Physics at Z pole and WW runs

Zhijun Liang IHEP, CAS

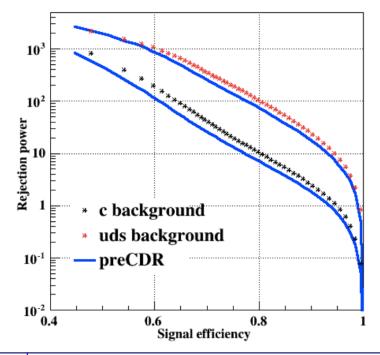
Outline

- Introduction to precision electroweak physics
- Z pole physics
- W physics

Introduction

- CEPC have good potential in electroweak precision physics at Z pole.
 - Latest design in CEPC Z pole accelerator
 - L=1.6 X 10³⁵ cm⁻²s⁻¹ (one order of magnitude larger than pre-CDR)
 - Aim to have 10¹¹ Z boson for electroweak precision physics
- The accelerator design for WW threshold scan runs are also updated
 - Total luminosity 2.5 ab⁻¹
 - Aim to have 1 MeV level precision for W mass measurement
 - More details in Hengne and Peixun's talk

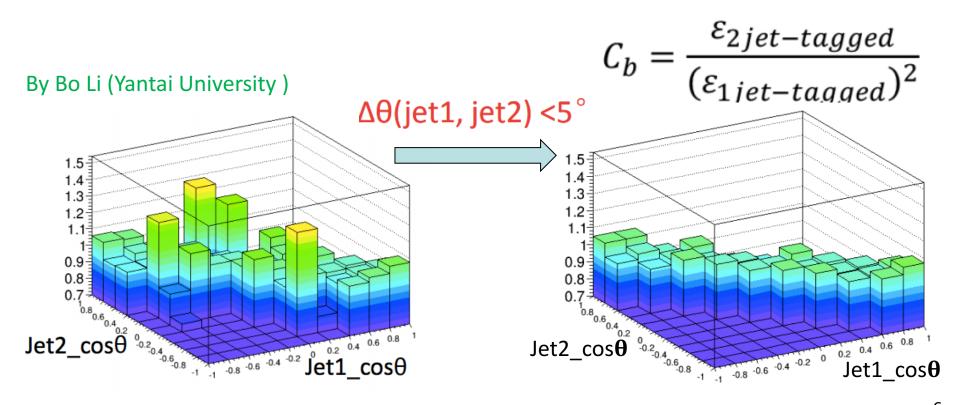
Status of W/Z physics study in CEPC


- The prospect of W/Z physics study in CEPC are under study
- Mainly based on projection from LEP

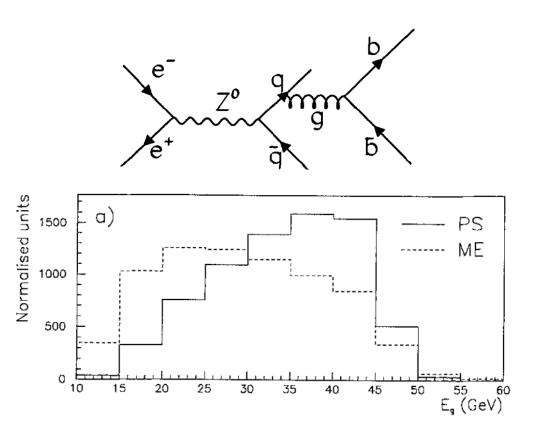
Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z threshold scan	$3.2 \mathrm{ab}^{-1}$
$A_{FB}^{0,b} \\$	1.7%	0.1%	${\cal Z}$ threshold scan	$3.2\mathrm{ab}^{-1}$
$A_{FB}^{0,\mu}$	7.7%	0.3%	${\cal Z}$ threshold scan	$3.2\mathrm{ab}^{-1}$
$A_{FB}^{0,e} \\$	17%	0.5%	${\cal Z}$ threshold scan	$3.2\mathrm{ab}^{-1}$
R_b	0.3%	0.02%	Z pole	$3.2\mathrm{ab}^{-1}$
R_{μ}	0.2%	0.01%	Z pole	$3.2\mathrm{ab}^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5\mathrm{ab}^{-1}$
m_W	33 MeV	2-3 MeV	ZH runs	$5\mathrm{ab}^{-1}$
m_W	33 MeV	1 MeV	WWthreshold	$2.5 \mathrm{ab}^{-1}$

