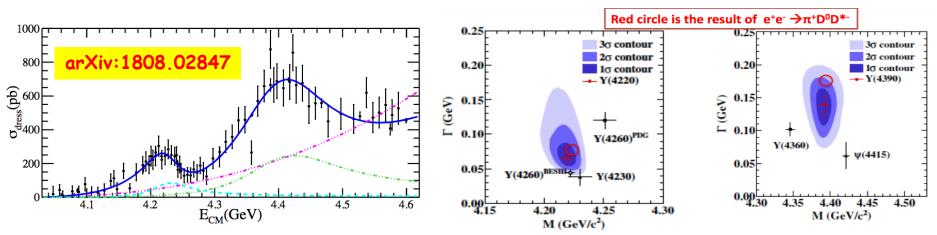

The large value for *R* disfavors the $\chi_{cJ}(2P)$ interpretation of the X(3872).

The Y states

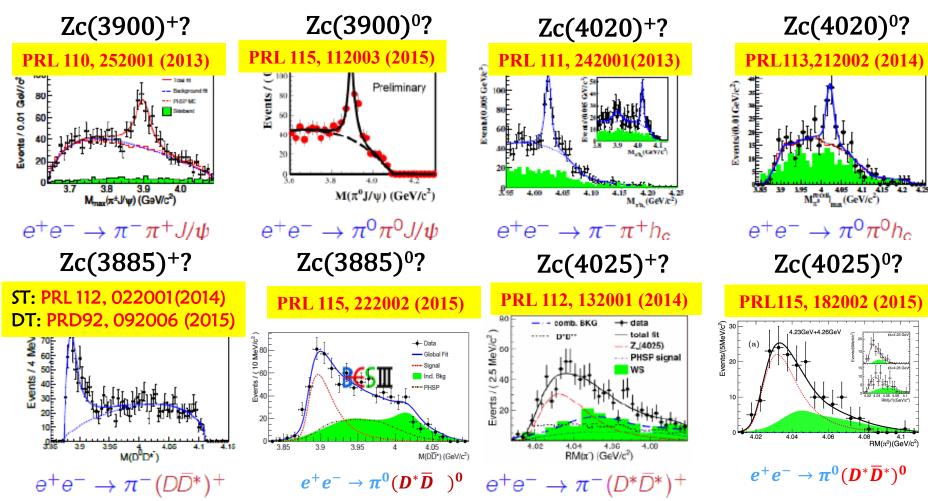
Sep. 15, 2018, Ji'Nan



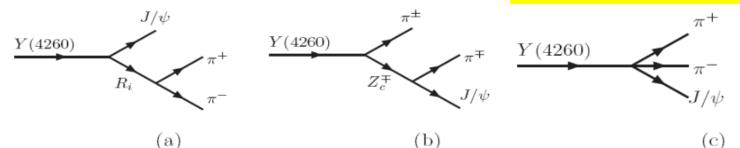
$e^+e^- \rightarrow \pi^+\pi^- h_c$ cross sections



4.6


 $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ cross sections

The Zc Family at BESIII



Which is the nature of these states? Different decay channels of the same observed states? Other decay modes?

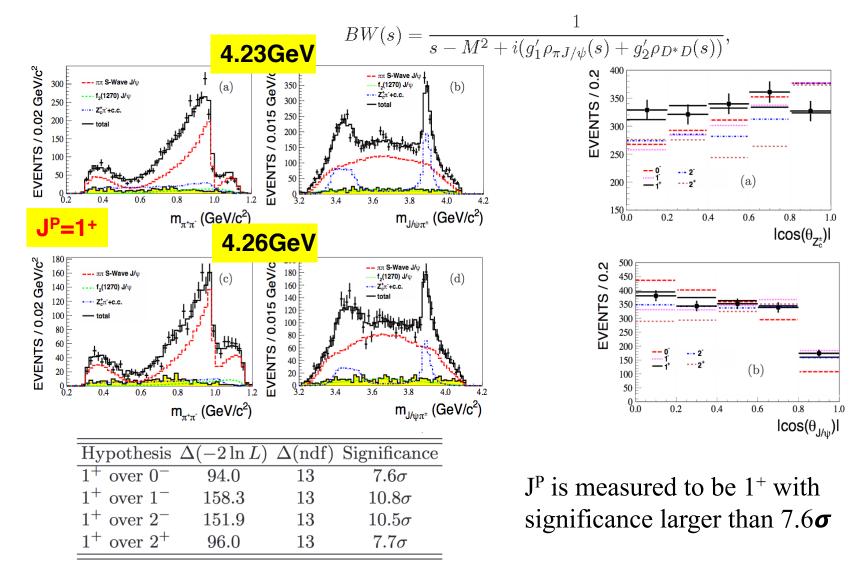
Amplitude analysis of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

PRL 119.072001 (2017)

In the process $e^+e^- \rightarrow \gamma^* \rightarrow \pi^+\pi^- J / \psi$

- The helicity value of γ^* is taken as $\lambda_0 = \pm 1$ due to from e+e- annihination
- $\gamma^* \rightarrow \mathbf{Z}_{\mathbf{c}}^{\pm} \pi^{\mathsf{m}}, \mathbf{Z}_{\mathbf{c}}^{\pm} \rightarrow \mathbf{J} / \psi \pi^{\pm}, \text{ we try } \mathbf{J}^{\mathsf{p}} \text{ for } \mathbf{X}$:

 0^{-} , 1^{-} , 1^{+} , 2^{-} , 2^{+} , and 0^{+} is not allowed

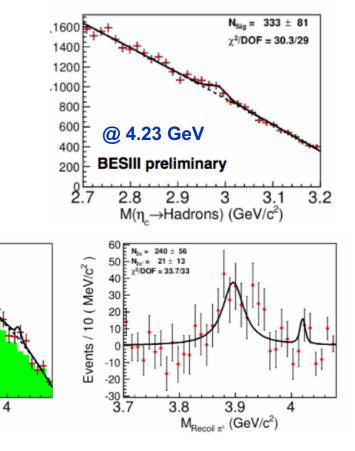

- Z⁺_c and Z⁻_c states are assumed as isospin partner, with the same mass and coupling constant
- Six processes are inclued in fitting to data: σ_0 , $\mathbf{f}_0(980)$, $\mathbf{f}_2(1270)$, $\mathbf{f}_0(1370)$, \mathbf{Z}_c^{\pm} , and $\pi^+\pi^-\mathbf{J}/\psi$ Sep. 15, 2018, Ji'Nan

EXAMPLE Spin-parity determination of the Z_c^+ (3900)

• Zc line shape parameterized with Flatte-like formula

PRL 119.072001 (2017)

Search for $Z_c^{(\prime)} \rightarrow \rho \eta_c$


- Search for new decay mode of $Z_c(3900)$ and $Z_c(4020)$
- The ratios of $Z_c^{(\prime)} \rightarrow \rho \eta_c$ to $Z_c^{(\prime)} \rightarrow \pi J/\psi(\pi h_c)$ may discriminate **the tetra-quark** and **molecule** models.

Date sets:

 ~4 fb⁻¹ data set distributed at √s = 4.23,4.26,4.36,4.40,4.60 GeV

Strategy of this analysis:

- Start with looking for $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c, \eta_c \rightarrow 9$ hadronic decays
- Strong evidence of $e^+e^- \rightarrow \pi Z_c$, $Z_c \rightarrow \rho \eta_c$ is observed at $\sqrt{s} = 4.23$, statistical significance is 4.3 σ . (3.9 σ including systematics)
- $e^+e^- \rightarrow \pi Z'_c, Z'_c \rightarrow \rho \eta_c$ is not seen in all data sets.

