

SM Higgs Results @CMS

Mingshui Chen

牡丹江论坛 2018.09.15-16 济南

Large Hadron Collider (LHC) at CERN

Large Hadron Collider (LHC) at CERN

The Higgs boson, found in 2012, "completes" the Standard Model of particle physics.

But ...

- The SM model still does not explain many of the phenomena of our physical universe
 - neutrino masses, baryon asymmetry of the universe, dark matter
- Need "Beyond the Standard Model (BSM)": many ideas, theories and models
 - A broad investigation on many fronts is necessary
- The discovery of the Higgs boson opens a new window for us to understand the universe
 - Studying the properties of the Higgs, looking for deviations from the SM predictions

→ Require more statistics

Outline

- LHC and CMS status
- Recent SM Higgs Results
 - Bosonic Channels
 - Higgs Yukawa interactions
 - Combination
- Outlook and Summary

CMS 所有物理结果请参考

http://cms-results.web.cern.ch/cms-results/public-results/publications/

Run Status

CMS Integrated Luminosity, pp

Results shown here mostly based on 2016 w/wo 2017 data

Challenge to the experiments

A Z->μμ event with 28 vertices

CMS Evolution in 2017/18

CMS Design

- Very large solenoid -6m diameter x 13 m long
 - Tracking and calorimetry fit inside
- Very strong field 3.8T
 - Excellent momentum resolution
- Chambers in the return iron track and identify muons, leading to a very compact system
- A lead tungstate crystal calorimeter (~76K crystals) for photon and electron reconstruction
- Hadron calorimeters for jet and missing E_t reconstruction to η~5
- Charged Particle Tracking with allsilicon components
 - A silicon pixel detector out to radius ~ 20 cm
 - A silicon microstrip detector from there out to 1.1 m
- Weight, dominated by steel, is 14,000 Tons

CMS is continuously upgraded to handle higher luminosity and do better physics

Detector performance

b tagging efficiency

fraction of active channels

Photon Isolation from Charged Hadron

CMS

CMS

Muon p_r [GeV]

42.0 fb⁻¹ (13 TeV)

CMS

E_TLeading [GeV] 12.8 fb⁻¹ (13 TeV)

Data

Simulation

 $\gamma^*/Z \rightarrow e^+ e^-$ Preliminary

tW, WW, WZ, ZZ, ττ

 $\gamma^*/Z \rightarrow \mu^+\mu^-$

1000 1200

1000 1200

WW, WZ, ZZ, ττ, Jets

from 2.7 TeV

μ⁺μ⁻ pair

p_T (μ)

600 800

200

300

 $Z\rightarrow \mu\mu\gamma$

barrel

Events / 10 GeV

10

(data-bgk)/bgk

Higgs @ LHC

- Thanks to the Higgs mass ~ 125 GeV, very rich program on Higgs @ LHC
- All the main production and decay modes are under scrutiny by ATLAS and CMS

Higgs to bosons – entering precision era

ZZ and γγ: Low branching ratios but clean signatures and full system reconstruction

Higgs mass

- Most precise measurement at the moment comes from CMS $H \rightarrow ZZ \rightarrow 4l$ mass measurement with 2016 data $m_H = 125.26 \pm 0.21$ GeV
- Still limited by statistical uncertainties → impact on coupling ~0.5%

Higgs differential cross sections

- Measurements of fiducial and differential cross-section distributions made already at Run-1 with low statistics
- Now with more bins and better precision

Simplified template cross sections

 Simplified template cross-sections (STXS) defined by common effort in the LHC Higgs cross-section group: LHC-wide agreement phase-space and object definition

Cross Sections split by production mode and region of phase space

 Using these, and/or individual experimental measurements, EFT fits will allow more detailed SM tests – and perhaps provide hints of BSM

structure

Over the last few years, CMS has worked hard to establish the Yukawa couplings to the heaviest fermions, τ , b, top

→ The Higgs Yukawa interaction is a highly motivated conjecture to give mass to the fermions

Observation of $H \rightarrow \tau^+\tau^-$

- BR~ 6.3%, best channel to establish coupling of Higgs boson to fermions
- Final states: $\tau_h \tau_h$; $e\tau_h$; $\mu \tau_h$; $e\mu \rightarrow$ Significance of 4.9 σ observed (4.7 σ expected) with 2016 13 TeV data
- Combination with 7, 8 TeV data: 5.9σ obs. $(5.9\sigma$ exp.) and μ = 0.98 \pm 0.18

First direct observation by a single experiment of Higgs coupling to fermions!

