

Jian Tang Sun Yat-Sen University, Guangzhou

Many thanks to my collaborators:

Yibing Zhang, Tse-Chun Wang(SYSU),

Yu-Feng Li(IHEP, China), Gui-Jun Ding(USTC),

Emilio Ciuffoli, Jarah Evslin, Qiang Fu(IMP, China)

Mostly based on the following work: arXiv:1705.09500 (Phys. Rev. D97(2018)035018.) arXiv: 1708.04909 (Phys. Lett. B774 (2017) 217.) arXiv:1801.01266 (Phys. Rev. D97(2018)113003)

Jinan University, Shandong province, China Sep. 14th--16th, 2018

Table of Contents

- Motivations of accelerator neutrino experiments
- CC-NSIs at MOMENT
- Tests of non-unitarity violation with future's accelerator neutrino facilities
- Neutrino Activation Analysis with accelerator neutrinos
- Summary

Table of Contents

- Motivations of accelerator neutrino experiments
- CC-NSIs at MOMENT (MuOn decay MEdium-baseline NeuTrino beam facility)
- Tests of non-unitarity violation with future's accelerator neutrino facilities
- Neutrino Activation Analysis with accelerator neutrinos
- Summary

Status of neutrino mixings

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Parameter	Value	Precision	(%)
Δm^2_{21}	7.37 10 ⁻⁵ eV ²	2.3	(2017)
$\theta_{_{12}}$	34°	5.8	14
Δm^2_{32}	2.52 10 ⁻³ eV ²	1.6	et al. 0960
θ_{23}	42°	~9	ozzi) 95,
θ_{13}	8.4°	4	Cap

- Not precise enough!
- Can we achieve the level similar to CKM?

• Sub-percent level in CKM.

Neutrino oscillations in matter

Oscillation probability in a perturbative expansion

$$\begin{split} \alpha &\equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \,, \quad \Delta \equiv \frac{\Delta m_{31}^2 L}{4E} \,, \quad A \equiv \frac{VL}{2\Delta} \\ P_{\nu_e \to \nu_\mu} &= \\ &+ 4 \, s_{13}^2 \, s_{23}^2 \, \frac{\sin^2 (A-1) \Delta}{(A-1)^2} \\ &+ \alpha s_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos (\Delta - \delta_{\rm CP}) \frac{\sin A \Delta}{A} \, \frac{\sin (A-1) \Delta}{A-1} \\ &+ \alpha^2 \, \sin^2 2\theta_{12} \, c_{23}^2 \, \frac{\sin^2 A \Delta}{A^2} \end{split}$$

- θ_{13} controls the amplitude.
- $\delta_{\rm CP}$ is a low energy effect.
- MH is determined in the high energy part.
- Degeneracies could appear due to the property of trigonometric functions.

Principle of accelerator neutrino oscillations

- Source types and spectra
- Matter density profiles
- Cross sections
- Detector properties: efficiencies, resolutions, backgrounds ...
- Systematical uncertainties

Degeneracy and correlations

The eight-fold degeneracy Barger, Marfatia, Whisnant, PRD 02

$$\begin{split} P(\bar{\theta}_{13},\bar{\delta},|\Delta m_{31}^2|,\theta_{23}) &= P(\theta_{13},\delta,|\Delta m_{31}^2|,\theta_{23}) \\ P(\bar{\theta}_{13},\bar{\delta},-|\Delta m_{31}^2|,\theta_{23}) &= P(\theta_{13},\delta,|\Delta m_{31}^2|,\theta_{23}) \\ P(\bar{\theta}_{13},\bar{\delta},|\Delta m_{31}^2|,\pi/2-\theta_{23}) &= P(\theta_{13},\delta,|\Delta m_{31}^2|,\theta_{23}) \\ P(\bar{\theta}_{13},\bar{\delta},-|\Delta m_{31}^2|,\pi/2-\theta_{23}) &= P(\theta_{13},\delta,|\Delta m_{31}^2|,\theta_{23}) \end{split}$$

- \blacktriangleright ambiguities in determination of θ_{13} and δ_{CP}
- ightharpoonup can involve an ambiguity between CP conserving and CP violating values of δ_{CP}
- ▶ $sign(\Delta m_{31}^2)$ is not determined (neutrino mass ordering)
- the octant of θ_{23} is not determined

How to analyze data?

- Suppose a given experiment divides the range of observation into N bins. The outcome is reported in number of observed events in each bin n_i. (Expect Poisson distribution for the number of events in each bin.)
- For given oscillation parameters

$$\theta = (\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}, \Delta m_{21}^2, \Delta m_{31}^2)$$
 $(P = 6)$

we can predict the expected number of events per bin $\mu_i(\theta)$.