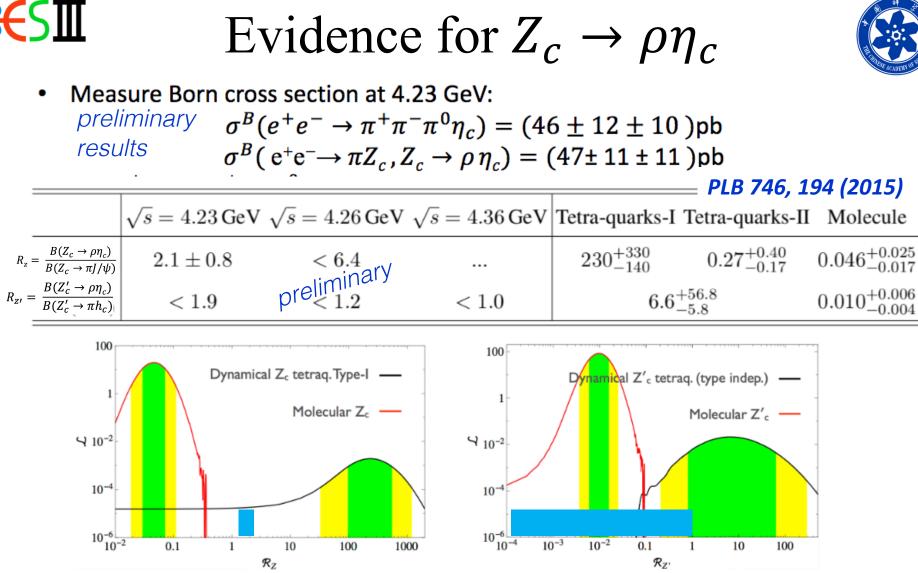
 $e^+e^- \rightarrow \pi Z_c$, $Z_c \rightarrow \rho \eta_c$ @ 4.23 GeV

Sep. 15, 2018, Ji'Nan

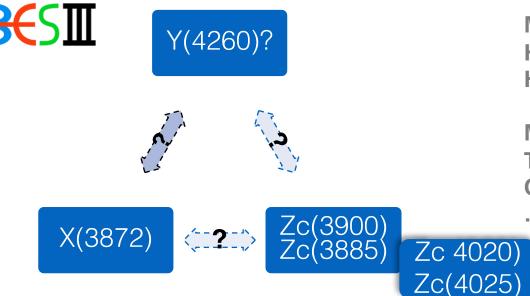
140

120

20


3.7

BESIII preliminary


3.9

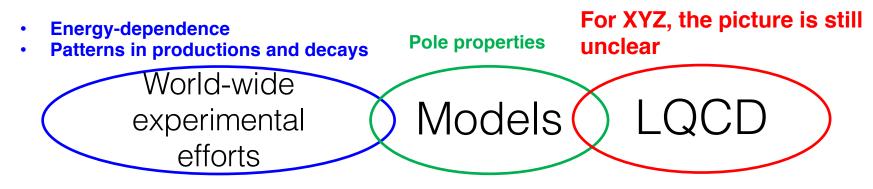
M_{Recoil x[±]} (GeV/c²)

3.8

- R_Z : not consistent with any of the model calculations
- $R_{Z'}$: smaller than the calculations based on tetra-quarks model, while not in contradiction with the molecule model calculation

Multiquark Hybrid Hadrocharmonium

Molecule Threshold effects Cusps


States or/and interactions

What is the role of threshold

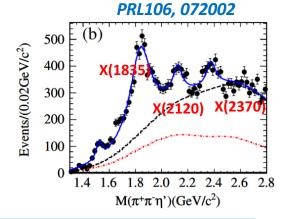
--Many new observations near thresholds: D*D,D*D*, D₁D, ...

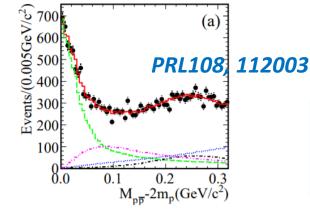
* Phase variations appear in many process: not unique for resonance

To have a complete picture, more findings are desired

Light hadron spectroscopy

- X(*p* \bar{p})/X(1835)
- X(2370)
- Y(2175) and Zs
- a₀(980)-f₀(980) mixing

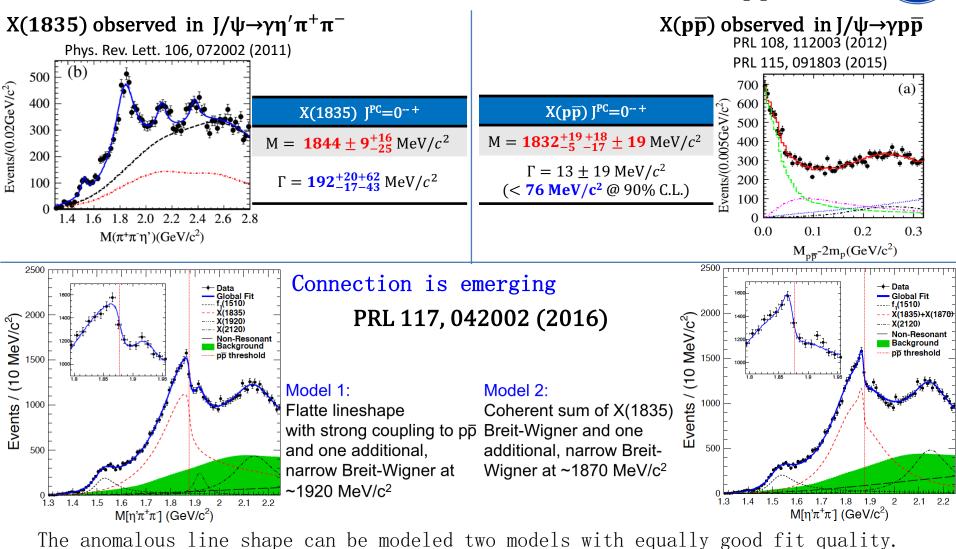




- X(ppbar)
 - An anomalous strong $p\bar{p}$ threshold enhancement structure which was first observed by BESII in J/ $\psi \rightarrow \gamma p\bar{p}$
 - BESIII confirmed its existence with much higher significance and PWA (with FSI considered) is performed
 - 0⁻⁺
 - Mass = $1836.5^{+19+18}_{-5} \pm 19 \text{ MeV/c}^2$
 - Width < 76 MeV/ c^2 @ 90% C.L.

- X(1835)
 - First observed by BESII in J/ψ→γη'π⁺π⁻
 - BESIII confirmed its existence with much higher significance
 - Spin-parity is not known
 - Mass = $1836.5 \pm 3.0^{+5.6}_{-2.1}$ MeV/c²

• Width =
$$190 \pm 9^{+38}_{-36}$$
 MeV/c²



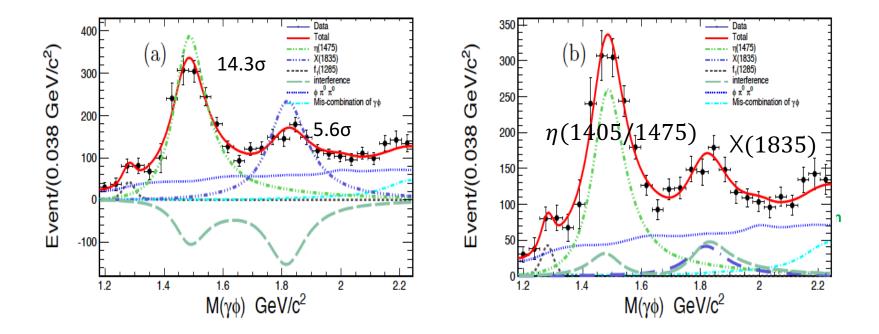
Are they the same state? A $p\overline{p}$ bound state? What's the spin-parity of X(1835)? Why their widths are so different?

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\overline{p}$ mass threshold: connection between X(1835) and X($p\overline{p}$)

₽€SⅢ

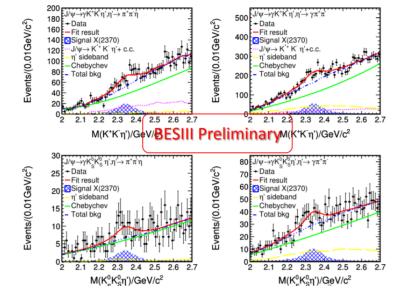
• Suggest the existence of a state, either a broad state with strong couplings to

- $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
- Support the existence of a $p\overline{p}$ molecule-like state or bound state Sep. 15, 2018, Ji'Nan



 $J/\psi \rightarrow \gamma \gamma \phi$

PLB594, 47 (2004)


- First observation of $X(1835) \rightarrow \gamma \phi$ - Sizeable ss components in X(1835): more complicated than a pure NN state
- First observation of $\eta(1475) \rightarrow \gamma \varphi$
 - Measured $\Gamma(\eta(1475) \rightarrow \gamma \rho) / \Gamma(\eta(1475) \rightarrow \gamma \phi) = (11.1 \pm 3.5) \text{ or } (7.5 \pm 2.5)$
 - Theoretical prediction $\Gamma(\eta(1440) \rightarrow \gamma \rho) / \Gamma(\eta(1440) \rightarrow \gamma \phi) \approx 3.8$ **PRD87, 014023 (2013)**

