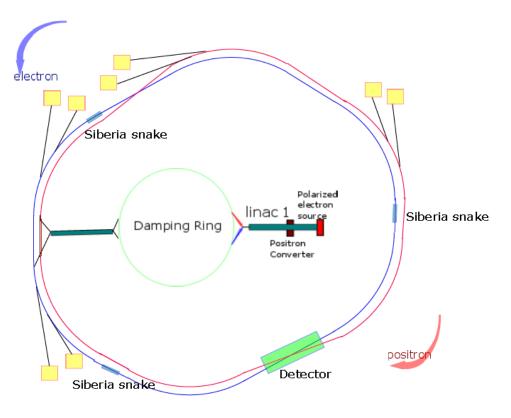
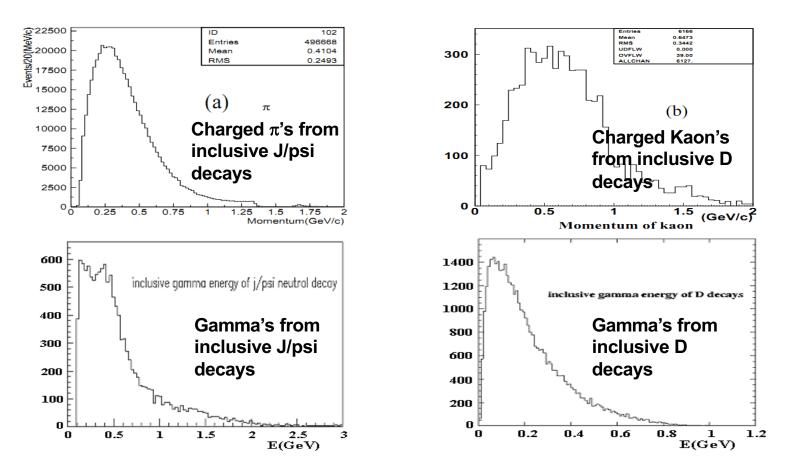
Detector for the Super Tau-Charm Facility


Jianbei Liu

For the growing STCF detector group State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

牡丹江会议-2018 济南大学 September 15, 2018

Super Tau Charm Facility


 STCF : a natural extension of BEPCII and a viable option for a post-BEPCII HEP project in China.

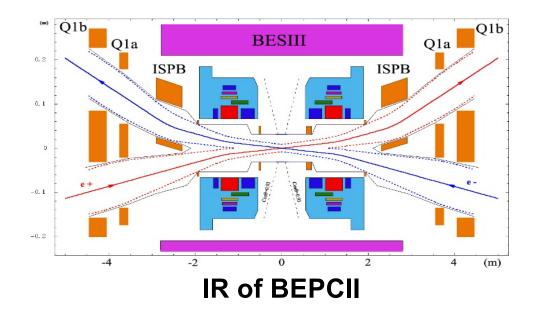
- $E_{cm} = 2-7 \text{ GeV}, L=1 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} @4 \text{ GeV}$
- Symmetrical collision
- double-ring, 600-1000m
- Crab waist scheme
- Single beam polarized

An super *\tau-c* machine far beyond BEPCII

Feature of Final States at STCF

- Final-state particles are largely of low momentum /energy (< 1GeV/c)
- Designs of the HIEPA detector have to match this important feature of final states.

Other Physics Requirements


- E_{cm} of up to 7 GeV demands PID in a large momentum range.
- D⁰D^{0bar} mixing studies requires superior PID (pi/K) capability.
- Measurement with semi-leptonic decays of D mesons and search for cLFV (tau->γμ) call for muon identification with low threshold, high efficiency and purity.

Requirements from Accelerator

• High luminosity ~10³⁵ cm⁻²s⁻¹

– High rate and high radiation level

- Constrains from IR design
- Detailed MDI studies are required

Detector Requirements for STCF

- General considerations and overall requirements
 - Large and well defined acceptance
 - Efficient and fast triggering
 - High efficiency and resolution for both charged and neutral particles
 - Mis-measurement well under control
 - Efficient and precise reconstruction of exclusive final states
 - High rate capability and radiation tolerance,
 particularly around IP and in forward regions
 - Precise luminosity measurement

Continued

• Vertexing (or inner tracking)

 Vertexing not very critical for HIEPA, more to combine with a central tracker for tracking, particularly low p tracking (down to ~50 MeV)

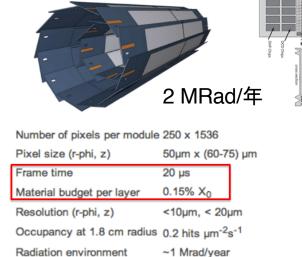
Central tracking

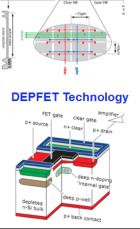
- large acceptance, low mass, high efficiency (p down to ~0.1 GeV) and high resolution (p <~ 1GeV)
- PID
 - π/K separation up to 2GeV, compact and low mass

Continued

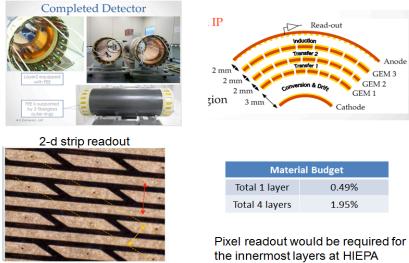
e/γ measurement

- Good energy and position resolution in 0.02-3 GeV
- μ detection
 - –Low momentum threshold (p <~0.4GeV)</p>
 - -high μ efficiency and $\,\pi\,$ suppression power (> 10)
- Magnet
 - -adjustable from 0.5-1.0 T

