Measurements with doubly-charmed baryon at LHCb

尹航 华中师范大学

第中師範大學

2018年"基本粒子和相互作用协同创新中心"牡丹江论坛 2018年9月15日

Introduction

LHCb detector

Recent results on charmed baryons

- ⇒ Rediscovery of Ξ_{cc}^{++} , with $\Xi_{c}^{+}\pi^{+}$
- ⇒ Ξ_{cc}^{++} lifetime measurement

Submitted to PRL, arXiv: 1807.01919

Phys. Rev. Lett. 121, 052002 (2018)

Summary

Success of the constituent quark model

Quark model, introduced by Gell-Mann and Zweig, in 1964

- Construct the numerous hadrons using quarks
- \Rightarrow SU(4) and SU(5) to include new quarks: charm (*c*), and bottom (*b*)

LHCb detector

• LHCb is a forward spectrometer suited for *b*, *c* hadrons: $2 < \eta < 5$

- O Momentum resolution:
- Excellent track and vertex reconstruction
- Good PID separation

LHCb integrated luminosity

Today's talk with 2016 (1.7 fb⁻¹) data

Thanks to the LHC team!

Rediscovery of \mathcal{Z}_{cc}^{++}

2018/09/15

Studies of Ξ_{cc} by SELEX experiment

• SELEX (Fermilab E781) claimed observation of $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \rightarrow pD^+ K^-$ decays

- ⇒ Short lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero
- ⇒ Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$
- Mass (combined): 3518.7 ± 1.7 MeV

No confirmation from other experiments

© Fixed target: FOCUS (Fermilab E831) Nucl. Phys. Proc. Suppl. 115 (2003) 33

- Studies charm hadrons produced in photon-nuclear fixed target collisions
- © Electron colliders: Babar, Belle BaBar: PRD 74 (2006) 011103 Belle: PRL 97 (2006) 162001 \Rightarrow Large Λ_c^+ yields, 0.6 (0.8) M at Babar (Belle)

JHEP 12 (2013) 090

O Hadron Collider: LHCb

Doubly-Charmed Baryon Results

Observation of \mathcal{Z}_{cc}^{++}

Phys. Rev. Lett. 119, 112001 (2017)

 $\bigcirc \mathbf{Z}_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ observed by LHCb using 2016 data

Search for $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+} \pi^{+}$

 $\bigcirc \mathbf{Z}_{cc}^{++} \rightarrow \mathbf{Z}_{c}^{+} \pi^{+}$: one of the best channels to confirm \mathcal{Z}_{cc}^{++}

- ⇒ $BR(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \sim \mathcal{O}(1\%)$ Prediction
- ⇒ $BR(\Lambda_c^+ \to p^+ K^- \pi^+) \sim (6.35\%)$, Measurement $BR(\Xi_c^+ \to p^+ K^- \pi^+) \sim (2\%)$ Prediction

⇒ Fewer tracks (4 tracks) → higher efficiency

Signal and control channels

- Signal channel: $\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}$, with $\Xi_{c}^{+} \to pK^{-}\pi^{+}$
- Control channels:

$$\stackrel{>}{\rightarrow} \Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \text{ with } \Lambda_c^+ \to p K^- \pi^+$$

- $\Rightarrow \Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-, \Lambda_b^0 \to \Lambda_c^+ \pi^-, \text{ with } \Lambda_c^+ \to p K^- \pi^+$
- $\Rightarrow \Lambda_b^0$ data is used to calibrate trigger efficiency, and life time measurement

Event selection

- Hadron trigger: hardware trigger (p, K, π) , and high level software trigger (Ξ_c^+)
- Final state hadrons, p, K, π: particle ID, not produced from primary vertex (PV)
- $\land \Lambda_c^+$ or Ξ_c^+ : good vertex quality, separated from PV
- Multivariate selector is used to further suppress the backgrounds
 - ⇒ p_T , decay angle, vertex fitting quality, IP χ^2 , flight distance

As a follow-up analysis of
$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$
,
 $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ has similar selection cuts
as in previous analysis.