ESI Observation of X(2370) in $J/\psi \rightarrow \gamma KK\eta'$

- ✓ X(2120) and X(2370) were first observed in J/ ψ → $\gamma\eta'\pi^+\pi^-$
 - $\circ~$ LQCD predicts the lowest lying 0⁻⁺ glueball has mass between 2.3-2.6 GeV/c^2
 - \circ X(2120) and X(2370) are candidates?
- ✓ Combined study of J/ ψ → γ K⁺K⁻ η'/γ K_SK_S η'
 - \circ First observation of X(2370) in this process
 - Mass/width are consistent with X(2370) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - B [X(2370)→KKη']/B[X(2370)→η'π⁺π⁻] ~ 1/15
 - A theoretical work predicts $\Gamma_{G \rightarrow KK\eta'}/\Gamma_G = 0.011$ and $\Gamma_{G \rightarrow \eta'\pi\pi}/\Gamma_G = 0.090$ for $M_G = 2.37$ GeV/c² (PRD 87, 054036)
 - \circ No clear signal of X(2120)

Spin-parity is not

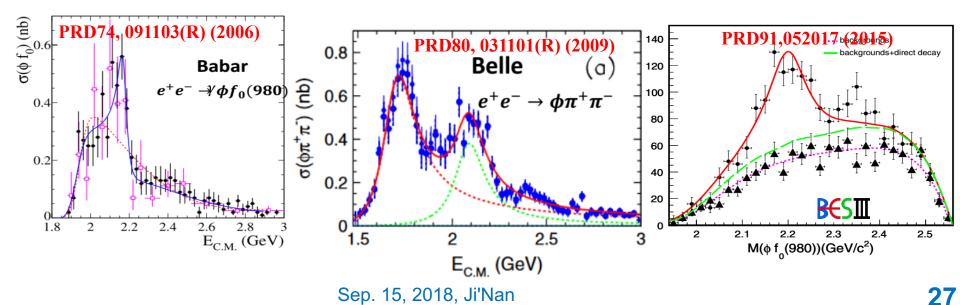
vet determined

 $\begin{array}{ll} M \ ({\rm MeV}/c^2) & 2343.91 \pm 6.88(stat.) \pm 1.23(sys.) \\ \Gamma \ ({\rm MeV}) & 117.73 \pm 12.75(stat.) \pm 4.14(sys.) \\ B(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') \ (1.86 \pm 0.39 \ (stat.) \pm 0.29 \ (sys.)) \times 10^{-5} \\ B(J/\psi \to \gamma X(2370) \to \gamma K^0_S K^0_S \eta') \ (1.19 \pm 0.37 \ (stat.) \pm 0.18 \ (sys.)) \times 10^{-5} \end{array}$

Sep. 15, 2018, Ji'Nan

SI Search for glueball at BESIII

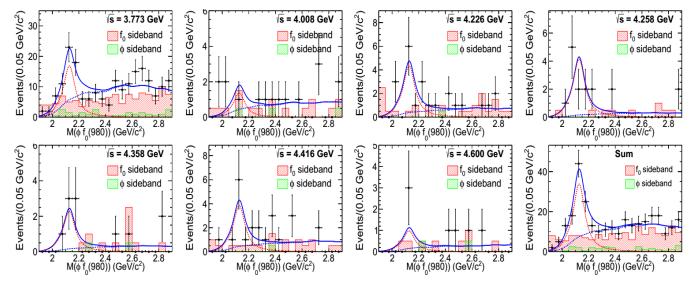
- 0^{++} sector
 - The production rate of $f_0(1710)$ is compatible with LQCD prediction for a pure gauge scalar glueball
- 2^{++} sector
 - $f_2(2340)$ seems to be a good candidate due to its large production rate in $J/\psi \rightarrow \gamma \phi \phi$ and $J/\psi \rightarrow \gamma \eta \eta$
- 0⁻⁺ sector
 - X(2370) might be a candidate for 0++ glueball
 - X(2500) observed in $J/\psi \rightarrow \gamma \phi \phi$ and the structure around 2.6 GeV/c² observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$


Ϳ/ψ→γΡΡ	Ϳ/ψ→γνν	Ϳ/ψ→γΡΡΡ	
J/ψ→γηη	Ϳ/ψ→γωφ Ϳ/ψ→γΚΚη		
$J/\psi \rightarrow \gamma \pi^0 \pi^0$	Ϳ/ψ→γφφ	Ϳ/ψ→γηπ⁰π⁰	
J/ψ→γK _s K _s	J/ψ→γωω		
Ϳ/ψ→γηη′	•••		
Ϳ/ψ→γη′η΄	•••		
•••	•••	•••	

Published Release is in schedule Ongoing

EXAMPLE 175) and the strangeonium-like Z_S

- Y(2175) (denoted as φ(2170) by PDG) was observed by BaBar, and confirmed by Belle, BESII and BESIII
 - A candidate for a tetraquark state, a strangeonium hybrid state, or a conventional $s\bar{s}$ state
- \succ Unique place to search for the Z_S:
 - Y(2175) is regarded as strangeonium-like state analogous to Y(4260)
 - Mode: $Z_S \rightarrow \pi^{\pm} \phi$ (Expected mass $M_{Z_S} \approx 1.4 \text{ GeV/c}^2$)


Construction of e⁺e⁻ \rightarrow **η**Y(2175) at $\sqrt{s} > 3.7 \text{ GeV}$

arXiv:1709.04323

- ➢ Perform the search for Y(2175) resonance in the process e⁺e⁻→ηφf₀(980) at √s between
 3.7 and 4.6 GeV.
- Combined significance for Y(2175) signal is observed to be larger than 10σ.
- > No significant Z_S signals in $\phi \pi^{\pm}$ spectrum.

arXiv:1801.10384

(b)

3

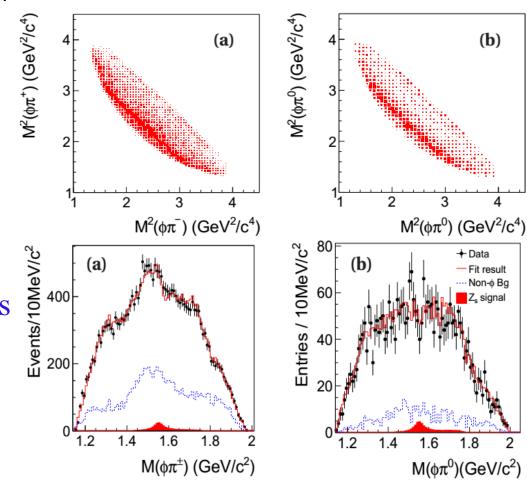
1.6

1.8

2

Data

Fit result Non


Bg

> Perform the search for Z_S via $e^+e^- \rightarrow \phi \pi^+ \pi^- (\phi \pi^0 \pi^0)$ using 108 pb⁻¹ data collected at $\sqrt{s} = 2.125$ GeV.

> PWA is performed

• $\phi\sigma$ • $\phi f_0(980)$ • $\phi f_0(1370)$ • $\phi f_2(1270)$ $\bullet Z_s \pi$

 \succ No clear Z_S signal is observed in the $\phi\pi$ mass spectrums around 1.5 GeV/c^2 .

PRD83, 032003 (2011)

SNC

CB BESII

 10^{-2} mixing intensity ξ_{r_0}

mixing intensity ξ_{af}

 10^{-2}

 10^{-3}

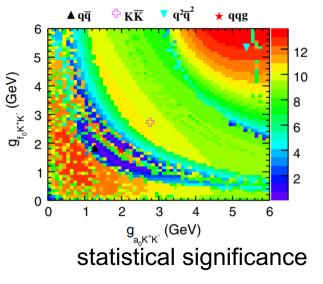
 10^{-3}

- The lightest scalar nonet: σ , κ , $a_0(980)$, $f_0(980)$
- Theorists proposed a₀(980)-f₀(980) mixing mechanism ~40 years ago, to clarify the nature of these two states
- BESIII reported evidence of a₀(980)-f₀(980) mixing using 225 million J/ψ events and 106 million ψ' events (suggested by *Wu, Zhao, and Zou, PRD 75, 114012 (2007)*)

$$\begin{split} \xi_{fa} &= \frac{\mathcal{B}[J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0]}{\mathcal{B}[J/\psi \to \phi f_0(980) \to \phi \pi \pi]}, \quad \begin{array}{l} \textbf{3.4\sigma} \\ \textbf{<1.1\% @ 90\% C.L.} \\ \xi_{af} &= \frac{\mathcal{B}[\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-]}{\mathcal{B}[\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta]}, \quad \begin{array}{l} \textbf{-1.1\% @ 90\% C.L.} \\ \textbf{-1.1\% C.L.$$

• No affirmative experimental result for almost 40 years on the magnitude of the mixing