▶ Build a χ^2 , e.g.

$$\chi^2(\boldsymbol{\theta}) = \sum_{i=1}^N \left[\frac{\mu_i(\boldsymbol{\theta}) - n_i}{\sigma_i} \right]^2$$

• Use $\chi^2(\theta)$ to perform a statistical analysis

Ref: lectures given by T. Schwetz

Simulations of neutrino oscillations w/o new physics

Credits: J. Kopp

CP violation

Global comparison

Discovery reach of CPV

Octant sensitivity

Optimization of the beam energy and baseline

Main physics performance indicator: CPV at 3 sigma

Ref: SA, PH, JT, WW JHEP 1101 (2011) 120

Simulations of neutrino oscillations w/o new physics

Credits: J. Kopp

Taken from work in progress with Ding, Li, Tang, Wang.

Classification of global neutrino oscillation experiments

Neutrino beams:

Ref: NuFact2016

- Beta decay: $n \to p + e^- + \overline{\nu_e}$
 - Example: Nuclear reactors, beta beams
- Pion decay: $\pi^- \to \mu^- + \bar{\nu}_{\mu}$ Superbeam ▶ From accelerators:

Credit: Walter Winter

■ Muon decay: $\mu^- \rightarrow e^- + \nu_\mu + \bar{\nu}_e$

Muons produced by pion decays! Neutrino Factory

Classification of global neutrino oscillation experiments

Neutrino beams:

Baseline:

Ref: NuFact2016

What are precision measurements and new physics?

Neutrino physics topics:

- Are there any sterile neutrinos in Nature?
- ② The precise value of angles such as $heta_{13}$ and CP phase $\delta \cdots$
- **3** The mass hierarchy: Δ m₃₁² > 0 or Δ m₃₁² < 0?
- Can one determine the matter density in a high precision by neutrino oscillation in matter?
- The existence of Non-Standard Interactions?

Chung-Kee JUNG

@ NNN2016

Links between NSIs and neutrino oscillations

New physics beyond SM: new particles, new couplings, new phenomenon...

Flavor violating interactions with neutrinos:

$$\nu_{\alpha}f \rightarrow \nu_{\beta}f, l_{\alpha}^{-} \rightarrow \nu_{\beta}e^{-}\bar{\nu}_{e}\cdots$$

4-fermion vertices:

$$L_{\text{eff}} = 2\sqrt{2} G_F \left(\epsilon^{L/R}\right)^{\alpha\gamma}_{\beta\delta} \left(\bar{\nu}^{\beta}\gamma^{\rho} P_L \nu_{\alpha}\right) \left(\bar{\ell}^{\delta}\gamma^{\rho} P_{L/R} \ell_{\gamma}\right)$$

NSI happens to neutrino propagation in matter

NSI at neutrino productions

Table of Contents

- Motivations of neutrino oscillation experiments
- Physics study at International Study of Neutrino Factory
- CC-NSIs at MOMENT (MuOn decay MEdium-baseline NeuTrino beam facility)
- Tests of non-unitarity violation with future's accelerator neutrino facilities
- Neutrino Activation Analysis with accelerator neutrinos
- Summary

Overview of a Chinese proposed MOMENT

(Muon-decay MEdium baseline NeuTrino beam facility)

 MOMENT: the proposal is still in an early stage; the details have not been completely fixed.

Peak energy: 200 MeV

Neutrino energy range: 100MeV—800MeV

•The lower beam energy at ~ 300 MeV: free from pi0 background

Baseline: L=150 km

In the MOMENT: the neutrino flux peak at low energies require a very massive detector to compensate the low interaction cross section

Impacts on precision measurements by CC-NSIs

Degeneracy shows up after an introduction of CC-NSIs at some parameter space.

Constraints of CC-NSIs with a far detector at MOMENT

- Colorful regions are allowed after running a far detector at MOMENT.
- The e-mu sector of NSI are the best constrained.
- Almost all NSI-induced CP phases change the exclusion limits severely except the e-mu sector.
- Limits from other sectors are not as good as those from the e-mu sector of NSI.