Branching ratio (Rb)

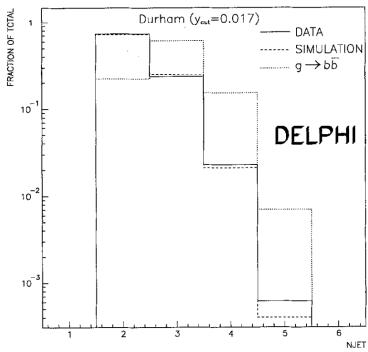
$$\frac{\Gamma(\mathrm{Z} \to \mathrm{b}\bar{\mathrm{b}})}{\Gamma(\mathrm{Z} \to \mathrm{had})}$$


- LEP measurement 0.21594 ± 0.00066 (~0.3%)
 - Stat unc and Systematics Unc. Have similar contribution
- CEPC
 - Expected Stat Unc. Is neglectable
 - Expected Syst error (0.02%)
 - Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty	LEP	CEPC	Thing to improve
hemisphere tag correlations for b events	0.2%	0.02%	B tagging performance, pixel
gluon splitting	~0.15%	0.01%	Better granularity in Calo

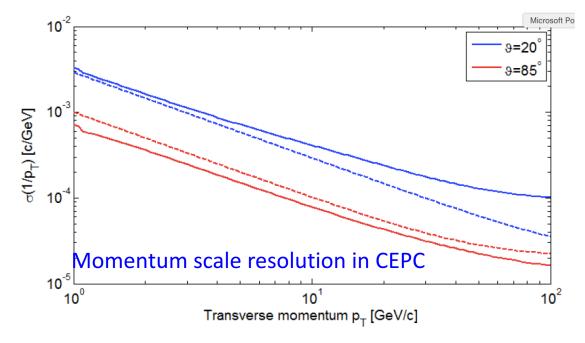

Rb: hemisphere tag correlations

- Study hemisphere b tag correlations systematics with full simulation
- Two ways to reduce correlations factor -> reducing systematics
 - Using tighter cuts to choose Z->bb events
 - Use different B jet tagger (soft muon tag Vs impact parameter/ 2nd vertex)
 - Correlations factors c_b need to be reduced below 0.01% (systematics 0.02%)



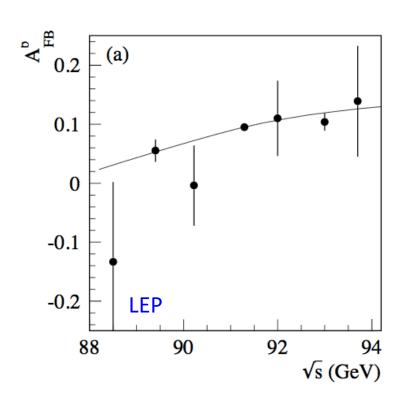
Branching ratio (Rb): gluon splitting

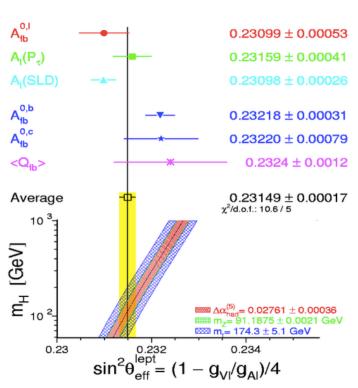
- To reduce the R_b systematics
 - Another task is to measure gluon splitting
 - plan to setup dedicated analysis for gluon splitting measurement



Phys Lett B 405 (1997) 202

Branching ratio (R^μ)

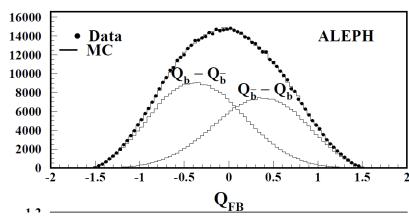

- LEP result: 0.2% total error (Stat : 0.15%, Syst : 0.1%)
- CEPC: 0.01% total error expected
 - Higher granularity and better resolution in EM calorimeter is the key