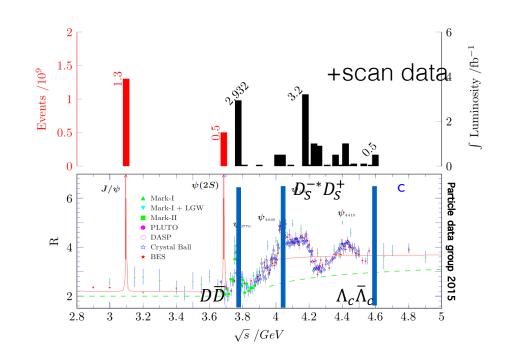
Editors' Suggestion


Observation of a₀⁰(980)–f₀(980) Mixing M. Ablikim *et al.* (BESIII Collaboration) Phys. Rev. Lett. **121**, 022001 (2018) – Published 11 July 2018

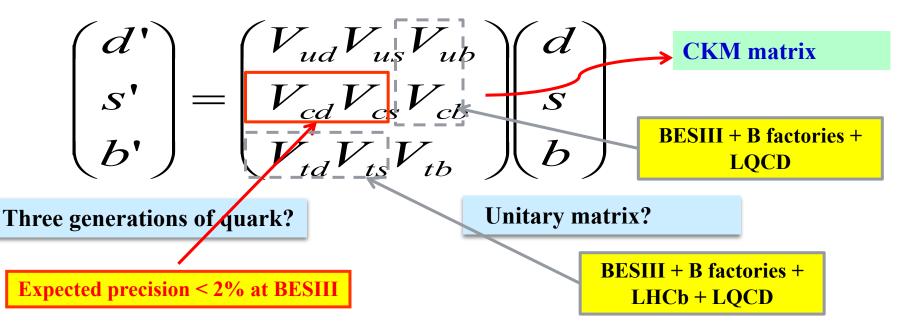
• With 1.3 billion J/ ψ and 450 million ψ' , $a_0(980)$ $f_0(980)$ mixing is observed for the first time

TABLE II. The branching fractions (\mathcal{B}) and the intensities (ξ) of the $a_0^0(980)$ - $f_0(980)$ mixing. The first uncertainties are statistical, the second ones are systematic, and the third ones are obtained using different parameters for $a_0^0(980)$ and $f_0(980)$ as described in the text.

	$f_0(980)$ -	$\rightarrow a_0^0(980)$	
Channel	Solution I	Solution II	$a_0^0(980) \to f_0(980)$
$ \begin{array}{l} \mathcal{B} \ (\text{mixing}) \ (10^{-6}) \\ \mathcal{B} \ (\text{EM}) \ (10^{-6}) \\ \mathcal{B} \ (\text{otal}) \ (10^{-6}) \\ \mathcal{\xi} \ (\%) \end{array} $	$\begin{array}{c} 3.18 \pm 0.51 \pm 0.38 \pm 0.28 \\ 3.25 \pm 1.08 \pm 1.08 \pm 1.12 \\ 4.93 \pm 1.01 \pm 0.96 \pm 1.09 \\ 0.99 \pm 0.16 \pm 0.30 \pm 0.09 \end{array}$	$\begin{array}{c} 1.31 \pm 0.41 \pm 0.39 \pm 0.43 \\ 2.62 \pm 1.02 \pm 1.13 \pm 0.48 \\ 4.37 \pm 0.97 \pm 0.94 \pm 0.06 \\ 0.41 \pm 0.13 \pm 0.17 \pm 0.13 \end{array}$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$ $0.40 \pm 0.07 \pm 0.14 \pm 0.07$
	7.4	4σ	5.5σ
C (p,s) $\frac{-ig}{k^2+}$		$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	
Ξ ³ ⁻⁷ Ē (p',s')		K (p ₃) $a_{0(980)}^{0}$ (p _a)	Observed mix scalar meson
	from <i>PRD 75,</i> 11	1 4012 (2007) Sep. 15, 2018,	<i>their internal</i> Ji'Nan


Observed mixing between two light scalar mesons may help constrain their internal structure.

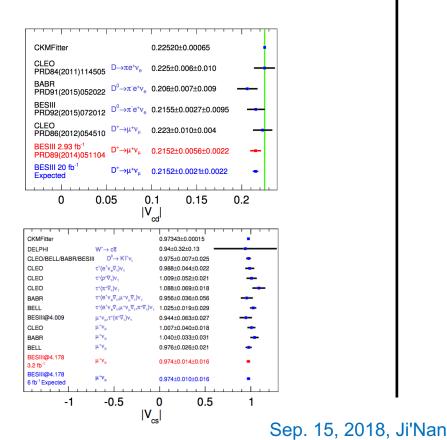
The charmed meson decays


- $D_{(s)}$ leptonic decay
- $D_s \rightarrow p\bar{n}$

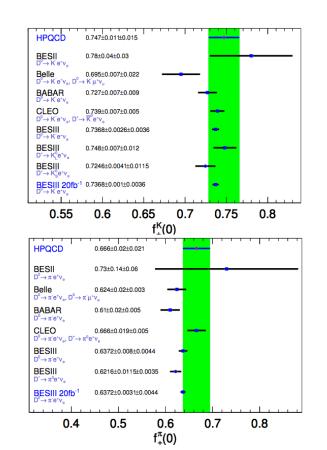
Hereision measurement of CKM elements -- Test EW theory

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- Precision measurement of CKM matrix elements
- A precise test of SM model
- New physics beyond SM?

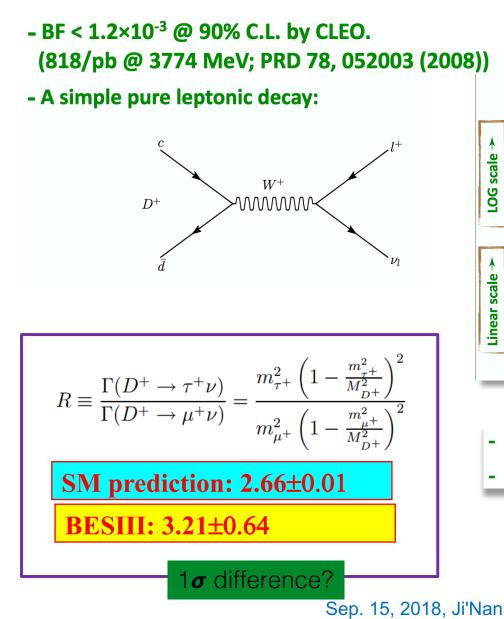


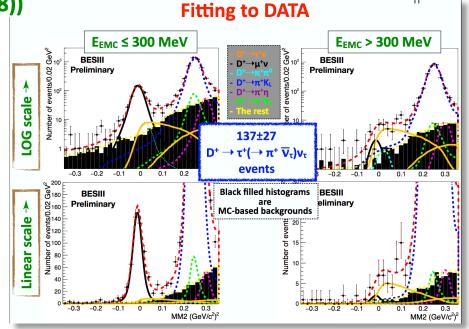
$D_{(S)}$ Leptonic decays


Purely Leptonic:

- Extract decay constant $f_{D(s)}$ incorporates the strong interaction effects (wave function at the origin)
- To validate Lattice QCD calculation of $f_{B(s)}$ and provide constrain of CKM-unitarity

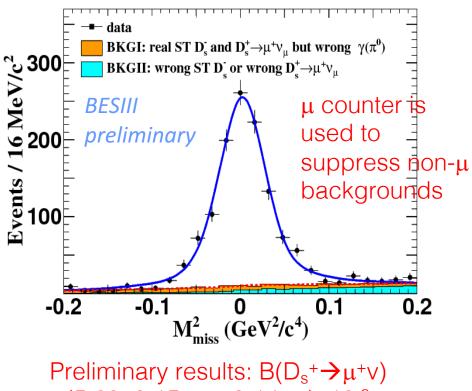
Semi-leptonic: form facotr (FF)


- Measure $|V_{cx}| \ge FF$
- Charm physics:
 - CKM-unitarity $\Rightarrow |V_{cx}|$, extract FF, test LQCD
 - Input LQCD FF to test CKM-unitarity

