

Fully hadronic Higgs decay H \rightarrow WW* \rightarrow qqqq in Higgsstrahlung HZ, Z \rightarrow qq at 250 GeV CepC

Mila Pandurović

Vinca Institute of Nuclear Sciences University of Belgrade, Serbia

Introduction

- Signal signature: 6 central jets in the final state
- Goal of the analysis:
 - Calculate the statistical potential for the determination of the specific Higgs couplings
 - Verify the analysis strategy

Signal reconstruction

- k_T exclusive, particle flow with Arbor v3.1
- Jet formation: force events into 6 jets, do the jet pairing to form H (W and W*), Z
 - Fit in boson the peak vicinity (±10 GeV, ±5 GeV,) for the Higgs and the Z boson for several jet openings R=0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 - □ The best result is obtained for R=1.5

Reconstruction of the Higgs, Z and W bosons

- In order to reconstruct the Higgs, Z, W boson reconstruction the event is forced into six jets
- Obtained jets are grouped into three pairs to form the W, W* and Z bosons
- □ From WW* pair the Higgs boson
- The combination which minimizes the χ^2 is chosen :

$$\chi^{2} = \frac{\left(m_{_{ij}} - m_{_{W}}\right)^{2}}{\sigma^{^{2}}_{_{W}}} + \frac{\left(m_{_{kl}} - m_{_{Z}}\right)^{2}}{\sigma^{^{2}}_{_{Z}}} + \frac{\left(m_{_{ijmn}} - m_{_{H}}\right)^{2}}{\sigma^{^{2}}_{_{H}}}$$

• For the corresponding σ are the WA width was taken $\sigma^2_{H,W,Z}$

Reconstructed boson invariant masses for signal

Signal and background samples

sample	$\sigma[fb]$	#evts∕5ab ⁻¹	#evts used
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	74342
other Higgs decays non $qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	644354
2 <i>f</i>	49561,30	247806500	100000
4 <i>f_ww_cuxx</i>	3395,48	16977400	1220200
4f_ww_ccbs	5,74	28700	99400
4 <i>f_ww_ccds</i>	165,57	827850	1343474
4f_ww_uubd	0.05	250	99800
4f_ww_uusd	165,94	829700	691057
4f_Mix_udud	1570,40	7852000	2782962
4f_Mix_cscs	1568,94	7844700	2375076
4 <i>f_zz_</i> utut	83,09	415450	400000
4 <i>f_zz_dtdt</i>	226,20	1131000	332600
4f_zz_uu_notd	95,65	478250	477400
4 <i>f_zz_cc_nots</i>	96,04	480200	337400

Investigated variables

- Invariant masses: m_{Higgs} m_Z m_W m_{w*}
- Number of particle flow objects NPFO
- Visible energy E_{vis}
- □ The highest transverse momentum of the jet in the event –highestPtJet
- **Transverse momentum of the Higgs boson PtOfHiggsJets**
- Event shape variables: thrust, oblatness, sphericity, aplanarity
- **Det transitions:** $y_{12} y_{23} y_{34} y_{45} y_{56} y_{67}$
- □ Force event into 2 jet: btag1, btag2, btag1*btag2
- □ ctag1, ctag2
- Force event into 6 jet: btag_i, ctag_i
- Angle between jets that comprise W boson: ThetaWqq,
- Angle between jets that comprise Z boson: ThetaZqq
- Angle between W and W* that comprise the Higgs boson : ThetaHiggsW1W2
- Arithmetic variable Energy*Theta of the W, Higgs and Z boson

Invariant masses

The event shape variables

4th CEPC Physics and Software Workshop

Jet transitions

The distribution of the energy of the W real boson versus the angle between jets that comprise it

New variable construction energy theta of the Z boson

The distribution of the energy of the W real boson versus the angle between jets that comprise it

Arithmetic Variables Energy*Theta for W boson

4th CEPC Physics and Software Workshop

■ 8000< EnergyThetaW <14000. 10000< EnergyThetaZ <17000. NPFO>80.