-Observed before in CMS+ATLAS combination

First direct observation of H coupling to leptons and to fermions of the 3rd generation!

tīH coupling (two years ago)

- Indirectly established at Run 1 through the ggH loop process, but model dependent
- The direct ttH coupling was evident, but somewhat higher than expectation

SM structures and no BSM assumed

Obs. (exp.) 4.4σ (2.0 σ)

Direct ttH searches

 Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

Direct ttH searches

 Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

$$\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16} (\text{stat.}) ^{+0.17}_{-0.15} (\text{exp.}) ^{+0.14}_{-0.13} (\text{bkg.th.}) ^{+0.15}_{-0.07} (\text{sig.th.})$$

First ttH observation

- Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...
- First 5σ observation of t̄tH

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16} \text{(stat.)} ^{+0.17}_{-0.15} \text{(exp.)} ^{+0.14}_{-0.13} \text{(bkg. th.)} ^{+0.15}_{-0.07} \text{(sig. th.)}$

Establishes directly the tree-level coupling to an up-type quark

Higgs → bb

- Biggest branching fraction, but massive bb background from QCD processes
 - Choose a weak interaction production mode to reduce hadronic backgrounds (QCD multijet, top, mainly Associated Production with a W or Z, VH(bb)
- Signal is a di-jet mass enhancement which has many challenges
- Three channels in VH(bb): $V(W \rightarrow I n, Z \rightarrow II, Z \rightarrow nn)$ H(bb)
 - Require Vector Boson to be back-to-back w.r.t. the bb system
- Several improvements for 2017 analysis, including heavy reliance on DNNs, DEEPCSV
- Analysis validated using VZ(bb)

ZH(bb) Candidate Event

Combination of all H->bb results from Run 1 and 2

arxiv:1808.08242

- VH(bb) from 2016/17 at 13 TeV, 77.2 fb⁻¹
 - Significance: 4.4 σ obs (4.2 exp)
- With VH(bb) including also 7 and 8 TeV
 - Significance: 4.8 σ obs (4.9 exp)
- Including new results and all published data from Run 1 and Run 2
 - Run 1:
 - ttH(bb), VBF H→bb, VH(bb)
 - Run 2:
 - ttH(bb), Boosted ggH(bb) (2016)
 - VH, H→bb (2016 + 2017)

5.6 (5.5) σ observed (exp.) for H \rightarrow bb!

$$\mu$$
 = 1.04 +0.20 -0.19

Higgs rare decays

Many studies, all compatible with SM predictions

Higgs Combination

- Analyses used for combination cover all main production and decay modes on 2016 13 TeV dataset (35.9 fb⁻¹)
 - VH(→ττ) missing
- Total of 250 individual categories (counting signal and control regions) and ~ 5400 nuisance parameters in the combined fit

	ggF	VBF	VH	ttH
H→ZZ→4I	•	•	•	•
Η→γγ	•	•	•	•
H→WW	•	•	•	•
H→bb	•		•	•
Η→ττ	•	•		•
Н→μμ	•	•		
H→inv	•	•	•	

$$\mu_i^f \equiv \frac{\sigma_i \cdot BR^f}{(\sigma_i \cdot BR^f)_{SM}}$$

Signal strengths

- Overall signal strength compatible with the SM
- Not anymore dominated by statistics, already moving to less inclusive measurements

Signal strengths

- Overall signal strength compatible with the SM
- Not anymore dominated by statistics, already moving to less inclusive measurements

Kappa models

 Benchmark model fits: kappa framework and further test for deviations from SM expectations

$$\kappa_j^2 = \sigma_j / \sigma_j^{\rm SM} \quad \kappa_j^2 = \Gamma_j / \Gamma_j^{\rm SM}$$