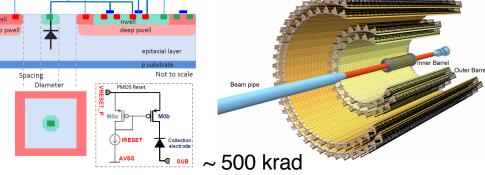

Inner & Outer Trackers


- Dominant factors in low p tracking: multiple scattering and energy loss
- So driving force in design of tracking system: low mass.
- Special design is required for inner tracking to cope with the very high level of radiation close to IP
 - An inner-outer separate design is optimal.
- Detector technology options
 - Inner tracker
 - Low mass, fast and radiation hard silicon detectors: DMAPS
 - MPGD: cylindrical GEM/MicroMegas/uRWELL
 - Outer tracker: a low mass drift chamber

Inner Tracker Technologies


DEPFET

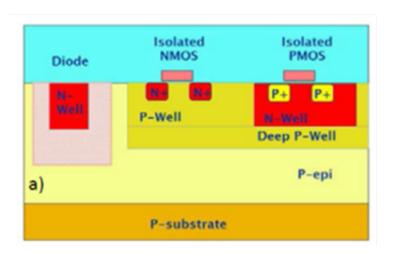
• Two layers of PXD: 1.8 cm and 2.2 cm in radius, consisting of 8 and 12 modules for innermost layer and the second, respectively.

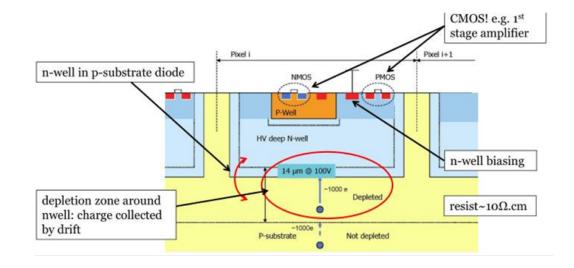


Cylindrical GEM

X pitch 650 μ m \rightarrow X res 190 μ m V pitch 650 μ m \rightarrow Y res 350 μ m

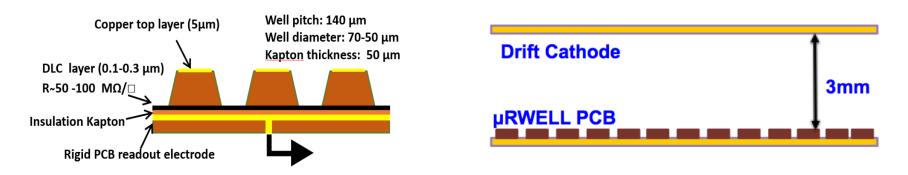
MAPS (ALPIDE)



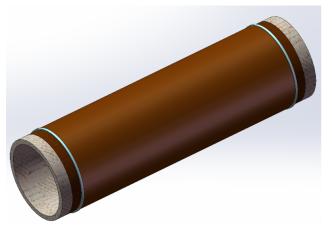

Pixel size: 29*27µm, high resistivity epitaxial, deep PWELL, reverse bias, global shutter (<10 μ s), triggered or continuous readout, resolution < 5um, material budget <0.3%X_o

Cylindrical MicroMegas

CMOS MAPS


Electronics outside the charge collection diode, small capacitance \rightarrow low noise . Long drift distance, low field Electronics inside the large charge collection diode, large capacitance \rightarrow high noise, high power consumption. short drift distance, high field

Depletion is needed for radiation hardness R&D ongoing $\sqrt{\rho V_{bias}} \rightarrow HR$ or HV: two approaches to depletion R&D ongoing Novel on-chip readout schemes also under development for high rate application


Depleted CMOS MAPS \rightarrow low mass, high rate, radiation hard \rightarrow A promising inner tracking technology for STCF

A new MPGD : uRWELL

• Very compact, spark protected, simple to assemble, flexible in shapes, low cost.

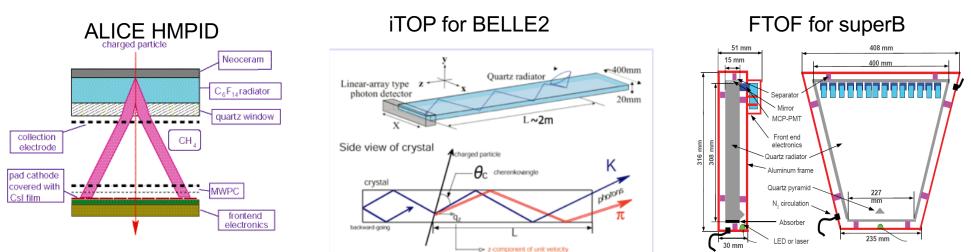
- More importantly, a very promising approach to making a cylindrical MPGD detector
- Another option for the STCF inner tracker

Outer Tracker: A Drift Chamber

- Possible modifications to the BESIII drift chamber
 - R_{in} has to be enlarged to avoid the very high rate region at HIEPA
 - Smaller cell size for inner layers to accommodate a higher count rate
 - No Au coating on Al wires and thinner W wires to reduce material
 - A lighter working gas to reduce material
 - Sharing field wire layers at the axial-stereo boundaries to reduce material