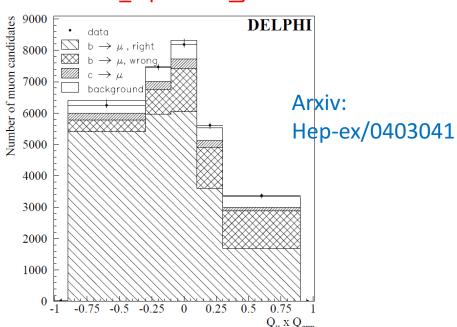


Systematics source	LEP	CEPC	
Radiative events (Z->μμγ)	0.05%	0.01%	
Muon Momentum scale	0.009%	<0.005%	

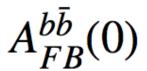
Weak mixing angle

- LEP/SLD: 0.23153 ± 0.00016
 - ~0.07% precision. (Stat error is limiting factor.)
- CEPC
 - Aim for 0.002% precision
 - Input from Backward-forward asymmetry measurement of Z->bb and Z->μμ
 - Z->ee, Z->ττ have not been studied yet.

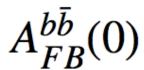

Backward-forward asymmetry

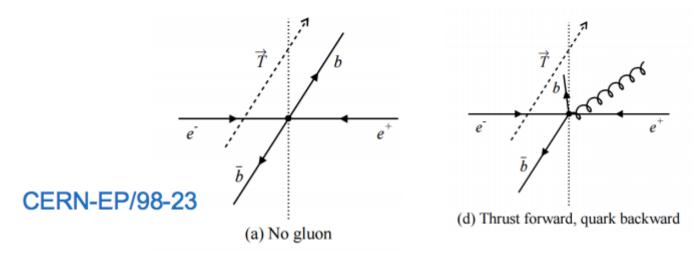

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

Q_lepton - Q_jet in method 1


Arxiv:Hep-ex/0107033

Q_F - Q_B in method 2

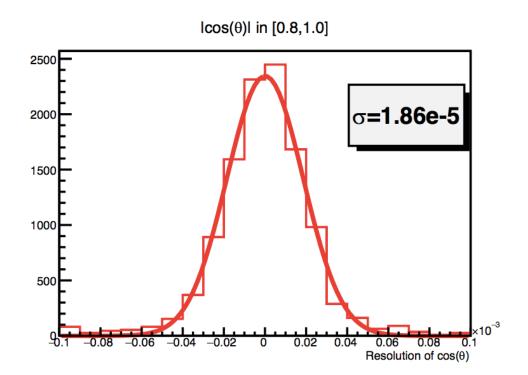

Backward-forward asymmetry


- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, method)
- CEPC
 - Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%):

Uncertainty	LEP	CEPC	Things to improve
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	

Backward-forward asymmetry

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics


Error source	$C_{\mathrm{QCD}}^{\mathrm{quark}}$ (%)		$C_{ m QCD}^{ m part,T}$ (%)	
	$bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_Z^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

Backward-forward asymmetry in Z->μμ

LEP measurement : 1.69% +-0.13%(PDG fit)

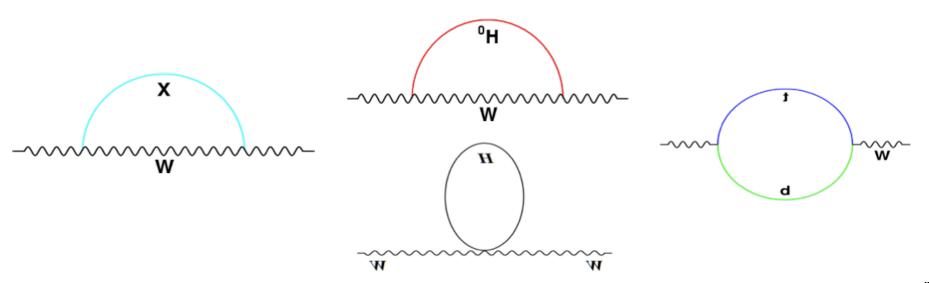
 $A_{FB}^{(0,\mu)}$

- CEPC aim to improve it by a factor of 20~30.
 - muon angular resolution and acceptance
 - the precision of beam energy measurement
- Full simulation studies to understand muon angular resolution
 - Muon angular resolution can reach 1e⁻⁴ to 1e⁻⁵ level
 By Mengran Li (IHEP)

