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Statistics computations needed in CEPC

> Signal Significance : discovery (5a67) PreR| %r{;rg ILCZ50 | Feo-ee
» Exclusion : limit setting (95% CL) o (ZH) 051% | 0.50% 1.2% | 0.40%
> Precision measurement o(ZH)+Br(H-bb) | 028% | 0.28% | 0.6% | 0.2%
o(ZH) = Br(H - cc) 2.2% | 3.3% | 3.9% 1.2%
Simple way to do that : o(ZH) = Br(H - gg) 7 1.6% 1.3% 3.3% 1.4%
s/sqrt(b), s/sqrt(s+b) sqrt(s+b)/s JEMBHoWW | 1% | 4% | 30% | 09%
Low statistic case: o(ZH) xBr(H »72) | 43% 5.1% 8.4% 3.1%
sqrt(2(s+b)*In(1+s/b)) Co@H)Biom | 12% | 0.8% | 20% | 0.7%
o(ZH) *Br(H->yy) | 9.0% 8.2% 16% 3.0%
o(ZH) = Br(H - py) 17% 16% 46.6% 13%
Fancy ways : o(vvH) « Br(H — bb) | 2.8% 3.1% 11% 2.4%
Brupper(H > inv.) | 028% |  0.42% 0.4% | 0.50%

» Fit method taking into account the shape
information, correlation,

» Combined fit.....

» RooFit, Roostats .....

_ _—
o(ZH) = Br(H - Zy) \ 40(21%)

Y. Fang 2



Number counting vs fitting method (c27¢2

Zop*p', HoZZ—-vvvy, Signal Events
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120-150 23.69 36540 0.0006 807% 242%
120-130 18.60 8802 0.0021 505% 252%
124-130 18.44 5644 0.0032 408% 253%
124-126 13.04 1793 0.0072 326% 241%
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Establish the model and Likelihood ratio« 675?8,

1. Alikelihood L(©) is built :

f(nch, ap | dp, ap, W) = H H Pois(nep|vep) - G(Lo|A, AL) - H fp(ap|ap) Shape info

cechannels bebins peS+T

for the discriminating
Variables considered.

= Hf(!/ii 0
i=1

2. A profile likelihood ratio A(p) (i signal strength :0*Br/(c=Br)s,,) is constructed to estimate
the parameters of interest:

L(y1,0) 0<)\<1 W is the test hypothesis (u=0,1 correspond to

/\(/I)Z e s S S
L(j,0) bkg /signal+bkg only hypothesis)

Sometimes, complicated functions or sum of functions has to choose to model the shape.

Z-qq, H-Yy, Signal Events
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KEYS PDF:

For some more complicated function, Keys

would be another option.

class RooKeysPdf: public RooAbsPdf

&“ " Class RooKeysPdf implements a one-dimensional kernel estimation p.d.f which model the distribution of an arbitrary input dataset
as a superposition of Gaussian kernels, one for each data point, each contributing 1/N to the total integral of the p.d.f.

If the 'adaptive mode' is enabled, the width of the Gaussian is adaptively calculated from the local density of events, i.e. narrow for
regions with high event density to preserve details and wide for regions with log event density to promote smoothness. The details

of the general algorithm are described in the following paper:

Cranmer KS, Kernel Estimation in High-Energy Physics. Computer Physics Communications 136:198-207,2001 - e-Print Archive:

hep ex/0011057

There is one parameter to decide how much fluctuation one wants to pick it up for the model.
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Discovery cerl

* Exclude the Background-only

flq ) hypothesis.
j | q me(f[q‘m o e Construct the test statistics
N v « A(w), in practice q(p) =
‘/p—value - 2 n( (,Ll))

* For discovery: exclude signal
strength u=0

* Need to know how far away

} — 2 ln(/l(l)) from —2In(1(0))
* Throw toys to do that.

e ——— . * For expected one, use medium
------ Fit with p =1 outcome : Value Of 2 ln(ﬁ,(l)) to CompUte

—— Fit with p=0 outcome

y units

Arbitrar

* Integrate the tail of bkg-only
hypothesis curve (p-value) and
convert it into significance.
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6(gg—H)XBR(H—shh) [pb]

Exclusion
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cepll
* Exclude the Signal+Background
hypothesis.

e Construct the test statistics

* q() = —2In(Aw))

* For exclusion: exclude signal
strength u=X

* Need to know how far away
— 21n(2(0)) from —2In(A(X))
* Throw toys to do that.

* For expected one, use medium
value of —2 ln(/l(O)) to compute.

* Integrate the tail of Signal+bkg
hypothesis curve and convert it
into 95% CL.
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Precision measurement cERl

» One can scan W (Minuit) and the error of
L is the distance of x-axis between p=1
and the point on the curve
corresponding to —log(A)= 0.5.

» The uncertainty can be incorporated
into the fit.

v’ Currently the luminosity uncertainty,
xsection from direct measurement
are considered.

» Technically, just one S+B fit on data to
extract Ap from Minos




MC toys ceP€

* As one obtain the models for signal+backgrounds, one can
throw toys and fit it (maybe many times) to test the
statistics.