Mass fit

- Signal: Double-Sided Crystal-Ball + Gaussian
- Background: Exponential function

Yields: (2016) $\frac{\mathbf{z}_{c}^{+}\pi^{+}:91 \pm 20}{\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}:289 \pm 35}$

Mass measurement

• The measured Ξ_{cc}^{++} mass is (with $\Xi_{c}^{+}\pi^{+}$ channel):

⇒ 3620.56 ± 1.5 (*stat*) ± 0.4 (*syst*) ± 0.3 (\mathcal{Z}_c^+) MeV/ c^2

- Consistent with $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ result:
 - ⇒ 3621.40 ± 0.72 (*stat*) ± 0.27 (*syst*) ± 0.14 (Λ⁺_c) MeV/c²
- Combined results:

→ 3621.24 ± 0.65 (*stat*) ± 0.31 (syst) MeV/c²

 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

Branching fraction measurement

The ratio of branching fraction is defined as:

$$\mathcal{R} = \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})} \times \frac{\mathcal{B}(\Xi_{c}^{+} \to p K^{-} \pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to p K^{-} \pi^{+})}$$
$$= \frac{N(\Xi_{c}^{+} \pi^{+})}{N(\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})} \cdot \frac{\varepsilon(\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})}{\varepsilon(\Xi_{c}^{+} \pi^{+})}$$
No direct branching

No direct branching fraction measurement of $\Xi_c^+ \rightarrow p K^- \pi^+$ from experiments.

Measure the signal yields and efficiency for each channel

- $\bigcirc \mathcal{R} = 0.035 \pm 0.009 (stat) \pm 0.003 (syst)$
 - Consistent with prediction

2018/09/15

F.-S. Yu et al., Chin. Phys. C 42051001 (2018)

U

Uncertainty

· · · · · · · · · · · · · · · · · · ·	$\Xi_{cc}^{++} ightarrow \Xi_{c}^{+} \pi^{+}$ channel	
Source	Mass $[MeV/c^2]$	$\mathcal{R}(\mathcal{B})$ [%]
Momentum calibration	0.38	
Selection bias correction	n 0.10	
Fit model	0.05	5.2
Relative efficiency		6.5
Simulation modelling		1.2
Selection		0.7
Sum in quadrature	0.40	8.5

With limited statistics of both signal and control samples, the dominated uncertainty is statistical uncertainty (1.5 MeV, 0.009)

First measurement of the lifetime of \mathcal{Z}_{cc}^{++}

\mathcal{Z}_{cc}^{++} lifetime

- Inconsistent with zero in the observation paper
- A lifetime measurement is critical:
 - Confirm it is a weakly decay
 - Necessary ingredient for theoretical prediction of BR
 - → Important information for experimental exploration of Ξ_{cc}^{++}
 - Test various predictions in QCD models

2018/09/15

Predictions: long lived Ξ_{cc}^{++}

W-exchange

- Predicted $\tau(\Xi_{cc}^{++})$ in range of [0.20, 1.05] ps
 - Diquark model, effective constituent model, NRQCD potential model, harmonic oscillator model …
 - Significant non-spectator contribution from Pauli-Interference diagrams

 $\circ \tau(\Xi_{cc}^{++}) \sim 3 - 4 \tau(\Xi_{cc}^{+})$

- ⇒ Destructive Pauli interference in Ξ_{cc}^{++} decays
- → W-exchange between c and d quarks only in Ξ_{cc}^+ decays

Analysis strategy

○ Same data sample, event selection as previous Ξ_{cc}^{++} observation

- Specific trigger requirement to simplify trigger efficiency determination
- → Signal yields (2016): 313 → 304

• Measure decay time distribution relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$

Acceptance correction based on MC

Weighted unbinned maximum likelihood fit (sFit)

Y. Xie, <u>arXiv:0905.072</u>

$$f_{\mathcal{Z}_{cc}^{++}}(t) = f_{\Lambda_b^0}(t) \times \frac{\epsilon_{\mathcal{Z}_{cc}^{++}}}{\epsilon_{\Lambda_b^0}} \times e^{-\left(\frac{t}{\tau_{\mathcal{Z}_{cc}^{++}}} - \frac{t}{\tau_{\Lambda_b^0}}\right)}$$