sample	$\sigma[fb]$	$\#evts/5ab^{-1}$	ε _{pres} [%]	evts after preselection
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	70.0	56380
other Higgs decays non $qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	43.0	273975
2 <i>f</i>	49561,30	247806500	0.8	1990414
4 <i>f_ww_cuxx</i>	3395,48	16977400	16.7	2838452
4f_ww_ccbs	5,74	28700	22.5	6453
4f_ww_ccds	165,57	827850	18.3	151787
4f_ww_uubd	0.05	250	19.8	50
4 <i>f_ww_uusd</i>	165,94	829700	15.3	127241
4f_ww_zz_udud	1570,40	7852000	16.0	1255551
4f_ww_zz_cscs	1568,94	7844700	17.9	1406147
4 <i>f_zz_</i> utut	83,09	415450	22.0	91366
4f_zz_dtdt	226,20	1131000	27.5	311025
4f_zz_uu_notd	95,65	478250	23.7	113345
4 <i>f_zz_cc_nots</i>	96,04	480200	27.8	133496

Multivariate analysis

- **The training of BDTG was performed on ten background samples excluding:**
 - □ 2f backgrounds , 4f_WW_ccbs and 4f_WW_uubd
- The variables set was optimized to a set with the minimal stable relative statistical error (41 variables investigated – 18 final variables)
 - Invariant masses: m_{Higgs} m_Z m_W
 - Number of particle flow objects NPFO
 - Highest PtJet, transverse momentum of jets that comprise Higgs boson -PtOfHiggsJets
 - Event shape variables: thrust, oblatness, aplanarity
 - **D** Jet transitions: $y_{12} y_{34} y_{45} y_{56} y_{67}$
 - □ Force event into 2 jet: btag1, btag2
 - □ ctag1
 - Arithmetic variable Energy*Theta of the Z boson

• After preselection and multivariate analysis ~99% of the background is reduced

sample	$\sigma[fb]$	#evts /5ab ⁻¹	evts after preselection	ε _{tmva} [%]	^E total [%]	evts after final selection
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	56380	41.3	28.85	23257
other Higgs decays non qqh $\rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	273975	14.1	6.1	38629
2 <i>f</i>	49561,30	247806500	1990414	0.25	0.002	4976
4 <i>f_ww_cuxx</i>	3395,48	16977400	2838452	1.45	0.24	41188
4 <i>f_ww_ccbs</i>	5,74	28700	6453	1.7	0.38	110
4 <i>f_ww_ccds</i>	165,57	827850	151787	1.5	0.28	2294
4f_ww_uubd	0.05	250	50	2.0	0.4	1
4 <i>f_ww_uusd</i>	165,94	829700	127241	0.8	0.13	1073
4f_ww_zz_udud	1570,40	7852000	1255551	1.5	0.24	19102
4f_ww_zz_cscs	1568,94	7844700	1406147	1.6	0.29	22514
4 <i>f_zz_</i> utut	83,09	415450	91366	5.5	1.2	4997
4 <i>f_zz_dtdt</i>	226,20	1131000	311025	6.4	1.8	19845
4f_zz_uu_notd	95,65	478250	113345	5.9	1.4	6675
4f_zz_cc_nots	96,04	480200	133496	6.0	1.7	7949

The relative statistical uncertainty: MVA method

- The dominant background after final selection are ee \rightarrow qqqq backgrounds
- The high cross-section 2f → qq̄ background show good response to the preselection and multivariate analysis. The obtained relative statistical precision is 1.9 % with the corresponding signal efficiency of 29%

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \approx 1.9\%$$

Static cut analysis

- The statatic cut variables used:
 - Invariant masses: 80 <m_z < 100 GeV</p>
 - □ Invariant masses: 115 <m_H < 135 GeV</p>
 - □ Number of particle flow objects NPFO > 90 GeV
 - Highest PtJet <90</p>
 - transverse momentum of jets that comprise Higgs boson < 80 GeV</p>
 - □ Jet transitions: y₂₃ <2.4
 - □ y₃₄ <2.4
 - □ Y₄₅<2.7
 - □ y₅₆ < 3.2
 - □ y₆₇ <3.5
 - Arithmetic variable Energy*Theta of the Z boson 8000< EnThW<14000</p>
 - Arithmetic variable Energy*Theta of the Z boson 10000< EnThZ<17000</p>