Table of Contents

- Motivations of neutrino oscillation experiments
- Physics study at International Design of Neutrino Factory
- CC-NSIs at MOMENT (MuOn decay MEdium-baseline NeuTrino beam facility)
- Tests of non-unitarity violation with future's accelerator neutrino facilities
- Neutrino Activation Analysis with accelerator neutrinos
- Summary

Tests of unitarity violation

- Light sterile neutrino anomaly (eV scale)
- Heavy sterile neutrinos from see-saw model (GeV scale)
- Dark matter candidate (keV scale)
- IUV (indirect unitary violation)
 by heavy sterile neutrinos
- DUV (direct unitary violation)
 by light sterile neutrinos:
 oscillation with active ones

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

- Simplifying the mixing matrix to deal with DUV and IUV, Phys. Lett., B718:1447-1453, 2013
- Pertubation study of oscillation probabilities for DUV and IUV, Phys. Rev., D93(3):033008

Exclusion limits on mixing parameters with non-unitarity

The limits to new paramerters induced by the DUV and IUV effects

Impacts on precision measurements

- IUV can only induce rate correlations to the three neutrino oscillation, but DUV contributes both rate and spectrum signatures to the experimental measurements.
- The DUV generally does not cause degeneracies for theta23.
- The IUV effects would cause degeneracies for theta23 in DUNE and T2HK. Thus we can turn to the most powerful experiment LENF to solve this problem;

Table of Contents

- Motivations of neutrino oscillation experiments
- Physics study at International Design of Neutrino Factory
- CC-NSIs at MOMENT (MuOn decay MEdium-baseline NeuTrino beam facility)
- Tests of non-unitarity violation with future's accelerator neutrino facilities
- Neutrino Activation Analysis with accelerator neutrinos
- Summary

Neutrino-nucleus coherent scatterings

Science

REPORTS

Cite as: D. Akimov et al., Science 10.1126/science.aao0990 (2017).

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov, ^{1,2} J. B. Albert, ³ P. An, ⁴ C. Awe, ^{4,5} P. S. Barbeau, ^{4,5} B. Becker, ⁶ V. Belov, ^{1,2} A. Brown, ^{4,7} A. Bolozdynya, ² B. Cabrera-Palmer, ⁸ M. Cervantes, ⁵ J. I. Collar, ^{9*} R. J. Cooper, ¹⁰ R. L. Cooper, ^{11,12} C. Cuesta, ¹³† D. J. Dean, ¹⁴ J. A. Detwiler, ¹³ A. Eberhardt, ¹³ Y. Efremenko, ^{6,14} S. R. Elliott, ¹² E. M. Erkela, ¹³ L. Fabris, ¹⁴ M. Febbraro, ¹⁴ N. E. Fields, ^{9‡} W. Fox, ³ Z. Fu, ¹³ A. Galindo-Uribarri, ¹⁴ M. P. Green, ^{4,14,15} M. Hai, ⁹ § M. R. Heath, ³ S. Hedges, ^{4,5} D. Hornback, ¹⁴ T. W. Hossbach, ¹⁶ E. B. Iverson, ¹⁴ L. J. Kaufman, ³ || S. Ki, ^{4,5} S. R. Klein, ¹⁰ A. Khromov, ² A. Konovalov, ^{1,2,17} M. Kremer, ⁴ A. Kumpan, ² C. Leadbetter, ⁴ L. Li, ^{4,5} W. Lu, ¹⁴ K. Mann, ^{4,15} D. M. Markoff, ^{4,7} K. Miller, ^{4,5} H. Moreno, ¹¹ P. E. Mueller, ¹⁴ J. Newby, ¹⁴ J. L. Orrell, ¹⁶ C. T. Overman, ¹⁶ D. S. Parno, ¹³ ¶ S. Penttila, ¹⁴ G. Perumpilly, ⁹ H. Ray, ¹⁸ J. Raybern, ⁵ D. Reyna, ⁸ G. C. Rich, ^{4,14,19} D. Rimal, ¹⁸ D. Rudik, ^{1,2} K. Scholberg, ⁵ B. J. Scholz, ⁹ G. Sinev, ⁵ W. M. Snow, ³ V. Sosnovtsev, ² A. Shakirov, ² S. Suchyta, ¹⁰ B. Suh, ^{4,5,14} R. Tayloe, ³ R. T. Thornton, ³ I. Tolstukhin, ³ J. Vanderwerp, ³ R. L. Varner, ¹⁴ C. J. Virtue, ²⁰ Z. Wan, ⁴ J. Yoo, ²¹ C.-H. Yu, ¹⁴ A. Zawada, ⁴ J. Zettlemoyer, ³ A. M. Zderic, ¹³ COHERENT Collaboration#

- Progress of low-threshold DM detectors made it come true.
- What else can we do with CEvNS?