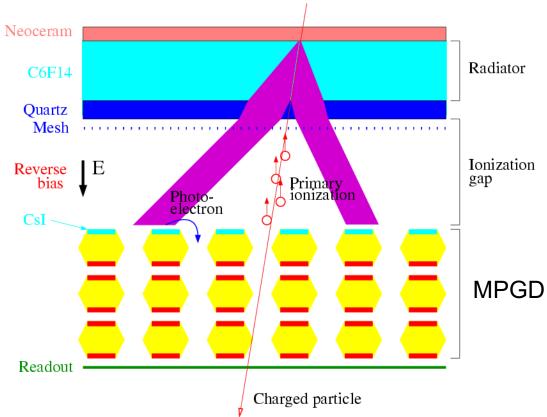
$$\sigma_{x} \sim 130 \,\mu m$$

$$\frac{\sigma_{P}}{P} \sim 0.5\% @1 \,\text{GeV/C}$$

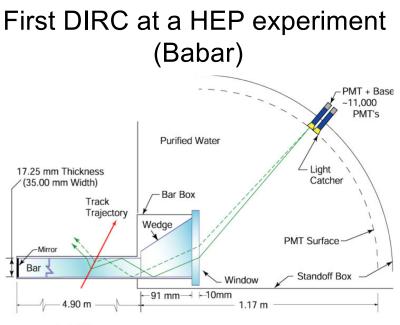

$$\sigma_{\frac{dE}{dx}}$$

$$\frac{\sigma_{W}}{\sigma_{0}} \sim 6\%$$

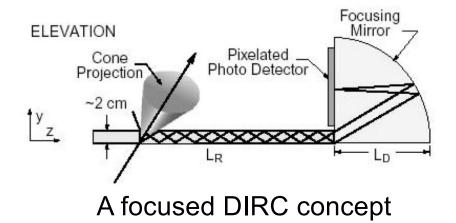
BESIII Drift Chamber

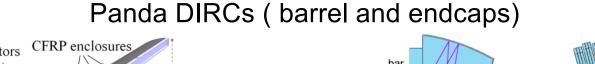

PID Detector

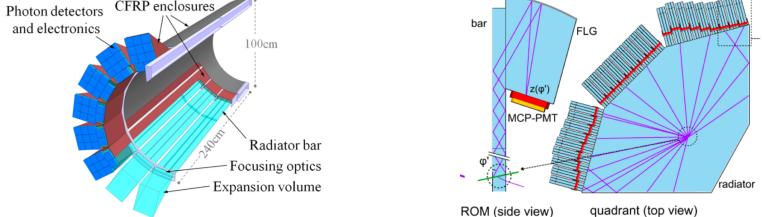
- π/K separation up to 2GeV.
 - Cherenkov-based technology is favorable.
 - Very low p region (<~0.6GeV) covered by trackers through dE/dx
- Compact (<20cm) and low mass (<0.5X₀)
- Detector options
 - RICH, DIRC-like, ...



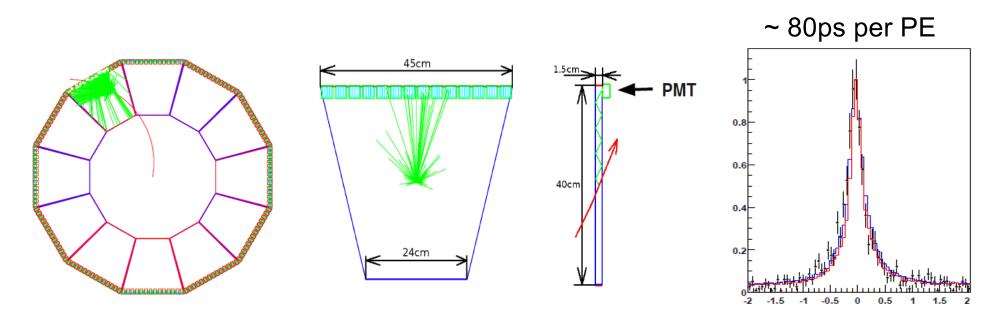
A RICH Design for STCF


- Proximity focusing RICH, similar to ALICE HMPID design, but with CsIcoated MPGD readout
 - avoid photon feedback
 - less ion backflow to Csl
 - Fast response, high rate capacity
 - Radiation hard
- Proximity gap ~10cm
- Radiator: liquid C₆F₁₄, n~1.3, UV detection



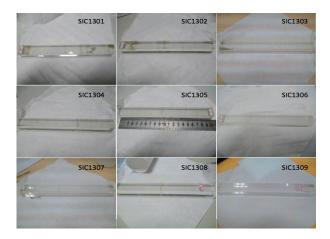

DIRC Detectors

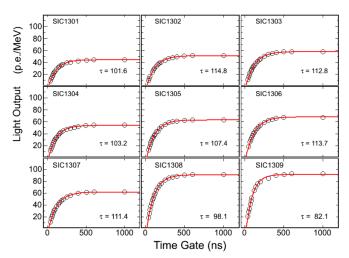
4 x 1.225 m Synthetic Fused Silica Bars glued end-to-end Advent of high performance silicon photon sensors (magnetic field resistant, high-gain, fine granularity, compact, high time resolution) makes a compact DIRC possible



DIRC-like TOF for Endcaps

- DIRC-like forward TOF detector (FTOF: quartz + MCP-PMT) was developed at LAL for the SuperB factory project.
- Also an endcap PID option for STCF.
 - Flight length ~ 1.4 m for endcaps. ~30ps time resolution is required for pi/K separation to reach 2GeV.