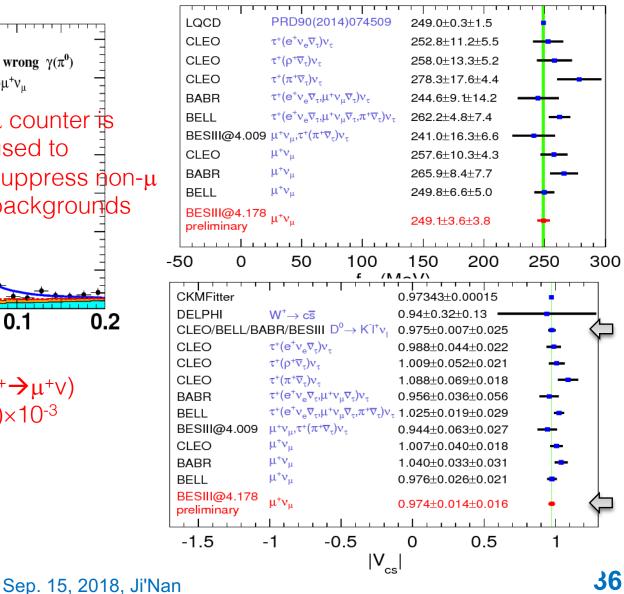

Evidence for $D^+ \rightarrow \tau^+(\pi^+ v)v$

2.93/fb @3.773GeV

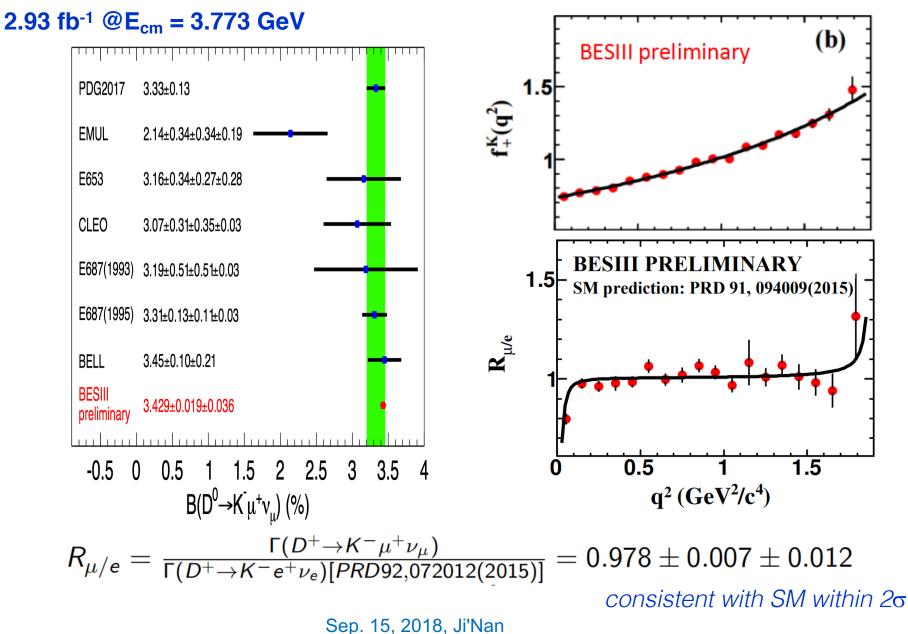
with 6 dominant D⁻ singly tag modes

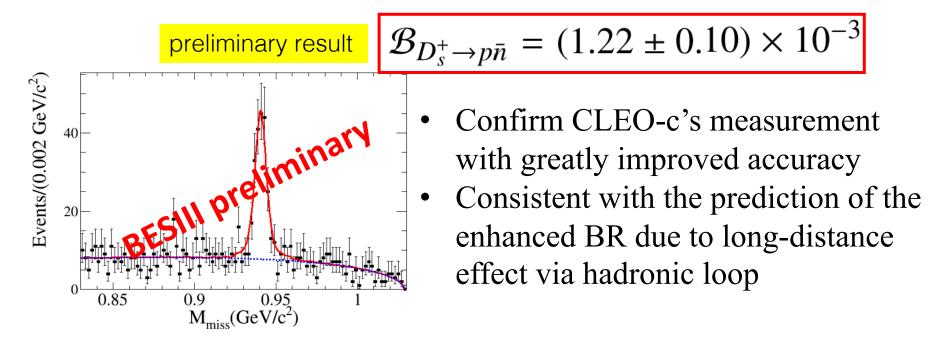


> 4σ statistical significance. First evidence!
BF(D⁺ → τ⁺ν_τ) = [1.20±0.24(stat.)]×10⁻³.


Heasurement of B(D_s⁺\rightarrow µ⁺v)

\checkmark 14 ST channels are used to reconstruct $\rm D_{s^-}$ mesons.


 $^{=(5.28\}pm0.15_{stat}\pm0.14_{syst})\times10^{-3}$


Observation of $D_s^+ \rightarrow p \bar{n}$

3.19 fb⁻¹ @E_{cm} = 4.178 GeV

- Only kinematic allowed baryonic decay of charmed meson, and help for understanding the dynamical enhancement of W-annihilation
 - Short-distance expected:Br~10⁻⁶ PLB663, 326 (2008)
 - Long-distance enhance to: Br~10⁻³
- First evidence was observed by CLEO-c: $(1.30\pm0.36^{+0.12}_{-0.16}) \times 10^{-3}$

(PRL100, 181802(2008))

Sep. 15, 2018, Ji'Nan

The Λ_c^+ decays

based on ~1 month data taking

Hadronic decay

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+} + 11 \text{ CF}$ hadronic modes :PRL 116, 052001 (2016)

$\Lambda_c^+ \rightarrow pK^+K^-, p\pi^+\pi^-$:	PRL 117, 232002 (2	016)
--	--------------------	------

$\Lambda_c^+ \to n K s \pi^+$:PRL 118, 12001 (201	7)
--	----

 $\Lambda_c^+ \to p\eta, p\pi^0$:PRD 95, 111102(R) (2017)

 $\Lambda_c^+ \to \Xi^{0(*)} K^+$:PLB783, 200 (2018)

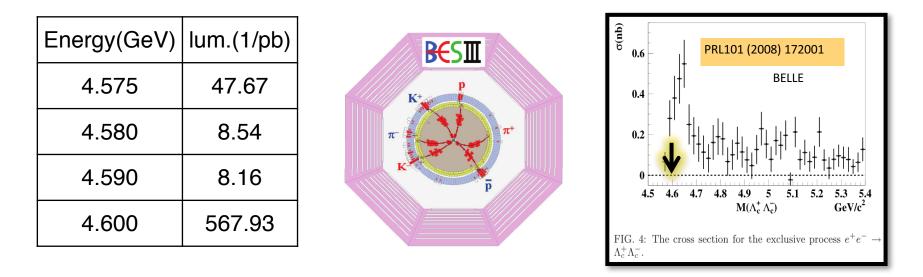
Semi-leptonic decay

$\Lambda_{\rm c}^+ \rightarrow \Lambda e^+ \nu_e$: PRL115, 221805(2015)
$\Lambda_{\rm c}^+ {\rightarrow} \Lambda \mu^+ \nu_\mu$: PLB767, 42 (2017)

Inclusive decay

$\Lambda_{c}^{+} \rightarrow \Lambda X$: PRL121, 062003 (2018)
$\Lambda_c^+ \rightarrow e^+ + X$: arXiv:1805.09060

Production


 $\underline{\Lambda_c^+ \Lambda_c^- \text{ cross section}} : PRL 120,132001(2018)$

Sep. 15, 2018, Ji'Nan

$\mathbf{K}^{\mathrm{SII}}$ Λ_{c} threshold production at BESIII

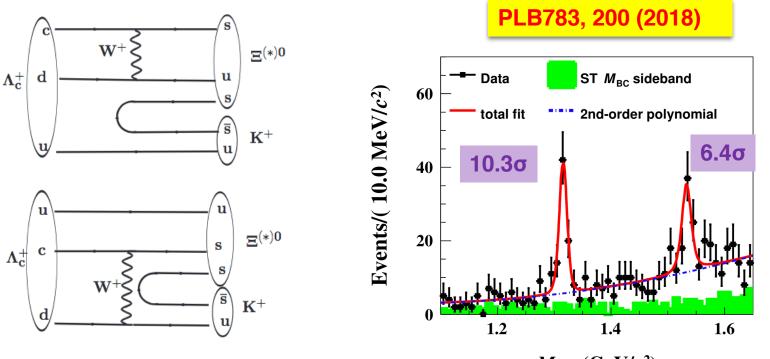
In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance.

Measurement using the threshold pair-productions via $e^+e^$ annihilations is unique: *the most simple and straightforward*

First time to systematically study charmed baryon at threshold!

