

A_{FB} study at Z pole

Outline

- Introduction
- MC Sample
- Selections
- Angle resolution
- A_{FB} calculation

2

• Summary

Introduction

- CEPC have good potential in electroweak precision physics at Z pole.
 - L=1.6 X 10³⁵ cm⁻²s⁻¹
 - Aim to have 10¹¹ Z boson for electroweak precision physics

Contribute to measurement of weak mixing angle $\sin^2 \theta_{eff}^{lept}$

Observerable	LEP precision	CEPC precision	CEPC runs	∫ <i>L</i> needed in CEPC	0
$A_{FB}^{0,\mu}$	7.7%	0.3%	Z threshold scan	3.2ab ⁻¹	
		O	\bigcirc	0	3

MC sample

- 1M events are generated by Whizard 1.95 and CEPCv4 geometry at 91.1876 GeV.
- Fast simulation on all these events to calculate A_{FB}
- Run 100K full simulation to study reconstructed angle resolution.

Selections / Efficiency

No cut	2 muons		$\Delta \cos \theta < -0.8$		Max(E _{I1} ,E _{I2})>30GeV		Min(E _{I1} ,E _{I2})>30GeV	
	Step Eff.	Total Eff.	Step Eff.	Total Eff.	Step Eff.	Total Eff.	Step Eff.	Total Eff.
Efficiency	(97.78±0.05)%	(97.78±0.05)%	(97.46±0.05)%	(95.30±0.05)%	(99.35±0.03)%	(94.67±0.07)%	(90.3±0.1)%	(85.5±0.1)%

0

Angle ($\cos\theta$) Resolution Comparison between Old and New CEPC geometry (Full-simulation)

CEPC.v1 old geometry and 3.5T magnetic field vs CEPC.v4 new geometry and 3T magnetic field

Fast-Simulation

PDG and gFitter results: 0.0171 ± 0.001

Equation 1: $A_{FB} = (F-B)/(F+B),$ Where F is count for events with $\cos\theta > 1$, and B is that for $\cos\theta < 1$. Equation 2: Fit function to $P_0 + P_1 \cos\theta + P_2$ $\cos^2\theta, (P_0 \simeq P_2)$ And $A_{FB} = P_1/P_0$

7

A_{FB} calculation: E1:0.0169 E2:0.0167

Uncertainty estimation: 0.3% with 3.2ab⁻¹

• Full simulation for muon angle resolution, which is of magnitude of 10⁻⁵.

- Angle resolution is better when the muons are closer to beam axis.
- Selections for Afb study, with efficiency of ~85%. (to be optimized)

BackUp:

CEPC.v1 old geometry and 3.5T magnetic field