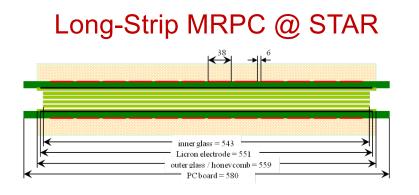

EMC


- Main performance requirements
 - High efficiency for low energy $\boldsymbol{\gamma}$
 - Good energy resolution in low energy region
 - Good position resolution (for γ)
 - Fast response
 - Radiation hardened
- Technology option
 - Crystal + Silicon photon detector (e.g. PD, APD, SiPM)

Crystal Options

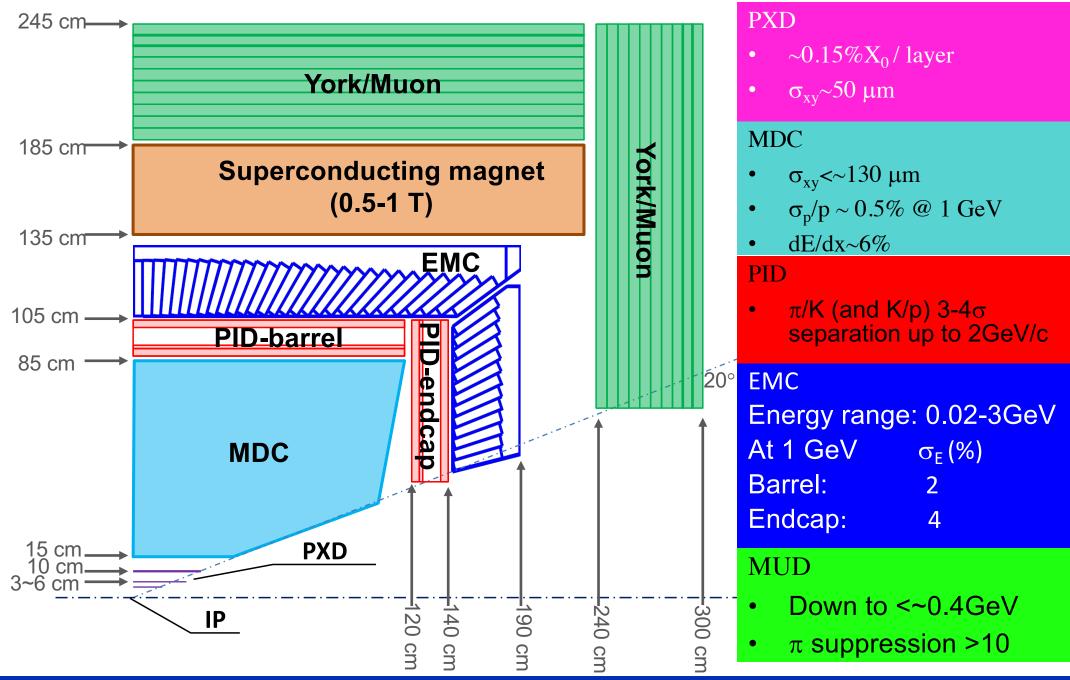
Crystal	CsI(TI)	CsI	BSO	PbWO4	LYSO(Ce)
Density (g/cm³)	4.51	4.51	6.8	8.3	7.40
Melting Point (°C)	621	621	1030	1123	2050
Radiation Length (cm)	1.86	1.86	1.15	0.89	1.14
Molière Radius (cm)	3.57	3.57	2.2	2.0	2.07
Interaction Len. (cm)	39.3	39.3	23.1	20.7	20.9
Hygroscopicity	Slight	Slight	No	No	No
Peak Luminescence (nm)	550	310	480	425/420	420
Decay Time ^b (ns)	1220	30 6	100 26,2.4	30 10	40
Light Yield ^{b,c} (%)	165	3.6 1.1	3.4 0.5/0.25	0.30 0.077	85
LY in 100 ns	13	4.6	2.9	0.37 (2-3x t)	78
LY in 30 ns	4	3.3	1.5	0.26 (2-3׆)	45
d(LY)/dT ^b (%/ °C)	0.4	-1.4	-2.0	-2.5	-0.2
Radiation hardness (rad)	10 ³	104-5	106-7	106-7	10 ⁸
Dose rate dependent	no	no	yes	yes	
Experiment	CLEO, B.AB.AR, Belle, BES III	KTeV,E787 Belle2 1 st SuperB 2 nd	Belle2 3 rd	CMS, ALICE PANDA Belle2 2 nd	SuperB 1 st (Hybrid)

R&D on BSO



Different options for barrel and endcaps

Muon Detector


- Idea to lower muon detection threshold: measuring time of flight at entrance to iron yoke — a timing muon detector.
- Can be realized with MRPC technology

Performance:

- Efficiency: > 98%
- Time resolution: < 80 ps
- Spatial resolution: 0.6 cm
- A possible muon detector configuration
 - 2-3 inner layers with MRPC for precise timing
 - ~8 outer layers with RPC