Sep. 15, 2018, Ji'Nan

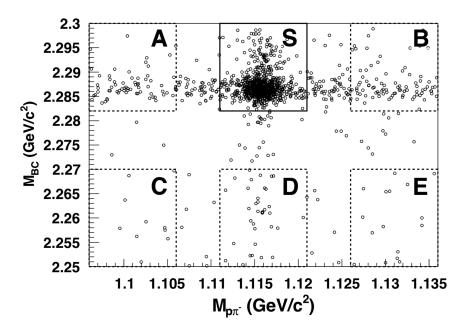
ESI The improvement after 2014


EPJC 77 ,		PRL 116, 052001 (2	016) P	RL113, 042002 (2014)
Mode	HFLAV2016	BESIII (%)	PDG 2014 (%)	BELLE (%)
pK_S^0	1.59 ± 0.07	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^-\pi^+$	6.46 ± 0.24	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK^0_S\pi^0$	2.03 ± 0.12	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK^0_S\pi^+\pi^-$	1.69 ± 0.11	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^-\pi^+\pi^0$	5.05 ± 0.29	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda\pi^+$	1.28 ± 0.06	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda\pi^+\pi^0$	7.09 ± 0.36	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda\pi^+\pi^-\pi^+$	3.73 ± 0.21	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	1.31 ± 0.07	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+\pi^0$	1.25 ± 0.09	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+\pi^+\pi^-$	4.64 ± 0.24	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+ \omega$	1.77 ± 0.21	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	
$\Lambda e^+ u_e$	3.18 ± 0.32	$3.63 \pm 0.38 \pm 0.20$	2.1 ± 0.6	

Improved precisions significantly with factors of 4~10

W-exchange-only process $\Lambda_c^+ \rightarrow \Xi^{(*)0} K^+$

 $M_{\rm miss}({\rm GeV}/c^2)$


- First absolute measurement of the decay BF
- No models can accommodate the both rates

$$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (5.90 \pm 0.86 \pm 0.39) \times 10^{-3}$$
$$\mathcal{B}(\Lambda_c^+ \to \Xi(1530)^0 \bar{K^+}) = (5.02 \pm 0.99 \pm 0.31) \times 10^{-3}$$

ESI The inclusive channel $\Lambda_c^+ \rightarrow \Lambda + X$

PRL121, 062003 (2018)

- Mediated by the *c*-*s* transition, essential input in the calculation of the Λ_c^+ life time
- Current PDG: BF($\Lambda_c^+ \rightarrow \Lambda + X$)=(35±11)% with large uncertainty
- The sum of known exclusive modes: (24.5 ± 2.1) %: need better understanding of the gap between exclusive and inclusive rates

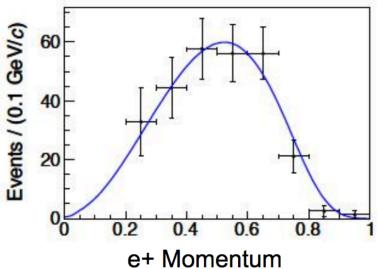
- ST modes of $\Lambda_c^+ \rightarrow pK^-\pi^+$ and pK_s^0 , to measure the probability of finding a Λ in the final states
- Data-driven (p-|cosθ|) 2D efficiency correction using several Λ control samples
- $\mathcal{B}(\Lambda_C^+ \to \Lambda + X) = (38.2^{+2.8}_{-2.2} \pm 0.8)\%$

indicates ~1/3 BFs are unknown

• $A_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.4)\%$ (No CPV is observed.)

The inclusive channel
$$\Lambda_c^+ \rightarrow e^+ + X$$

- Current PDG: BF $(\Lambda_c^+ \rightarrow e + X) = (4.5 \pm 1.7)\%$.
- Large rate, but also with large uncertainty
- Tagged with $\Lambda_c^+ \rightarrow pK^-\pi^+$ and pK_s^0

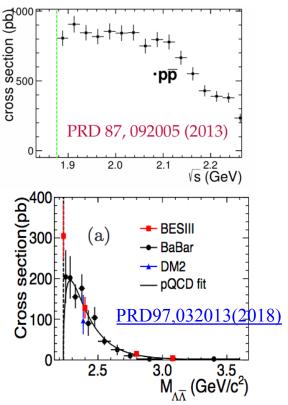

D

$$\Rightarrow \mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (3.95 \pm 0.34 \pm 0.09)\%$$

$$\stackrel{\Rightarrow}{=} \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e)} = (91.9 \pm 12.5 \pm 5.4)\%.$$

Result	$\Lambda_c^+ \to X e^+ \nu_e$	$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\bar{\Gamma}(D \to X e^+ \nu_e)}$
BESIII	3.95 ± 0.35	1.26 ± 0.12
MARK II	4.5 ± 1.7	1.44 ± 0.54
Effective-quark Method		1.67
Heavy-quark Expansion		1.2

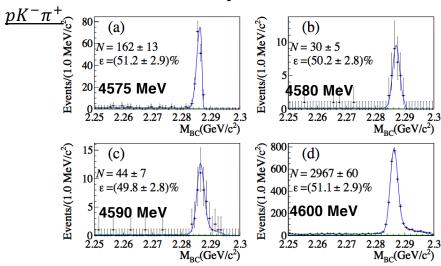
arXiv:1805.09060

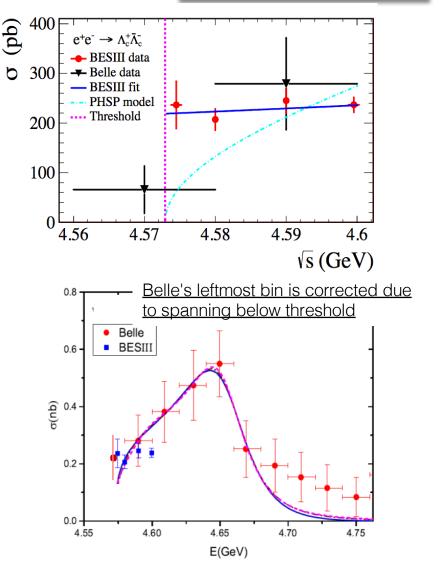

5Ⅲ The cross-section of baryon pair

The Born cross section of the reaction $e^+e^- \rightarrow \gamma^* \rightarrow B\bar{B}$ can be parameterized in terms of electromagnetic form factors:

$$\sigma_{B\bar{B}}(q) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau} |G_E(q)|^2]$$

- Baryon velocity $\beta = \sqrt{1 4m_B^2 c^4/q^2}, \tau = q^2/(4m_B^2 c^4)$
- For charged *B*, the Coulomb factor C will results in a non-zero cross section at threshold
- $e^+e^- \rightarrow p\bar{p}$: an enhancement and wide-range plateau in the line-shape
- $e^+e^- \rightarrow \Lambda \bar{\Lambda}$: non-zero cross section near threshold
- It can be anticipate that Λ⁺_c has a similar behaviour with proton
- Belle collaboration has measured the cross section of $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ using ISR technique PRL 101, 172001 (2008)





Combined analysis of 10 ST hadronic modes

PRL 120, 132001 (2018)

- The cross sections are measured with unprecedented precision
- Enhanced cross section of reaction $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ near threshold is discerned for the first time
- The Coulomb enhanced factor?

BEPCII and BESIII upgrades

□ Increase of beam energy (<=2.3GeV)

- Step I: → 2.35 GeV (upgrade power cooling system.
 Done in this summer)
- − Step 2: → 2.45 GeV (Change ISPB magnet. Challenging)
- **Top-up injection:**
 - data taking efficiency increased by ~30%
- **DMDC:** Malter effect found in inner chamber in 2012
 - New inner chamber is ready now.
 - CGEM as the inner chamber ongoing : Italy group in collaboration with other groups.
- **Super Conducting Magnet**
 - New valve box of SC magnet
- **Other possible upgrade plan is under discussion**

Future plans at BESIII

A BESIII physics white paper is under preparation

Energy	physics highlight	Current data	Expected final data
		# of events	# of events
		or integrated luminosity	or integrated luminosity
1.8 - 2.0 GeV	R values	N/A	Scan: 3 energy points
	cross-sections		
2.0 - 3.1 GeV	R values	Scan: 20 energy points	No requirement
	cross-sections		
${ m J}/\psi$ peak	Light Hadron & Glueball	5.0 billion	10.0 billion
	Charmonium decay		
$\psi(3686)$ peak	Light hadron& Glueball	0.5 billion	3.0 billion
	Charmonium decay		
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m fb^{-1}}$	$20.0 { m ~fb^{-1}}$
	Form-factor/CKM		
	decay constant		
3.8 - 4.6 GeV	R value	Scan: 105 energy points	No requirement
	XYZ/Open charm		
$4.180 {\rm GeV}$	D_s decay	$3.1 { m ~fb^{-1}}$	$6.0 ~{ m fb}^{-1}$
	XYZ/Open charm		
	XYZ/Open charm		Scan: 30.0 fb^{-1}
4.0 - $4.6~{\rm GeV}$	Higher charmonia	Scan: 12.0 fb^{-1}	$10 \text{ MeV step}/0.5 \text{ fb}^{-1}/\text{point}$
	cross-sections		30 energy points
$4.60 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	$0.56 {\rm ~fb^{-1}}$	$1.0~{ m fb}^{-1}$
$4.64 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$5.0~{ m fb}^{-1}$
$4.65~{\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$0.2~{ m fb}^{-1}$
$4.70 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$0.65~{ m fb}^{-1}$
$4.80 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$1.0 { m ~fb^{-1}}$
$4.90 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$1.3~{ m fb}^{-1}$
$\Sigma_c^+ \bar{\Lambda}_c^-$ 4.74 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Sigma_c \bar{\Sigma}_c$ 4.91 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Xi_c \bar{\Xi}_c \ 4.95 \ { m GeV}$	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$

in the best case

Sep. 15, 2018, Ji'Nan

Summary

- Fruitful results with large varieties of physics outputs
 The hadron spectroscopy and exotics
 - X states between $1.8 \sim 1.9 \text{ GeV/c}^2$
 - Glueball searches
 - Efforts on studies on the strangeonium-(like) and charmonium-(like) states