Static cuts analysis results

sample	$\sigma[fb]$	#evts/5ab ⁻¹	ε _{tot mva} [%]	ε _{static} [%]	evts after final selectior
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	28.85	28.9	23293
other Higgs decays non $qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	6.1	8.1	51544
2 <i>f</i>	49561,30	247806500	0.002	0.02	49561
4f_ww_cuxx	3395,48	16977400	0.24	1.5	254661
4f_ww_ccbs	5,74	28700	0.38	1.9	545
4f_ww_ccds	165,57	827850	0.28	1.6	13246
4f_ww_uubd	0.05	250	0.4	1.8	5
4f_ww_uusd	165,94	829700	0.13	1.3	10786
4f_ww_zz_udud	1570,40	7852000	0.24	1.4	109928
4f_ww_zz_cscs	1568,94	7844700	0.29	1.6	125515
4 <i>f_zz_</i> utut	83,09	415450	1.2	2.4	9971
4f_zz_dtdt	226,20	1131000	1.8	2.9	32799
4f_zz_uu_notd	95,65	478250	1.4	2.5	11956.
4f_zz_cc_nots	96,04	480200	1.7	2.9	13926

- After the static cut analysis ~98% of the background is reduced.
- The obtained relative statistical uncertainty 3.6 % with the corresponding signal efficiency of 29%

Summary

- The fully hadronic decay is most abundant channel in the $H \rightarrow WW^*$ decay
- In Higgsstrahlung, $Z \rightarrow qq$, this decay leads complex central six jet final state
- High cross section hadronic backgrounds
- □ The channel is analysed with two types of analysis flow:
 - multivariate analysis
 - static cut analysis
- The multivariate approach showed better reduction capabilities in comparison to the static cut analysis
- This is due to lack of distinct cut variables for hadronic final state
- The obtained relative statistical precission with the static cut analysis is 3.6% with the signal efficiency of 29 %, while the result obtained with the multivariate analysis is 1.9% with the corresponding signal efficiency of 29% also
- □ The result is obtained for the integrated luminosity of 5 ab ⁻¹

Fully hadronic Higgs decay $H \rightarrow ZZ^* \rightarrow qqqq$ in Higgsstrahlung HZ, Z $\rightarrow qq$ at 250 GeV CepC

Very preliminary test of the estimation of the stat. uncertainty

Introduction

• Possibility of the estimation of the rel. statistical uncertainty of the cross-section xBF

Reconstruction of the Higgs, Z and W bosons

- In order to reconstruct the Higgs, Z, Z,Z* boson reconstruction the event is forced into six jets
- Obtained jets are grouped into three pairs to form the Z, Z* from Higgs decay and Z boson from HZ
- The combination which minimizes the χ^2 is chosen :

$$\chi^{2} = \frac{\left(m_{_{ij}} - m_{_{Z}}\right)^{2}}{\sigma^{^{2}}_{_{Z}}} + \frac{\left(m_{_{kl}} - m_{_{Z}}\right)^{2}}{\sigma^{^{2}}_{_{Z}}} + \frac{\left(m_{_{ijmn}} - m_{_{H}}\right)^{2}}{\sigma^{^{2}}_{_{H}}}$$

- For the corresponding σ are the WA width was taken $\sigma^2_{H,Z}$
- The used chi2 is favouring the reconstruction of the Z boson which is coming from the Higgs decay

Reconstructed invariant masses

Jet transitions

Discussion

- The chi2 which was used is favoring the reconstruction of the Z boson which is coming from the decay of the Higgs boson – refinement of the chi2 is needed
- The cross-section of the other Higgs decays is nearly two orders of magnitude higher
- **Fast simulation does not contain btagging tools to reduce H-bb background**
- Severe other backgrounds especially 4f_WW_cuxx
- Using the fast simulation using this channel would lead to severe under estimation of the rel. statistical uncertainty
- At this point suggest to use the extrapolation that is currently used for the white paper