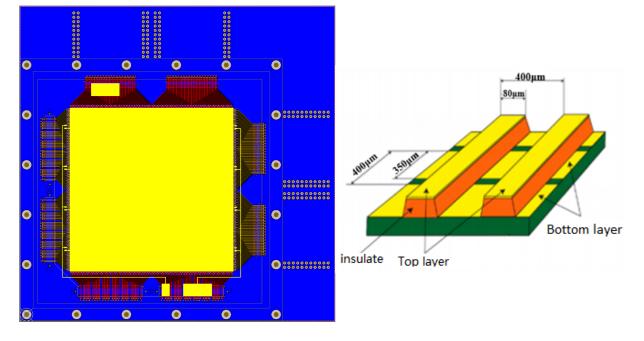
Pre-Conceptual Detector Layout

Advance R&D for STCF Detector

- Supported by an initial fund from USTC and started this June.
- Seek synergies with other R&D projects as much as possible
- Physics simulation
- Detector design and simulation
- Technology R&D is focusing on PID and EMC at present, and will expand to other areas as appropriate.

uRWELL R&D

Design of the 2-D μRWELL PCB



μRWELL PCB

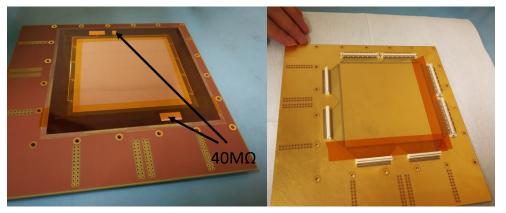
- Sensitive area was divided into 4 sectors
- Well pitch: $140 \ \mu m$
- Pre_preg(50 μm) isolate the DLC electrode from readout strip

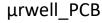
2-D readout strip

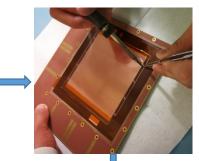
Pitch: 400 μm Top layer: 350 μm Bottom layer: 80 μm Insulate thickness: 50 μm

 $\mu \text{RWELL} \ \text{PCB}$

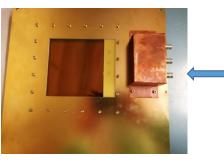
2-D readout strip

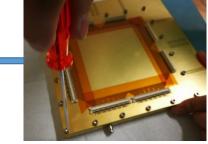

Continued


Fabrication of $\mu RWELL$ detector


- DLC Electrode resistivity: 40MΩ
- 10cm × 10cm active area
- 3mm drift region
- Hirose connector + Panasonic connector

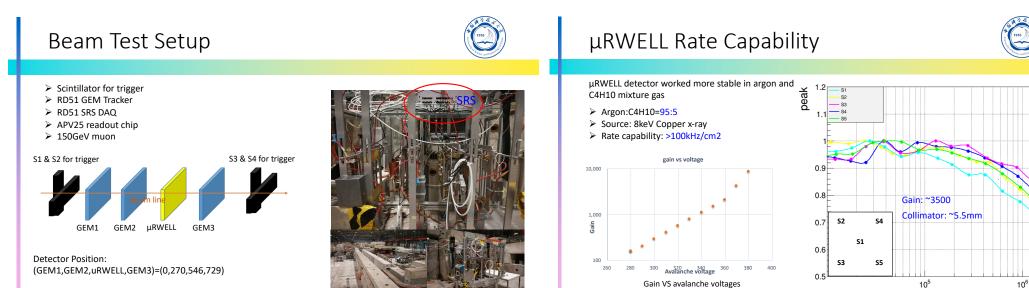
Special thanks to Antonio Teixeira, Rui De Oliveira for the technical support





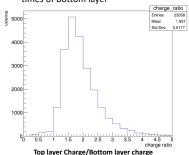
Fix drift electrode

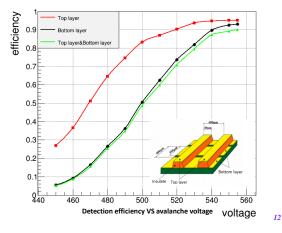
Solder HV Connector



 $\mu RWELL$ Detector

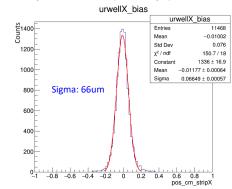
Fix μ RWELL PCB

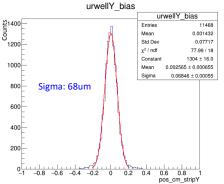

Continued



11

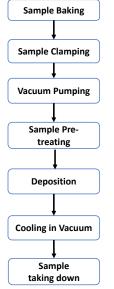
$\mu RWELL$ detection efficiency


- Top layer(Y) efficiency : ~95%
- Bottom layer(X) efficiency: ~92%
- Top & Bottom efficiency: ~90%
- The signal amplitude of Top layer is 1.9 times of Bottom layer



uRWELL position resolution

- Avalanche voltage: 555V
- > Y position resolution(Top layer): 68um
- X position resolution(Bottom layer): 66um

