Baseline detector design for the CEPC CDR: Geometry, Software Reconstruction & Performance

Manqi Ruan

Welcome Jianming!

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 10B Z boson Medium Energy Booster(4.5Km)

Booster(50Km

- Precision test of the SM Low Ener
 - Low Energy Booster(0.4Km)

IP₂

(240m)

e+ e- Linac

IP3

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)

TP4

- Direct search for new physics
- Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 06/27/18

Complementary

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

Welcome Jianming!

Reference design & Arbor

Performance at Lepton Kaon Photon Tau JET

以 Arbor 为核心的完整软件工具

CEPC-v1, reference detector for the CEPC PreCDR studies

Supports most of the CEPC physics analysis till now;

Summarized into the CEPC PreCDR.

To be summarized in Higgs white paper, in final polishing stage

Welcome Jianming!

Feasibility & Optimized Parameters

Feasibility analysis: TPC is valid for CEPC

	CEPC_v1 (~ ILD)	APODIS (Optimized)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	_
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

CDR 基线探测器 APODIS

- 在概念上确认可使用于 CEPC 环境,通过标志性测量对各子探测器参数进行优化
- 相对 LHC 实验
 - 径迹精度提高一个量级
 - 喷注精度提高 3-4 倍(Arbor)
 - 光子测量精度降低 30-50%
- 相对 ILD(CEPC-v1)
 - 在 Higgs 测量方面性能基本一致
 - 大大增强了 Kaon id 性能
- 功耗、造价、重量大幅下降
 - 电磁量能器功耗削减 75-80%
 - 轭铁重量下降削减 60-70%
 - 造价削减 30%

2015 PreCDR 2017 CDR

Welcome Jianming!

06/27/18

9

Tracking

https://link.springer.com/article/10.1140/epjc/s10052-017-5146-5 CEPC-DocDB-id:148, Eur. Phys. J. C (2017) 77: 591 Welcome Jianming!

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

CEPC-DocDB-id: 172

https://arxiv.org/abs/1803.05134 Eur. Phys. J. C (2018) 78:464

Photon

Inhomogeneity degrades the resolution significantly.

Physics requirement: constant term < 1%

Detector geometry defects degrades the mass resolution to 2.2%/2.6% (CEPC-v1/APODIS);

http://iopscience.iop.org/article/10.1088/1748-0221/13/03/P03010 Welcome Jianming! CEPC-DocDB-id (149, 169) 13 https://arxiv.org/pdf/1712.09625.pdf

Tau

- Two catalogues:
 - Leptonic environments: i.e, IITT(ZZ/ZH), vvTT(ZZ/ZH/WW), $Z \rightarrow TT$;
 - Jet environments: i.e, $ZZ/ZH \rightarrow qq\tau\tau$, $WW \rightarrow qq\tau\tau$; _

Ph.D thesis: D. Yu, reconstruction of leptonic objects at e+e- Higgs factory Welcome Jianming!

g(Hтт) measurement

- ZH→µµтт
- Extremely Efficient Event Selection
- Signal efficiency of 93% entire SM background reduced by 5 orders of magnitude
 06/27/18 Welcom

- ZH→qqтт
- Cone based tau finding algorithm, Compromise the efficiency & purity
- Signal efficiency of 51%

Jets

- Boson Mass Resolution: Separate W, Z and Higgs in hadronic decay mode
 - Essential for Higgs measurement
 - Separate Higgs from Z/W (relatively easy)
 - Separate $H \rightarrow ZZ/WW$ events (challenging)
 - Appreciated in Triplet Gauge Boson Coupling measurements
 - Separate WW (Signal) from ZZ, ISR return Z, etc.

- ...

- Jet Clustering & Single jet response
 - To understand the Degrading induced by Jet Clustering, Matching, etc
 - Search for the most suited jet clustering algorithm (Presumably channel dependent) Understand the Corresponding Systematic

- ..

Massive Boson Separation

Impact of Jet Clustering: Significant

Jet Clustering is Mainly responsible for the tails

Jet energy Scale

Amplitude ~ 1% Large JES observed at Leading Jet (Correlated), and at overlap region (Increasing of Splitting)

Welcome Jianming!

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

Welcome Jianming!

Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

https://agenda.linearcollider.org/event/7645/contributions/40124/ Welcome Jianming!

性能:完成所有物理标的物的高精度重建

06/27/18

Welcome Jianming!

Higgs Signal at APODIS

CEPC-RECO-2018-002 CEPC-Doc id 174, 175 $H \rightarrow \gamma \gamma$ at CEPC-v4/Simplified geometry

Asymmetric tails in CEPC-v4 induced by geometry defects need careful geometry corrections

Welcome Jianming!