Charmed hadron decays

- Measurements of decay constants $f_{D(s)+}$ and form factors
- Determinations of $|V_{cs(d)}|$: improved test on CKM matrix unitarity
- Important testes on non-perturbative QCD
- Significant improvement in charmed baryon sector

- BEPCII upgrade and Detector upgrade

- ✓ Top up mode : 30% going-up of data taking efficiency
- ✓ Increase the beam energy:
 4.6 GeV → 4.7 GeV (done!) → 4.9 GeV (~2019 summer)
- ✓ CGEM project

Thank you! 谢谢!

Sep. 15, 2018, Ji'Nan

EXAMPLE 1 Determiend properties of the $Z_c^+(3900)$

• If Z_c is parameterized with a Flatte-like formula $M_{pole} = 3881.2 \pm 4.2 \pm 52.7$ MeV, $\Gamma_{pole} = 51.8 \pm 4.6 \pm 36.0$ MeV $g_1' = 0.075 \pm 0.006 \pm 0.025$ GeV²

 $g_2 \, ' g_1 \, ' = 27.1 \pm 2.0 \pm 1.9$

(consistent with the previous published results)

- Born cross section for $e^+e^- \rightarrow Z_c^+\pi^- + c.c. \rightarrow \pi^+\pi^- J/\psi$ $21.8 \pm 1.0 \pm 4.4$ pb at 4.23 GeV $11.0 \pm 1.2 \pm 5.4$ pb at 4.26 GeV
- Search for $e^+e^- \rightarrow Z_c^+(4020)\pi^- + c.c. \rightarrow \pi^+\pi^- J/\psi$ gives upper limits at 90% C.L.:

<0.9 pb at 4.23 GeV; <1.4 pb at 4.26 GeV

then
$$\frac{\sigma(e^+e^- \to Z_c^+(4020) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)}{\sigma(e^+e^- \to Z_c^+(3900) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)} < 4\%$$
 at 4.23 GeV

<13% at 4.26 GeV

Comparison between experiment and theory

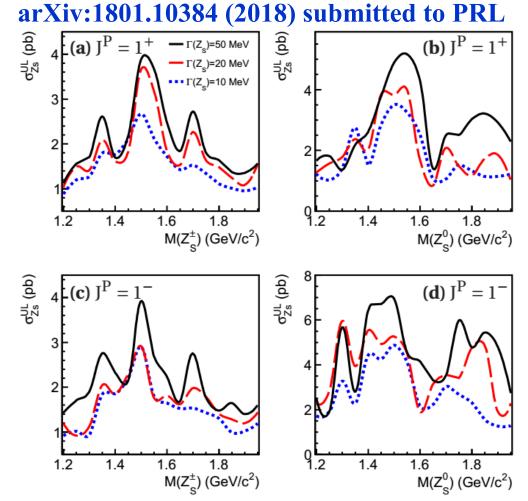
• Using B(X(3872) $\rightarrow \pi^+\pi^- J/\psi$) > 3.2% [PDG]

(obtained by comparing inclusive [Belle,PRD97,012005(2018)] and exclusive [BaBar,PRD77,111101(2008)] B+ decays) and B(X(3872) $\rightarrow \pi^+\pi^-J/\psi$) < 6.4%,

(obtained by assuming all measured X(3872) decays add to less than 100%)

we find $B(X(3872) \rightarrow \pi^0 \chi_{c1}) \sim 3-6\%$.

- If the X(3872) were the χ_{c1}(2P) state of charmonium, then Γ(X(3872) → π⁰χ_{c1}) ~ 0.06 keV, (from the estimation of [Dubynskiy, Voloshin, PRD 77, 014013 (2008)])
 which would imply an unrealistically small Γ_{TOT}(X(3872)) ~ 0.5 1.0 keV. (for comparison, note that this is several orders of magnitude smaller than Γ_{TOT}(J/ψ) ~ 100 keV)
- Therefore, our measurement of $B(X \rightarrow \pi^0 \chi_{c1})/B(X \rightarrow \pi^+ \pi^- J/\psi)$ disfavors the $\chi_{c1}(2P)$ interpretation of the X(3872).



Search for Z_S at 2.125 GeV

- ✓ Different assumptions of mass, width and J^P of Z_S
- ► In addition, the cross-sections of $e^+e^ \rightarrow \phi \pi^+\pi^-$ and $e^+e^- \rightarrow \phi \pi^0\pi^0$ at 2.125 GeV/c² are measured to be (343.0±5.1±25.1) pb and (208.3±7.6±13.5) nb, respectively.
 - ✓ The cross-section for $e^+e^- \rightarrow \phi \pi^+\pi^$ slightly differs from previous measurements from BaBar ((510±50±21) pb at 2.1125 GeV) and Belle ((480±60±42) pb at 2.1125 GeV) measurements, but consistent within 3 σ .
 - ✓ The cross-section for $e^+e^- \rightarrow \phi \pi^0 \pi^0$ is consistent with BaBar measurement (195±50±14) pb within uncertainty.

BaBar Collaboration Phys. Rev. D 86, 012008 (2012)

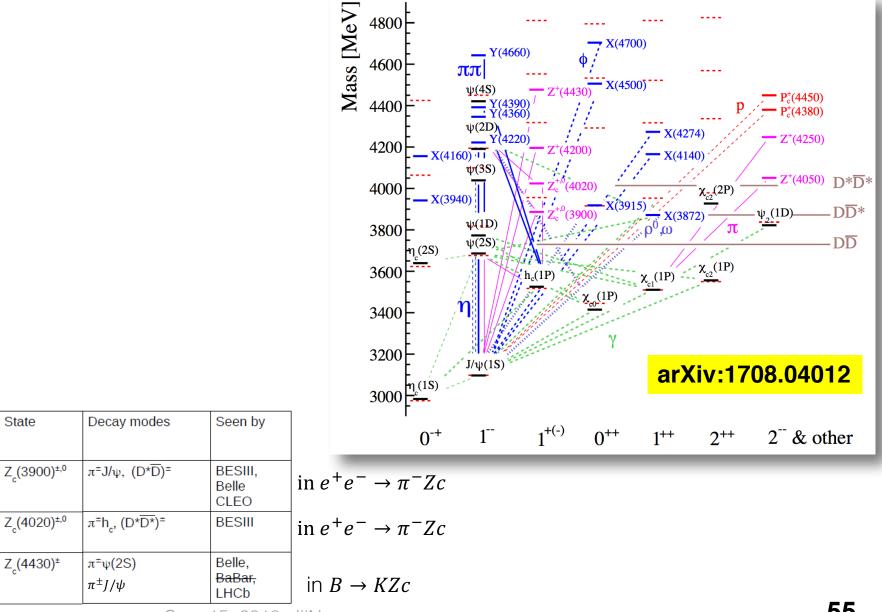
BELLE Collaboration Phys. Rev. D 80, 031101 (2009)