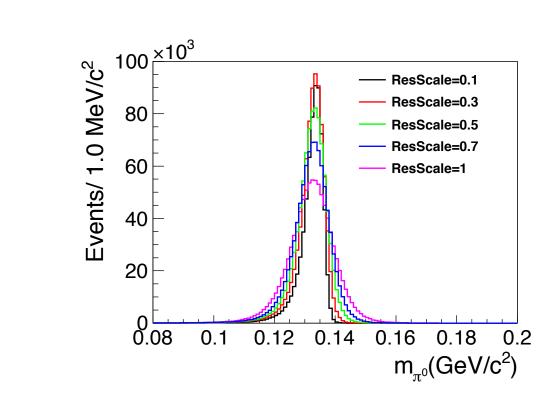


rate(Hz/cm2) 10

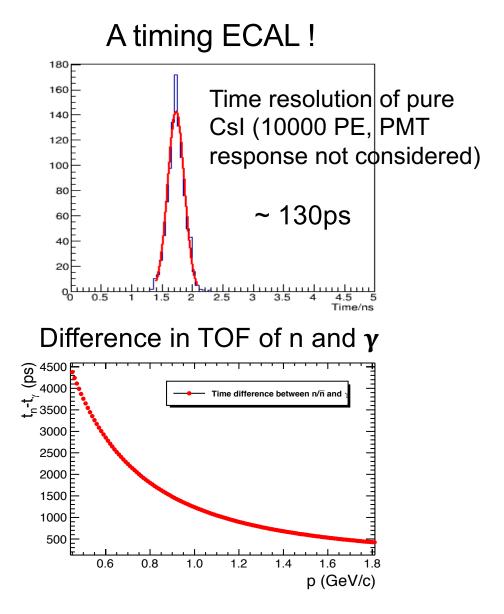
DLC R&D

DLC deposition procedure and devices

- 1. Baking base material at 70 degrees for 12 hours.
- 2. Vacuum pumping to remove the air from the chamber.
- 3. Start procedure to coat DLC on the pre-treated sample.
- 4. Cooling in vacuum to release the inner stress uniformly of the sample.

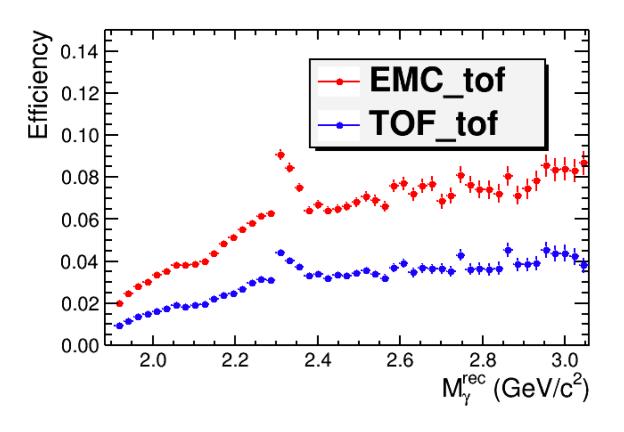

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

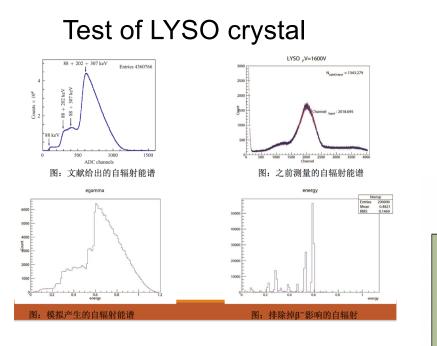
210	200	178	176	200
105	93	96	82	102
68	70	72	71	68
78	77	78	81	77
135	130	120	135	126


Size	Initial vacuum degree	Deposition Time	Current	
30cm×30cm	1.2×10⁻⁵Torr	40 min	1.0 A	

EMC Optimization

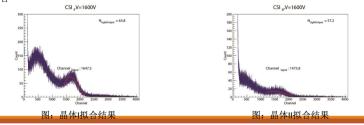
The position resolution of ECAL has a significant impact on object/event reconstruction involving $\boldsymbol{\gamma}$.

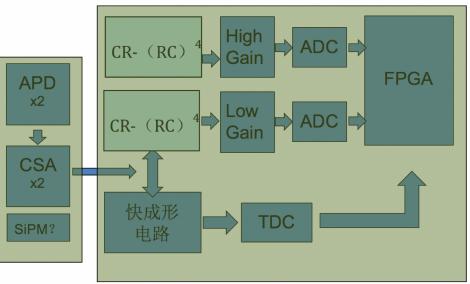

→ Energy resolution is not everything, position resolution also important.


Precise ECAL timing is very useful in suppressing γ background

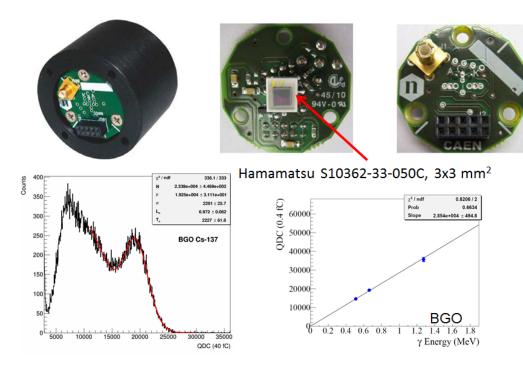
EMC Timing on Physics

- ISR n nbar process
- Use ECAL timing to determine nbar beta
- Efficiency significantly enhanced