* Most reliable, however CPU intensive. For example, one
needs 1000 CPU X one month to reach 5c for inclusive
ATLAS H->gamma gamma analysis.

e Use Histogram data
* Asimov data
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Toys vs asymptotical way

* In the case the hypothesis zero follows a Poisson

distribution, one can compute the significance based on

hypothesis 1.
* Don’t need to throw huge toys to obtain a reasonable tail.
* Significance = sqrt(—2In(A(u)) for the median one.
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* One can even be more aggressive to generate one Asimov
data to serve as one MC to obtain the significance of the
median value.
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Motivation of Asimov Data cerl
* For the simulation study, one will probably run into the
following situation:

* Only MC for one experiment has been generated (samples with
Luminosity 5 ab™ in our case)

* Sometimes fluctuation due to the limit MC could be picked up
when one estimates the expected sensitivities.

* Asimov data is equivalent to what is produced by unlimited MC
normalized to expected luminosity.

* |f we cannot reach the limit of statistics, we can extract the
precision using Asimov data (avoid the issue of the limited MC
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Example: H->invisible cepl
e fit range all 120-150GeV
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Consider shape; but using generated data to fit;

e | L 1

e Can be regarded as “one experiment” measurement.

* Huge bkg-> large fluctuations could “create” some bump while it is not reflected

ke model EIEIEE A

* Central value not 1; Z->ee 12.86 4205 0.003 505%  3.30 + 481%
Z->mm 2369 36540  0.0006  807%  3.30 + 273%
Z->qq 22441 426540  0.0005  290%  0.88 + 141%
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Solution: RCEP )

» Build signal and background models based on the MC samples.

» Use these models to generate Asimov data

» Fit the models on the Asimov data to obtain the expected measured precision.
» One can also try toys....

» Similar issues happened in H->bb,cc,gg analyses.

Z->ee 1.0+/-350%
Z->mm 1.0+/-242%
Z->qq 1.0+/-226%

Combined 1.0+/-148%

Y. Fang
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From Roofit to Roostats cEpl

* Based on Root, Roofit provides easy-adapted code to do
unbinned/binned fit, toy generation, model production etc...

* Based on Roofit, Roostats provides friendly framework
dedicated for the statistic tests.

* Users follow the examples to prepare the input files and do
minimal coding.

* Widely used in ATLAS/CMS experiments for the statistical study.

 Some codes are integrated in the package, the users may not have
chances to dig into the black box if there is no need.

* If people working on individual channels choose Roostats
and prepare the workshops, it is very convenient to do the
combination.



Some Analyses strategies in ATLAS  (c22&

H->gamma gamma analysis

* The inclusive analysis is very simple :

* Photon ID, Isolation, Kinematic cuts on
leading/subleading photon.

* Is there anything else that we can explore?
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How to use these information? el

Local p

Category ocCB FWHM Observed S B

[GeV]  [GeV] [Nevi] [Nevt] [Newl
Inclusive 1.63 3.87 3693 1004 3635
Unconverted central, low pry  1.45 3.42 235 13.0 215
Unconverted central, high pry  1.37 3.23 15 2.3 14
Unconverted rest, low pr¢ 1.57 3.72 1131 283 1133
Unconverted rest, high pp, 1.51 3.55 75 4.8 68
Converted central, low pry 1.67 3.94 208 8.2 193
Converted central, high pr, 1.50 3.54 13 1.5 10
Converted rest, low pt 1.93 4.54 1350 246 1346
Converted rest, high pry 1.68 3.96 69 4.1 72
Converted transition 2.65 6.24 880 117 845
2-jets 1.57 3.70 18 2.6 12

Results contributed to Higgs discovery

ry

sem i iimmiccmmesemmesc ey e el e e el

Data 2011, s =7TeV, | Ldt =4.81b"
Data 2012, ys=8TeV, | Ldt=5.9 b

Observed Py 10 categories
...... Expected Py: 10 categories
Observed Py 9 categories
...... Expected Py: 9 categories
Observed p,, inclusive
...... Expected p,, inclusive
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* Instead of throwing away
events, we divide them
into different categories
according different S/B:

* PTt

* Conversions

* Resolution regions
* jets

* The improvement of the
significance w.rt. to
inclusive one is obvious.
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Further usage of the BDT outputs

* Again, one example
from ATLAS VBF H-
>gammagamma
analysis:

* Instead of
implementing one cut
on the BDT output, we
divide them into
different regions,
optimizing with

combined significance.

e S/sqrt(B) are different
for 2 or 3 BDT output
regions.

RN AR RN LN RN RN LR I RN R
014  ATLAS — VBF ]
C _ S — ggF ]
012 + J.Ldt =20.3fb, Vs=8TeV —— u
0 - H—yy, my = 125 GeV —+— Data, sidebands | |
S oift B
s 5 :
2 0.08[ N
) ]
O -
> 006F =
O -
£ 004 s
0.02
-1 O 8 0 6 0 4 0 2 0 02 0 4 0 6 0 8 1
OBDT
optimization normalized to 4 fb-!
MVA tight | MVA loose
VBF 1.64 2.17
ggF 0.51 1.90
background 242 17.71
VBF purity 0.76 0.53
significance 0.88 0.47
combined significance 1.00
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Categorization of events according to their (272,
final states

» Signals mainly from H2>WW?* and H->tx, small from H>Z7Z* Lianliang’s
talk

* Signature: 2-4 leptons (t,,,4), >= 2-jets and >= 1 b-jet L
i : : “4[E = BV
* Main backgrounds: ttW/ttZ from MC but validated to data, F o 27
z~

non-prompt bkg. (mainly ttbar) is data-driven
* Dominant syst.: estimations for fake lepton and non-prompt bkg.

Number of Thag
N

-h

4
Number of light leptons

1 2 3
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