Weak mixing angle (2)

- Comparison with Fcc-ee on weaking mixing angle measurement
 - Expect 1~2 order magnitude better than LEP results

Improvement compared to LEP results	CEPC	FCC-ee (from Paolo's talk)
AFB (Z->ee)	30	50
AFB (Z->μμ)	20-30	30
AFB (Z->ττ)	NA	15
AFB (Z->bb)	10	5
Weak mixing angle	70	100

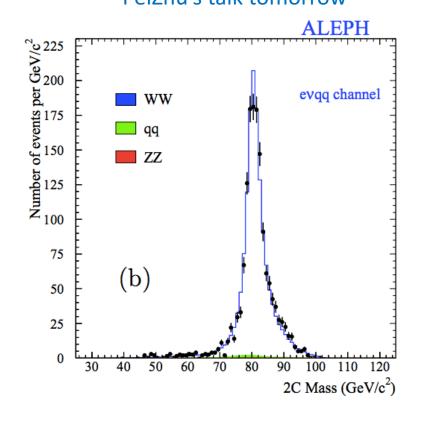

Outline

- Introduction to precision electroweak physics
- Z pole physics
- W physics

Motivation of W mass measurement

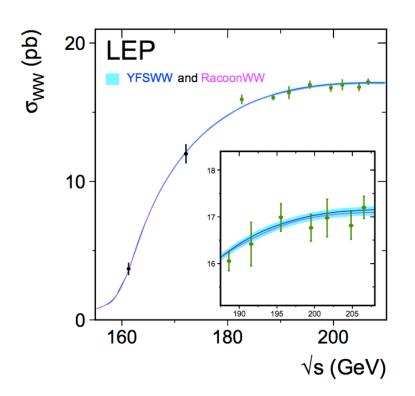
- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

Eur. Phys. J. C78 (2018) no.5, 426



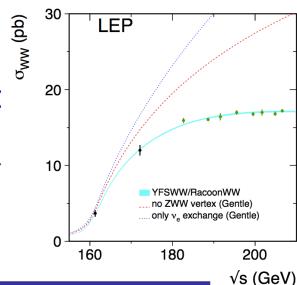
W mass measurement

Two approaches to measure W mass


Direct measurement

ZH runs 240GeV Precision 3MeV PeiZhu's talk tomorrow

WW threshold scan


WW threshold runs (157~172GeV)
Precision 1MeV
PeiXun's talk tomorrow

WW threshold scan proposal

Based on Peixun and Gang study :

- Assuming one year data taking in WW threshold (2.5 ab⁻¹)
- Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} measurement, Br (W->had), CKM $|V_{cs}|$)
 - 14M WW events in total (40k WW events in LEP2)
 - 400 times larger than LEP2 comparing WW r

E _{cm} (GeV)	Lumiosity(ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)
157.5	0.5	1.25	0.6
161.5	0.2	3.89	0.8
162.5	1.3	5.02	6.5
172.0	0.5	12.2	6.1

Expected precision in WW scan

- Statistics is enough for Branching ratio measurement Br (W->had) and α_{OCD} (mW) measurements.
- Statistics uncertainty is one of the limiting factor for W mass and W width measurement in CEPC one year running plan (2.5 fb⁻¹)

Energy (GeV)	Systematics	Statistics uncertainty	limiting factor
W mass	1MeV Beam energy	1.0 MeV	Statistics
W width	1 MeV	3.2 MeV	Statistics
Br (W->had) & α_{QCD} (mW)	10-4	10 ⁻⁴	

Open issue

- Tools needed:
 - Soft muon b jet tagger is needed for R_b measurement
 - Jet charge reconstruction is need for Afb_b
- Analyses to be covered
 - Afb_b , Afb_e measurements
 - Key input to weak mixing angle measurement
 - W->jj branching ratio and alpha_QCD
 - Z->II off-peak runs design and alpha_QED measurements

Summary

- CEPC electroweak physics community is working on in Conceptual Design Report.
 - updated in CEPC accelerator design on Z pole and WW threshold runs
 - one order of magnitude larger than pre-CDR
 - Prospect of CEPC W/Z physics improved benefitted from higher design luminosity
 - More details about W physics in Hengne and Peixun's talk
- Welcome to join this effort
 - Lots of work needed to understand the systematics