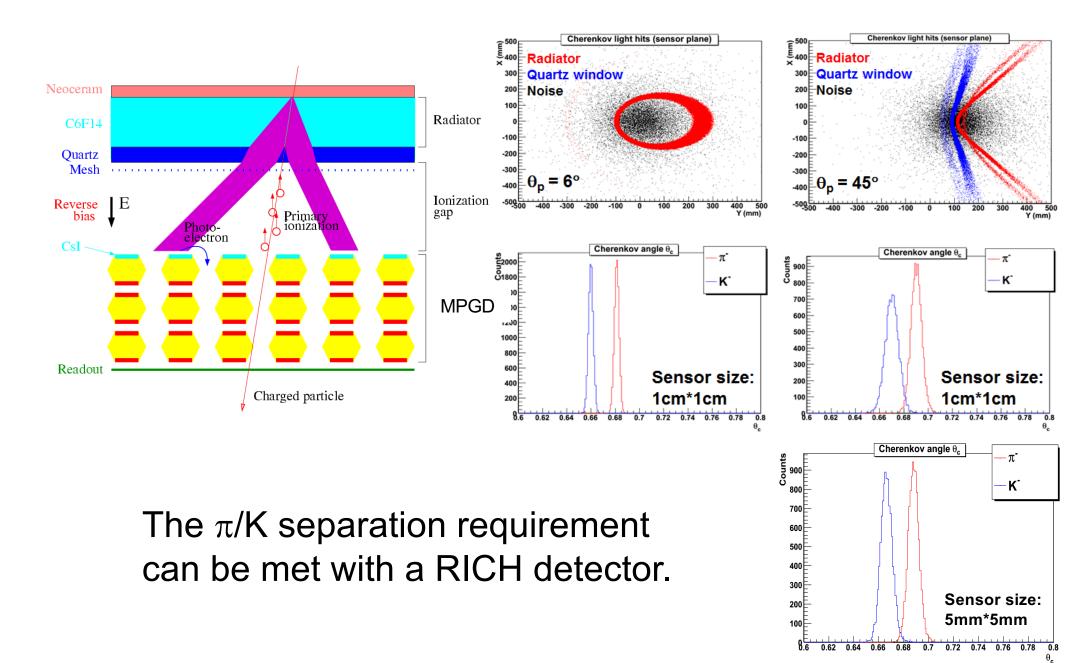

ECAL R&D


Test of pure Csl crystal CSI(pure)晶体测试结果

- ·本次测试使用的PMT仍为普通PMT,未使用透紫的。测试用的放射源为137Cs,产生光子能量662KeV。测试电压为1600V,增益40.
- ·纯CSI晶体的光产额约为BGO的1/7左右,测试结果符合估计
- ·150KeV附近有一个峰的存在,暂时还没有深究其成分
- ·两块晶体的单光电子峰都在39道,由于单光电子峰与信号峰计数率相差太大,因此没有对其进行

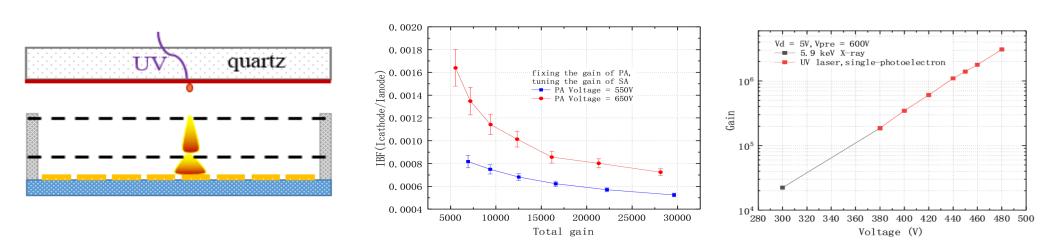


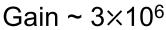
Readout electronics design


SiPM Technology

- SiPM: a novel and rapidly-developing photosensor technology
 - High gain, low equivalent noise, B-field resistant, good time resolution
- R&D at USTC

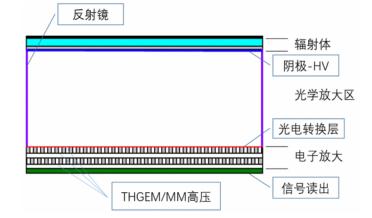
RICH Simulation




MPGD Photon Detector R&D

- A double-mesh Mircromegas detector is under development
 - High gain and very low ion backflow
 - Very suitable for single photon detection (with a proper photon-electron converter)

IBF ~ 0.05%


A promising photon detector option for RICH

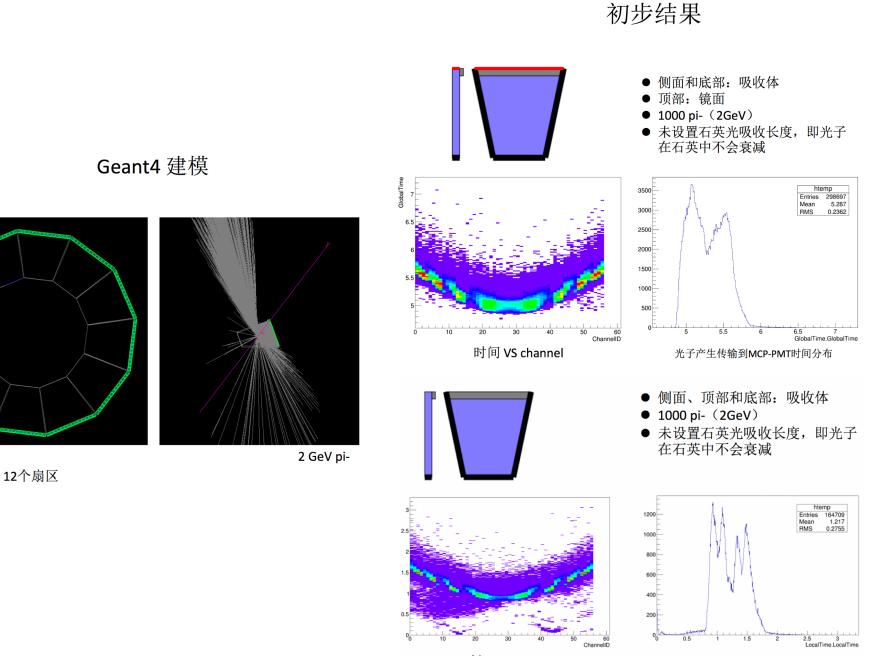
RICH Prototype Design

研制一个如右图的RICH原型样机,并通过该样机对多项技术环节进行检验。该样机可实现多种结构、辐射体和读出方案的实验测试,可方便调换不同部位的设计。

主要参数:

