

Issues in CEPC fit

Zhang Kaili

zhangkl@ihep.ac.cn

2018-04-09

Outline

- Various input
 - Number counting; Binned histogram, impact fit;
- H->invisible
 - shape information
- Fit result

Fit for number counting

- If no available variable to show..... Like ZH->vv lvlv;
 - Create one bin dataset for them
 - Xianke's result:

	signal	bkg	precision
evev	185.753	3036.92	30.5%
evmv	379.764	2541.68	14.2%
mvmv	205.45	2157.07	23.6%
Combined			11.3%

• In the worst case, shape fit will be similar with number counting, and will be better in all other cases.

Binned fit

Inputs for the fit

- (After your final selection) distribution of signal & bkg
 - Mass(higgs & Z, invariant & recoil), 4 momentum
 - for further treatment on the shape
 - Event weight, if scaled
 - bkg, separate ZH/non ZH process and specify which ZH it is.
 - e.g H->WW, other modes like H->bb/cc/gg, ZZ, $\tau\tau$
 - Mass ntuples (Most recommended) -> 1d unbinned fit
 - Flavor template/ Histograms -> 1/2d binned fit
 - esp. only signal/bkg event number -> 1d binned (1 bin) fit

We can use more npoints in Asimov data building to raise the precision; But if the data is binned, no improvement would gain from that. So the unbinned ntuples are most recommended.

H->invisible

Why Z->qq has 10 times events of mm, and share the same precision?

Shape matters.

	signal	bkg	Mine
Z->ee	12.86	4205	0.97 ± 350%
Z->mm	23.69	36540	$1.00\pm242\%$
Z->qq	224.41	426540	$1.03\pm226\%$
Combined			$1.01 \pm 148\%$

If simple number counting:

——ignore the shape distribution

- z->mm: 500%. Current fit: 242%;
 - In fact (-597%, +402%), In low stats the asymmetric error must taken in to account.
- If mm has the same events like qq: 82.3%
- z->qq: 275% Current fit: 226%
 - Also gain improved from the shape information.
- Same stats: 82.3% >> 226% > 275%.

Z->mm, variable range

The shape and range are totally different.

bkg with mass>130 contributes a little.

A cut on 130GeV -> signal lose;

Use shape-> correctly considered;

Actually use 120-130: 84.6%;

82.3% better.

Z->qq, variable shape

Even for the same range, different shape

would help. 226% > 275%.

Shape more different, (like, a peak)

more improvement.

Z->ee/vv H $\rightarrow \tau \tau$

Z->ee, Mass plot, 2.97%

Z->vv, Impact parameter Fit, 3.10%

Z->ee, Impact parameter Fit, 3.37%

Z->mm H $\rightarrow \tau \tau$

But, if stats enough, variable in the same range, difference would not so obvious. mm/ee: 4 times SM bkg.

mm, Mass plot, 2.78%

mm, Impact parameter Fit, 2.75%

Mass fit worse may due signal loss ~4% since fit window.

Z->qq H $\rightarrow \tau \tau$

currently, choose the best result into combination.

qq, qq Mass, 1.08%

qq, Higgs Mass (Recoil qq) plot, 1.02%

qq, Visible au au Mass, 1.05%

qq, Impact parameter Fit, 1.05%

Z->mm $H \rightarrow \gamma \gamma$, 3T fast simulation

By Guo Fangyi

- Signal: $e^+e^- \rightarrow ZH \rightarrow \mu\mu\gamma\gamma$ Generated with Whizard-1.95 at $\sqrt{s} = 240$ GeV
- Background: 240GeV 3T Fast simulation samples

	μμ	ττ	zz/ww	Z + v	W/Z+e
generated	20000000	1000000	1116511	219278	
$\mu\mu\gamma\gamma$ final state	1393678	6204	21507	923	0
Pass all selection	1099 (0.004%)	17 (0.0001%)	0	0	

