ISR and data-taking strategy for Higgs cross section measurement

Shuang Han (Wuhan U & IHEP) Gang Li (IHEP)

The measurement of $\sigma(e^+e^-\rightarrow Z H)$

Fig 1: Feynman diagram of the $e^+e^- \rightarrow ZH$

The measurement of $\sigma(e^+e^-\rightarrow Z H)$

Table 3.3 Estimated precisions of the Higgs boson mass, $\sigma(ZH)$ and Higgs-Z boson coupling with 5 ab⁻¹ integrated luminosity.

Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	14	2.1%	
$\mu\mu$	6.5	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
qar q		0.65%	0.32%
$ee + \mu\mu + q\bar{q}$		0.51%	0.25%

The initial state radiation in e⁺ e⁻ collider

The ISR correction factor

1. The experimental observed cross section:

$$\sigma^{\text{obs}}(s) = \int_{0}^{x_{\text{m}}} F(x,s) \sigma^{\text{dre}}(s(1-x)) \, \mathrm{d}x \qquad (1)$$
$$= \int_{0}^{x_{\text{m}}} F(x,s) \frac{\sigma^{\text{B}}(s(1-x))}{|1 - \Pi(s(1-x))|^{2}} \, \mathrm{d}x, \qquad (2)$$

2. The ISR correction factor is defined:

$$1 + \delta(s) = \sigma^{\rm dre}(s) / \sigma^{\rm obs}(s)$$

3. The factorized born cross section:

$$\sigma^{\rm B}(s) = (1 + \delta(s)) \frac{\sigma^{\rm obs}(s)}{1/|1 - \Pi(s)|^2}$$

The lineshape of $\sigma(e^+e^- \rightarrow Z H)$

1. The strategy is to take a series of scan data above the threshold to fix the line shape of the $\sigma(e^+e^-\rightarrow Z H)$

Model dependent fit

- 1. The parameters in the formula are Z mass, Z width, higgs mass and the weak mixing angle θ_w
- The four parameters are float in the fit to propagate the uncertainties of the observed cross section.
- 3. Fit result shows that by collecting data sets list on the right table, the uncertainty of $1+\sigma$ is 0.5%

Scan data above ZH threshold				
\sqrt{s} (GeV)	220	230	250	
L (fb ⁻¹)	50	50	500	

Direct measurement

The ISR correction factor is obtained in a iterative method via

$$\sigma_{i+1}^{\text{obs}}(s) = \int_0^{x_{\text{m}}} F(x,s)\sigma_i^{\text{dre}}(s(1-x)) \, \mathrm{d}x,$$

$$1 + \delta_{i+1}(s) = \sigma_i^{\text{dre}}(s) / \sigma_{i+1}^{\text{obs}}(s),$$

$$\sigma_{i+1}^{\text{dre}}(s) = (1 + \delta_{i+1}(s))\sigma^{\text{obs}}(s)$$

with $\sigma_0^{dre}(s) = \sigma^{obs}(s)$. The iteration is continued until the difference between the two consecutive result is smaller than the given upper limit, 1% of the statistical error of the observation. The result from the last iteration, denoted by $\sigma_f^{dre}(s)$ and $1+\sigma_f(s)$, are regarded as the final dressed cross section and ISR correction factor, respectively.

Direct measurement