Selected candidates

Signal: Double-sided Crystal-Ball + Gaussian
 Background: 2nd order Chebychev

Yields: (2016) $\frac{z_{cc}^{++}:304 \pm 35}{\Lambda_b^0:3379 \pm 119}$

Doubly-Charmed Baryon Results

Lifetime fit

Lifetime fit

U

Systematic Uncertainty

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014

O Binning:

 Systematics due to binned acceptance estimated with pseudo experiments

O Resonant:

→ Weight MC to match $M(K^-\pi^+\pi^+)$ (for \mathcal{Z}_{cc}^{++}), and $M(\pi^-\pi^+\pi^-)$ (for Λ_b^0) distributions in data

Measured results:

$\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}(\text{stat}) \pm 0.014 \text{ (syst) ps}$

Cross-checks and Results

Various cross-checks had been done: no evidence of other effects

- → Charge: Ξ_{cc}^{++} vs. $\overline{\Xi}_{cc}^{--}$
- Magnet polarities: Down vs. Up
- Number of PV
- Binned χ^2 fit: consistent with nominal result
- Λ_b^0 lifetime using simulation-based acceptance correction, consistent with PDG Value

Confirmation of \mathcal{Z}_{cc}^{++} with $\mathcal{Z}_{c}^{+}\pi^{+}$ channel First measurement of \mathcal{Z}_{cc}^{++} lifetime: weakly decay

Summary

- Characteristic LHCb detector is designed for the heavy flavour physics
- LHCb has made significant progresses in the study of doublycharmed baryon: Ξ_{cc}^{++}
 - ⇒ Confirmation of the observation of Ξ_{cc}^{++} using $\Xi_{c}^{+}\pi^{+}$ channel
 - → Measurement of Ξ_{cc}^{++} lifetime: long lifetime as expected
- More data collected in Run-II

Stay tuned for new results !

Backup

LHCb trigger

- Run real-time alignment and calibration of the detector
- Data buffered out of first software trigger stage
- Second software trigger runs asynchronously
- Permits Turbo real-time analysis strategy
 - Candidates reconstructed at the trigger level saved directly for offline analysis + (online alignment and calibration)

The first two analyses of today's talk benefit from the Turbo stream.

Comput. Phys. Commun. 208 (2016) 35-42 Int. J. Mod. Phys. A 30, 1530022 (2015)

Hadron spectroscopy @ LHCb

Prospects

- Searching for Ξ_{cc}^{++} with more channels: $\Xi_{c}^{+}\pi^{+}$, $\Lambda_{c}^{+}\pi^{+}$, $pD^{+}K^{-}\pi^{+}$...
- OMeasurement of the \mathcal{E}_{cc}^{++} lifetime
- OMeasurement of the production cross-section
- ○Confirming its spin-parity: ½⁺
- ○Searching for its isospin partner Ξ_{cc}^+ in a larger sample than the previous measurement
- Osearching for Ω_{cc}^+
- Oboubly heavy baryons with bottom quark: Ξ_{bc} , Ω_{bc} , Ξ_{bb} ...
- The excited states?
- OAnd new systems for CP violations

11/07/2017

Observation of \mathcal{Z}_{cc}^{++}

○ $\mathcal{Z}_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$ observed by LHCb experiment using 2016 data Phys. Rev. Lett. 119, 112001 (2017)

Compared with SELEX results

○ Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} - m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2$ MeV

Inconsistent with being isospin partners

• Production: $N(\Xi_{cc})/N(\Lambda_c^+)$ much smaller in LHCb result

SELEX result in tension with predictions

O Models to determine masses of ground state and excitations:

- (non-) relativistic QCD potential models, triple harmonic-oscillator potential model, QCD sum rules, bag model or quark model ...
- ⇒ Predicted $\mathcal{Z}_{cc}^{+,++}$ masses in range **3**. **5 3**. **7** GeV,
- ⇒ Masses of Ξ_{cc}^+ and Ξ_{cc}^{++} only differ by a few MeV due to u, d symmetry