辐射体:高纯熔融石英(厚度1cm/0.5cm),高纯全氟己烷(厚度1.5cm)+0.2cm石英窗 光学放大区:8-12cm

灵敏区面积:16cm*16cm

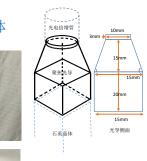

读出通道数:512(四角读出,每单元1cm²,双读出),或1024(pixel读出,每单元 0.25cm²)

读出要求:四角读出需分别测量信号电荷和时间;点阵读出需测量Hit和时间

读出方式:THGEM+MM/DMM,或DMM,反射式光阴极

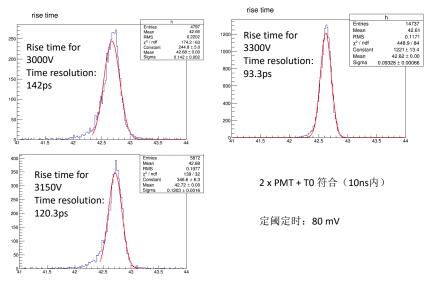
工作气体:Ar+CH4(+CF4)等;

FTOF Simulation


时间 VS channel

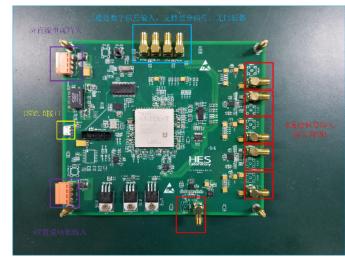
34

光子产生传输到MCP-PMT时间分布

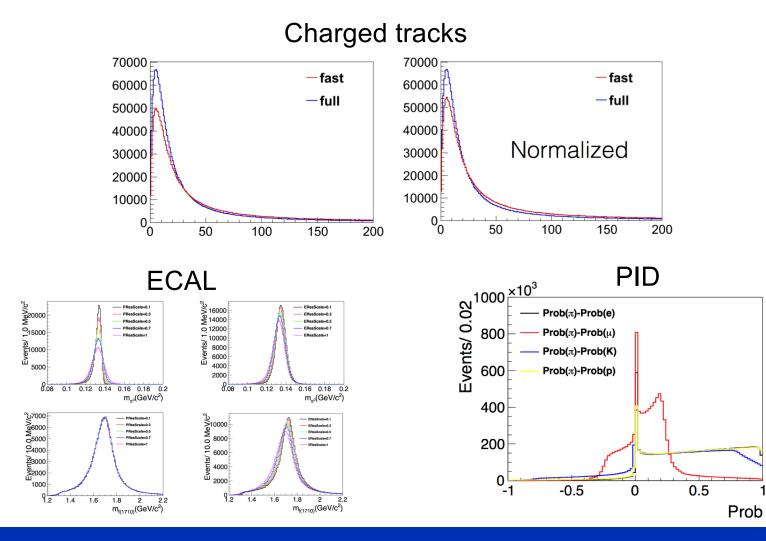

FTOF R&D

实验方案 MCP-PMT(R3809U)+不同尺寸熔融石英晶体 光电倍增管 ▶15mm x 15mm x 50cm + 光导 ▶15mm x 15mm x 32cm + 光导 医宙光 > 光导(38mm长) >5mm x 5mm x 5mm (T0) 前沿定时: 石英晶体 测试FTOF在不同工作电压和阈值 下的本征时间分辨

32cm石英+PMT的时间分辨(示波器读出)


束流 CERN H4 500GeV Muon 光导+PMT TO 束流 CERN H4 500GeV Muon то 32/50cm石英+PMT

实验方案



Readout electronics development

Fast Simulation

• A simple physics simulation framework is under development.

Organization

• Working groups and regular meetings

STCF ECAL Working Group	STCF PID Working Group		
	STCF PID system design and technology development September 2018		
12 Sep STCF ECAL (protected) New! August 2018	 19 Sep STCF PID Working Group Meeting (protected) 05 Sep STCF PID Working Group Meeting (protected) August 2018 		
29 Aug STCF ECAL (protected) 15 Aug STCF ECAL (protected)	 22 Aug STCF PID Working Group Meeting (protected) 08 Aug STCF PID Working Group Meeting (protected) July 2018 		
STCF Physics/MC Working Group	 25 Jul STCF PID Working Group Meeting (protected) 11 Jul STCF PID Working Group Meeting (protected) 04 Jul STCF PID Working Group Meeting (protected) 		
July 2018 25 Jul STCF Physics/MC Working Group Meeting (protection)	Dune 2018 06 Jun STCF PID Working Group Meeting (protected) (protected)		
	May 2018		

Final Remarks

- STCF is definitely NOT a project of some one's or some institute's. It's a project for ALL of us!
- And only so will the project be a success.
- It really belongs with our young (or not that young) generation.
- So please join us and let's work together hard to make it happen.