Coupling modifiers known to the 10-20% level

Combination of differential cross sections

- Differential cross sections
 - Dominated by statistical uncertainty
 - All for an EFT interpretation of Higgs differential distributions -> coupling constraints
 - Sensitive to k_b/k_c (low p_T), k_t/BSM (high p_T)

CMS PAS HIG-17-028

Looking forwards

• Good hope to reach 150 fb⁻¹ in Run 2 alone

Much more work now devoted to upgrades

Summary

- Approaching a decade after the start, the LHC is now a mature machine, and the detectors are stable, and very well understood
- Direct observation on ttH: it's there at tree-level, and $y_t \approx 1$
- Established the Yukawa couplings to the heaviest fermions, τ, b, top
- Still no significant deviation/excess from CMS, but only two percents of the full LHC data sample analyzed!
- Completion of Run-2, upgrades and then much more data beyond
- Let's hope something is still hiding out there

The future is bright!

"钱"景光明!

back up

- ggH+VBF (Run2): 4.9 σ (3.7 σ exp.)
- VH (Run2): 2.3 σ (1.0 σ exp.)
- ggH+VBF+VH combination (Run2): 5.5 σ (4.8 σ exp.)

ttH

Phys. Rev. Lett. 120, 231801 – Published 4 June 2018

Higgs is too light to decay into two tops

- Signature is production of two top quarks and a Higgs
 - The top is observed its its decay to Wb with the W decaying leptonically or hadronically
 - The analysis uses Higgs decays to bottom-quark-anti quark pairs, $\tau^+\tau^-$, $\gamma\gamma$, WW* and ZZ* (various quark and multi-lepton channels)
 - Hadronic τ decays, τ_h , are used
 - A total of 88 different event topologies, consisting of leptons, photons and jets, are combined to get the result
 - Use of Deep Neural Nets is pervasive
- Main systematic uncertainties are
 - Experimental: lepton and b jet identification efficiencies; τ_h and jet energy scales
 - Theory on background calculations: modelling uncertainties in tt production in association with a W or Z or a pair of b or c jets
 - Theory on signal calculations: effect of higher order corrections on ttH cross sections and uncertainty in proton PDFs
- The $\gamma\gamma$ and ZZ* states are limited by statistics; H \rightarrow bb and H \rightarrow leptons by systematics

H→bb: explore new regimes/ideas

 Direct search for gg→H→bb
Search for VBF, with an with boosted H→bb events

additional high p_⊤ photon

Higgs $\rightarrow \mu^+\mu^-$

CMS-HIG-17-019

- Best chance at measuring a coupling to a second generation fermion, even though branching fraction (BR) $\sim 2.2 \times 10^{-4}$, about 1/10 of $\gamma \gamma$.
- CMS has looked for this in 7,8, and 13 TeV (2016 only) data
- Current 95% CL upper limit on BR is 6.4x10⁻⁴, 2.92 (observed) vs 2.16 (expected) of the SM prediction.

Higgs @ LHC

All the main production and decay modes are under scrutiny.

Additional Higgs?

Many searches, no significant excess yet

Kappa models

- Use the LO coupling modifier or "kappa" framework to probe for deviations from the SM
- Parameters scale cross sections and partial widths relative to SM
- Option to consider decay to BSM particles via BR_{BSM} term which also scale total width

$$\kappa_j^2 = \sigma_j / \sigma_j^{\rm SM} \quad \kappa_j^2 = \Gamma_j / \Gamma_j^{\rm SM}$$

$$\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

$$\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{1 - BR_{BSM}}$$

$$\kappa_H^2 = \sum_j \mathrm{BR}_{\mathrm{SM}}^j \kappa_j^2$$

$$BR_{BSM} = BR_{inv.} + BR_{undet.}$$

SM HH production

- Low cross section (31 fb @ 13 TeV): destructive interference
- SM cross section not accessible with Run 2 data
 - HL-LHC benchmark
- Expanding list of final states for studies

combined constraint on the self coupling

Prospect @ HL-LHC

expected uncertainty