Doubly-Charmed Baryon Results

Analysis strategy $\Xi_c^+\pi^+$ (Blinded analysis)

- Event selection of $\mathcal{Z}_c^+\pi^+$ candidates, 2016 data
- O Multivariate selector to suppress combinatorial background
 - Simulation as signal, data upper sideband as background
- Open signal window
 - $\gg 3\sigma$ signal: mass measurement, ratio of branching fraction
 - Otherwise: upper limit setting

Studies of Ξ_{cc} by SELEX experiment

○SELEX (Fermilab E781) collides high energy hyperon beams (Σ^- , p) with nuclear targets, dedicated to study charm baryons

Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays \Rightarrow Signal yields: 15.9 ($\Lambda_c^+ K^- \pi^+$) and 5.62 (pD^+K^-) ⇒ Short lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero ⇒ Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\pi^+)} \sim 20\%$ Very puzzling Mass (combined): <u>3518.7 + 1.7 MeV</u> ا س کو 3200 Predicted $\Xi_{cc}^{+,++}$ mass 3650 3600 3550 ⊨ SELEX Ξ⁺_{cc} 3500 Doubly-Charmed Baryon Results 2018/09/15 3450

Studies of Ξ_{cc} by FOCUS

OFOCUS (Fermilab E831) studies charm hadrons produced in photon-nuclear fixed target collisions

○FOCUS didn't confirm Ξ_{cc}^+ observed by SELEX in $\Lambda_c^+ K^- \pi^+$ decay

36

Studies of Ξ_{cc} by BaBar and Belle

○ e^+e^- colliders working at Υ(4S) mass $\sqrt{s} = 10.58$ GeV ○Large Λ_c^+ yields: ≈ 0.6 M at BaBar, ≈ 0.8 M at Belle ○SELEX-like Ξ_{cc}^+ signal not confirmed in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays

Studies of Ξ_{cc}^+ by LHCb: Run-l

OLHCb searched for Ξ_{cc}^+ → $\Lambda_c^+ K^- \pi^+$ decay with 0.65 fb⁻¹ of 7 TeV data ON(Λ_c^+) ≈ 0.8 M, requiring high- p_T

○No significant peaking structure observed with $m \in [3.3, 3.8]$ GeV

• Experiment sensitivity strongly depends on $\Xi_{CC_{cc}}^+$ lifetime $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ - \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} < 0.013$ for $\tau = 1$

$\mathcal{Z}_c^+\pi^+$ Prediction

$$\mathcal{B}(\Xi_{\rm cc}^{++} \to \Xi_{\rm c}^{+} \pi^{+}) = \left(\frac{\tau_{\Xi_{\rm cc}^{++}}}{300 \,\mathrm{fs}}\right) \times 7.2\%.$$

$$\begin{aligned} &\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+}) = (2.2 \pm 0.8)\%. \\ &\text{as } \mathcal{B}(\Xi_{c}^{+} \to p\overline{K}^{*0}) / \mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+}) = 0.54 \pm 0.10 \quad [33]. \\ &\text{Besides, the relation } \mathcal{A}(\Xi_{c}^{+} \to p\overline{K}^{*0}) = \mathcal{A}(\Lambda_{c}^{+} \to \Sigma^{+}K^{*0}) \\ &\text{holds under } U\text{-spin symmetry. With the measurement} \\ &\text{of } \mathcal{B}(\Lambda_{c}^{+} \to \Sigma^{+}K^{*0}) = (0.36 \pm 0.10)\% \quad [34], \text{ the branching} \end{aligned}$$

$$\mathcal{B}(\Xi_{\rm cc}^{++} \to \Sigma_{\rm c}^{++}(2455)\overline{\rm K}^{*0}) = \left(\frac{\tau_{\Xi_{\rm cc}^{++}}}{300\,{\rm fs}}\right) \times (3.8 \sim 24.6)\%,$$
(11)

Decay time distributions and acceptance

$\Xi_{cc}^{++}/\Lambda_b^0$ lifetime ratio comparison