Main background: $\mu\mu$ background

	Signal			background			
	mumu		mumu		tautau		
generated	100000		26930165		10000000		
mumuyy	138039	1.380	1393678	0.052	6204	0.001	
E_y1>35	138035	1.000	264928	0.190	1711	0.276	
35 <e_y2<100< td=""><td>99557</td><td>0.721</td><td>68864</td><td>0.260</td><td>584</td><td>0.341</td></e_y2<100<>	99557	0.721	68864	0.260	584	0.341	
costheta_y <0.9	82895	0.833	24856	0.361	192	0.329	
pT_y>20	82742	0.998	23958	0.964	185	0.964	
86 <recom_yy<100< td=""><td>64839</td><td>0.784</td><td>6118</td><td>0.255</td><td>65</td><td>0.351</td></recom_yy<100<>	64839	0.784	6118	0.255	65	0.351	
110 <m_yy<140< td=""><td>64646</td><td>0.997</td><td>2524</td><td>0.413</td><td>34</td><td>0.523</td></m_yy<140<>	64646	0.997	2524	0.413	34	0.523	
123 <e_yy<142< td=""><td>64644</td><td>1.000</td><td>2387</td><td>0.946</td><td>27</td><td>0.794</td></e_yy<142<>	64644	1.000	2387	0.946	27	0.794	
costheta_ly <0.9	47048	0.728	1099	0.460	17	0.630	
		0.470		4.08E-05		1.7E-6	

Selection efficiency : 47%

After scaling, 36 signal and 1042 bkg events left. Could be improved.

Z->mm $H \rightarrow \gamma \gamma$, 3T fast simulation

Z->mm $H \rightarrow \gamma \gamma$, 3T fast simulation

Channels Table

Done/Almost Done:

Sig	nal	Drasisian	Signal		Drasisian	Brosision Signal		Drasisian	
Z	Н	Precision	Z	Н	Precision	Z	Н	Precision	
	H->qq			H->WW			vvH(WW fusi	on)	
	bb	1.6%		μνμν		vv	bb	3.1%	
ee	СС	23.6%		evev	7.3%		Rare Decay	S	
	gg	13.3%	μμ	evμv			Н→µµ		
	bb	1.1%		evqq	4.0%	qq			
μμ	сс	14.8%		μνqq	4.0%	ee		15.0%	
	gg	8.0%		μνμν		μμ	μμ	15.9%	
	bb	0.5%		evev	9.2%	vv			
qq	СС	11.9%	ee	evμv		H->	Invisible	Br, Upper	
	gg	3.9%		evqq	4.6%	qq		0.8%	
	bb	0.4%		μνqq	3.9%	ee	ZZ(vvvv)	0.6%	
vv	СС	3.9%		qqqq	2.0%	μμ		0.6%	
	gg	1.5%	vv	evqq	4.7%				
	Η→ττ	-		μνqq	4.2%				
ee		2.8%	qq	lvqq	2.2%(ILC)	Γ			
μμ		3.0%	ZH bkg co	ntribution	3.0%			, Dan's re	suit:
qq	ττ	1.0%		H->ZZ			Decay final stat	te I	Precision
vv	-	3.1%	vv	ццаа	8.2%		$Z \rightarrow \mu^+ \mu^- H$ $Z \rightarrow e^+ e^- H$	$T \rightarrow \tau^+ \tau^-$ $T \rightarrow \tau^+ \tau^-$	2.7%
	H→vv. 7v		VV	eeaa	35.2%		$Z \rightarrow v \bar{v} = H$ $Z \rightarrow v \bar{v} = H$	$\rightarrow \tau^+ \tau^-$	4.4%
1111477		2/ 8%			7 2%		$Z \rightarrow q \bar{q}$ H	$\rightarrow \tau^+ \tau^-$	0.93%
μμ+ιι		24.070	μμ	۷۷ЧЧ	7.370		Combin	ed	0.81%
VV	Ι ΥΥ	11.7%	ee	eeqq	35.1%	ſ		000/	
qq		12.8%	ee	μμqq	23.0%		My H $\rightarrow \tau \tau$: 0	.88%	
vv	Zγ(qqγ)	21.2%	ZH bkg co	ntribution	19.4%				

Fit results

Standalone: Regardless any ZH bkg contribution; Different impact on w/z and $b/c/g/\tau$.

(5ab ⁻¹)	Pre_CDR	Combined	Standalone
$\sigma(ZH)$	0.51%	0.5	0%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.3%	0.3%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.20%	3.5%	3.5%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.60%	1.4%	1.4%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.50%	1.0%	1.2%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.30%	5.0%	5.2%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.20%	0.9%	0.9%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.00%	8.1%	8.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	15.9%	15.9%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.80%	3.1%	3.1%
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%	0.42%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	١	4σ	4σ