€SI

ā C

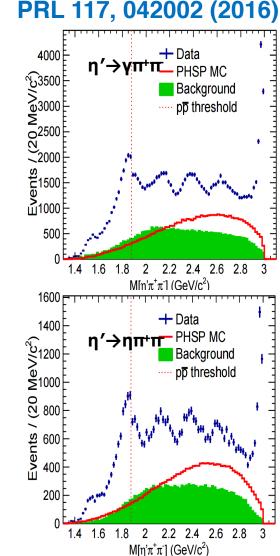
Ē

u


The Zc Family at BESIII

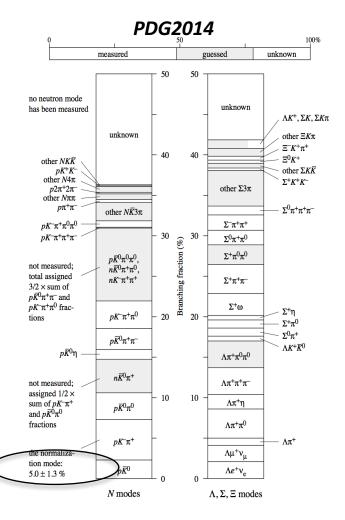
State	Mass (MeV/c ²)	Width (MeV)	Decay	Process
Z _c (3900) [±]	$3899.0 \pm 3.6 \pm 4.9$	$46 \pm 10 \pm 20$	$\pi^{\pm}J/\psi$	$e^+e^- ightarrow \pi^+\pi^- J/\psi$
Z _c (3900) ⁰	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- ightarrow \pi^0\pi^0 J/\psi$
	3883.9 \pm 1.5 \pm 4.2 Single D tag	24.8 \pm 3.3 \pm 11.0 Single D tag	$(D\overline{D}^*)^{\pm}$	$e^+e^- ightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$
Z _c (3885)±	3881.7 \pm 1.6 \pm 2.1 Double D tag	26.6 \pm 2.0 \pm 2.3 Double D tag	$(D\overline{D}^*)^{\pm}$	$e^+e^- ightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$
Z _c (3885) ⁰	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15	$(D\overline{D}^*)^0$	$e^+e^- \rightarrow (D\overline{D}^*)^0\pi^0$
Z _c (4020) [±]	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_c$	$e^+e^- ightarrow \pi^+\pi^-h_c$
Z _c (4020) ⁰	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^0 h_c$	$e^+e^- \to \pi^0\pi^0h_c$
Z _c (4025)±	4026.3±2.6±3.7	$24.8 \pm 5.6 \pm 7.7$	$D^*\overline{D}^*$	$e^+e^- \to (D^*\overline{D}{}^*)^\pm \pi^\mp$
Z _c (4025) ⁰	4025.5 ^{+2,0} _{-4.7} ±3.1	$23.0\pm6.0\pm1.0$	$D^*\overline{D}^*$	$e^+e^- \to (D^*\overline{D}{}^*)^0\pi^0$

€SII Many charged Charmonium-like states



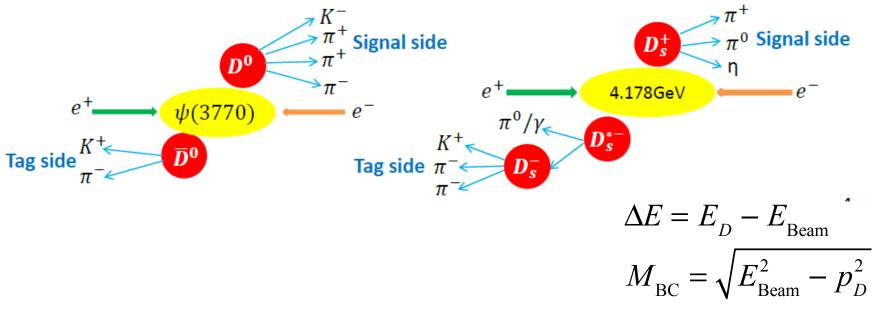
Sep. 15, 2018, Ji'Nan

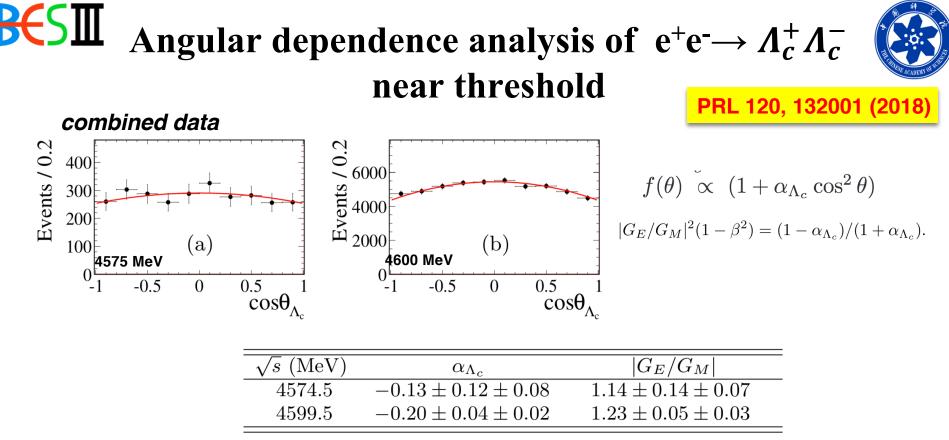
State



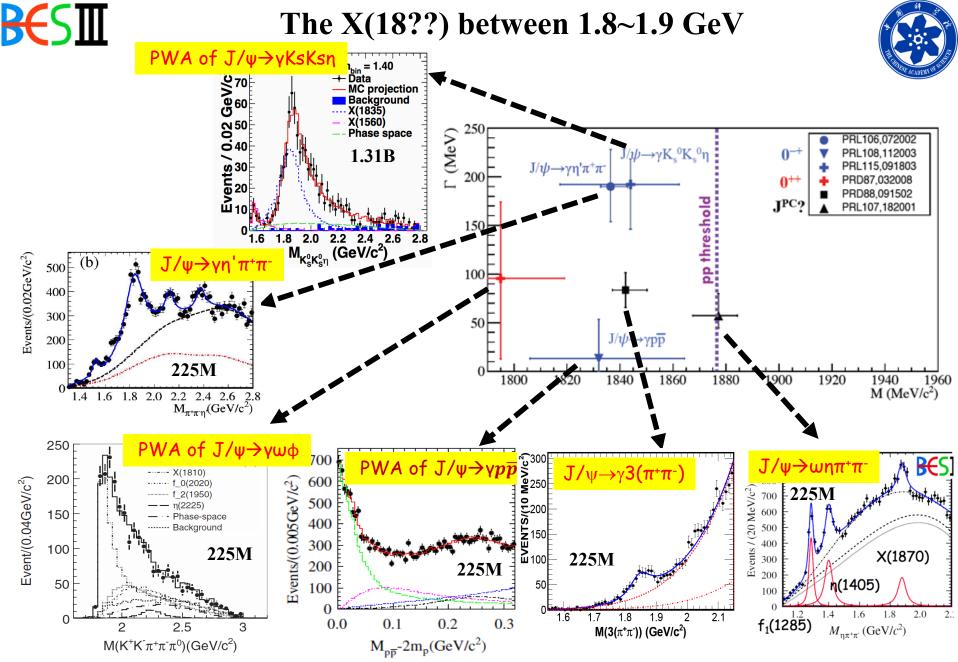
- Use 1.09×10⁹ J/ψ events collected by BESIII in 2012
- Two decay modes of η^\prime
 - η'→γπ⁺π
 - η′→ηπ⁺π, η→γγ
- Clear peaks of X(1835), X(2120), X(2370), η_c, and a structure near 2.6 GeV/c²
- A significant distortion of the η'π⁺π line shape near the pp̄ mass threshold

Henaissance on the charmed heavy baryon


- Before 2014, the *c*-ed baryons have been produced and studied at many experiments, notably fixed-target experiments (such as FOCUS and SELEX) and e+e- B-factories (ARGUS, CLEO, BABAR, and BELLE).
- Large uncertainties in experiment; Retarded development in theory
- Afterwards, more extensive measurements on charmed baryons are performed at the BESIII, BELLE and LHCb
 - The absolute BF measurements at BESIII and BELLE
 - The observation of the DCS mode $\Lambda_c^+ \rightarrow p K^+ \pi^-$ at BELLE
 - The observation of the cc-d baryon Ξ_{cc}^{++} at LHCb
- These experimental progresses have revoked the activities in the theoretical efforts



Double Tag (DT) techniques


- 100% of beam energy converted to D pair (Clean environment, kinematic constrains v Recon.)
- $D_{(S)}$ generated in pair \Rightarrow absolute Branching fractions
- Fully reconstruct about 15% of $D_{(S)}$ decays

 Double tag techniques: Hadronic tag on one side, on the other side for missing-mass studies (Double tag efficiency is high.)

- One of the most basic observables that intimately related to the internal structure of the nucleon.
- One of the most challenging questions in contemporary physics is why and how quarks are confined into hadrons.
- The electromagnetic form factors (EMFFs) have been a powerful tool in understanding the structure of nucleons.
- First measurements of the EMFFs of the Λ_c^+

Are they the same state? It is crucial to understand their connections.