Neutrino Activation Analysis

$$\frac{d\sigma(E_{\nu}, E_r)}{dE_r} = \frac{G_F^2[N - (1 - 4\sin^2\theta_w)Z]^2 F^2(Q^2)M^2}{4\pi} \times \frac{1}{M} \left(1 - \frac{E_r}{E_{max}}\right)$$

- CEvNS is proportional to the number of neutrons in the nucleus.
- Nuclear effects are factorized in the form factor:

a transformation of the density distribution

$$F(Q^2) = \frac{1}{Q_w} \int \left[\rho_n(r) - (1 - 4\sin^2\theta_w)\rho_p(r) \right] \frac{\sin(Qr)}{Qr} r^2 dr$$

- Lots of proton accelerators around the world.
- Use CEvNS to measure the nuclear structure while it is complementary to CC-scatterings?

- Which kind of detector can do the job?
- What are requirements to measure the nuclear structure?

LAr and LXe TPC

• Learn from DM detection experiments: LAr and LXe TPC.

- Threshold is the key
- Beam-related backgrounds: timing structures
- Cosmic-induced backgrounds: passive and active vetos

- A ton-scale detector reaches the sub-percent precision of the neutron radius in the nucleus.
- LXe TPC is doing better given the same fiducial mass.
- Good to distinguish nuclear physics models.

Table of Contents

- Motivations of neutrino oscillation experiments
- Physics study at International Study of Neutrino Factory
- CC-NSIs at MOMENT (MuOn decay MEdium-baseline NeuTrino beam facility)
- Tests of non-unitarity violation with future's accelerator neutrino facilities
- New physics related to accelerator neutrinos in progress
- Summary

Ambitions of accelerator R&Ds in China

2 GeV High Power Circular Accelerator Complex

CSNS in Dongguan: 1.6 GeV 100 kW->500kW

Summary

- Lots of physics to be done with accelerator neutrinos.
- Optimize the baseline and beam energy first.
- Show a comparison of physics performance to stand out!
- Apart from CPV, we should do precision measurements and search for new physics.
 - Probe of unitarity violations, NSIs, neutrino decays, long-range forces, CPT violations.
 - Neutrinos in the DM wind, flavor-symmetry models.....
 - Neutrino scatterings to probe the nuclear structure...
- Welcome to work together on precision measurements and new physics searches with accelerator neutrinos.

Thanks for your invitation and attention!

Survey of high-power accelerators around the world

- High-power proton accelerators are scarce resources and very expensive to construct.
- Should benefit as more as possible research fields
- Hundred-kW beams mostly available now, energy range from 0.5 to 450 GeV
- MW beams:
 - two in 1-1.5 MW in operation (PSI, SNS)
 - one to reach the design goal 1-MW (J-PARC/RCS)
 - one 5 MW under construction (ESS)
 - one to start construction soon (CiADS, 2.5 MW)
 - two to upgrade: 2.4 MW (FNAL/PIP-II), 1.3 MW (J-PARC/MR)

SPPC proton driver for neutrino physics

Very powerful injector beams to support rich physics programs including neutrino physics

Three proton beams in MW level: 1.2 GeV, 10 GeV, 180 GeV

Coherent v.s incoherent processes

- Coherent processes: $\mu^+ \rightarrow e^+ + \nu_\alpha + \bar{\nu}_\mu \ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\alpha$
- Incoherent processes: $\mu^+ \rightarrow e^+ + \nu_{\beta} + \bar{\nu}_{\alpha}$
- Why shall we consider the coherent processes only?

Numerical tests of oscillation probabilities and events at MOMENT

Updates of CPV sensitivity

- Neutrino fluxes and detector info inherited from Miao He& Jiashu Lu
- Loss of CPV by a factor of 2 after including both systematic and statistic uncertainties
- All backgrounds highly suppressed, especially atmospheric bckgs!

Detected neutrino spectra

Discovery of CPV

Precision measurements

- First physics study performed by Pilar, Matthias and Erique in arXiv:1511.02859
- NC-NSIs in matter considered by Pouya and Yasaman in arXiv: 1602.07099

Setups in the reference design report for NF

	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Neutrino Detectors	
Distance to long-baseline neutrino detector	1 500-2 500 km
Long-baseline Magnetised Iron Detector (MIND)	100 kT
Near detectors, magnetised, high-resolution spectrometers	2

Source	Uncertainty 1.3 %	
Normalization		
Flux	0.1%	
$ u_{e,\mu}$ interaction rate	0.5%	
$\nu_{ au}$ interaction rate	40%	
NC background	9.5%	
Charge mis-ID bg.	15%	

Global comparison

Discovery reach of CPV

Octant sensitivity