Arbor: photon reconstruction

ECAL Barrel of ILD/CEPC_v1

Angular Correlation of EM Shower energy response Welcome Jianming!

Arbor: photon reconstruction

Welcome Jianming!

H to gluons: total visible mass

Pt_ISR < 1GeV	-	95.52%	95.14%	95.37%	95.27%	95.19%
$neutrino {<} 1 GeV$	-	-	89.35%	39.00%	66.30%	37.41%
costheta < 0.85	-	-	67.27%	28.58%	49.23%	37.03%

06/27/18

Welcome Jianming!

40.91%

Higgs to bb, cc, gg

Higgs to WW, ZZ

Table 2. Benchmark resolutions ($\sigma/Mean$) of reconstructed Higgs boson mass, comparing to LHC results.

		$\mathrm{Higgs}{ ightarrow}\mu\mu$	$ ext{Higgs} \rightarrow \gamma \gamma.$	$Higgs \rightarrow bb$
	CEPC (APODIS)	0.20%	$2.59\%^{1}$	3.63%
06/27/18	LHC (CMS, ATLAS)	${\sim}2\%~[19,~20]$	${\sim}1.5\%~[21,22]$	${\sim}10\%~~[23,24]$

¹ primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

Benchmark Higgs Analysis

We are preparing Higgs white paper in preparation

Z boson

decav

Now (Aug 2016)

0.50%

0.21%

2.5%

1.2%

1.0%

4.3%

1.0%

9.0%

~4 σ

12%

2.8%

5.0

1.4e-3

1.7e-4/1.2e-4

3.0e-4

aa

2015)

0.51%

0.28%

2.1%

1.6%

1.5%

4.3%

1.2%

9.0%

-

17%

2.8%

5.9

<10-3

Issues to be addressed

- Tracking
 - Dedx/material effect correction (induces o(100) MeV bias in Higgs mass at in H->mumu) (20, 30, 20)
 - Development, Performance analysis & Integration of CEPC tracking (Arbor & Conformal & ...) (50, 90, 90)
- PFA
 - Cluster energy estimator development
 - Photon (EM Shower) Geometry dependent energy correction (50, 90, 20)
 - HAD? (40, 50, 50)
 - Usage of Timing information... (60, 90, 80)
 - Optimization of HCAL geometry (50, 60, 70)
- Lepton ID & P ID:

- Urgency, Importance, Difficulties
- Integration & Usage of Timing information (60, 80, 20)

Issues to be addressed

- Composited object finder: **CORAL** (finding Pi0, Kshort, Lambda, J/Psi, ...)
 - Framework is ready... and lots of performance study and optimization awaits (40, 90, 50)
- Jets

Urgency, Importance, Difficulties

- Jet Clustering: finding the color singlet? (40, 90, 90)
- Distinguish between 2 jet, 3 jet, 4 jet, 5 jet, 6 jet events.... (80, 80, 60)
 - Mila's analysis (ZH->6 jets) gives a very good example
- Jet Flavor Tagging (90, 99, 80)
 - The efficiency of reconstruct 2nd Vertex in Z->cc events is ONLY 20%!!!
- Separation of gluon to quark jets? (50, 50, 50)
- Usage of Deep learning at reconstruction... (30, 90, 50)
- ...Lots Lots of Detector Optimization & Integration....

An Analysis Example (Dan): g(HTT) at qqH

- Cone based tau finding: di-tau system
- The other particles are define as the di-jet system: to distinguish the qqTT background
- Isolated tracks are intensionally defined as tau candidate: be distinguished by the VTX

	m_jj	m _{jj-recoil}
Signal: Z(qq)H(тт)	91.2	125
Z(ττ)H(qq)	125	91.2
ZZ	91.2	91.2

Ph.D thesis of D. Yu

An Optimization example (Zhigang & Dan): g(HTT) at µµH

	μμΗττ	μμΗ inclusive bkg	ZZ	WW	singleW	singleZ	2f
total generated	2292	33557	5711445	44180832	15361538	7809747	418595861
after preselection	2246	32894	122674	223691	0	86568	1075886
$N_{Trk}(A/B) < 6$ & $N_{Ph}(A/B) < 7$	2219	1039	2559	352	0	9397	25583
BDT>0.78	2135	885	484	24	0	157	161
efficiency	93.15%	2.63%	$<\!0.01\%$	< 0.01%	$<\!0.01\%$	$<\!0.01\%$	$<\!0.01\%$

In inner Radius, Material & resolution

Conclusion: in this benchmark channel, VTX is sensitive but not crucial

VTX Optimization (Zhigang & Dan): g(Hbb) & g(Hcc)

 Table 2.
 Reference geometries

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

Table 6. $\epsilon \cdot p$ comparison for all three benchmarks.

Benchmark	Scenario A	Scenario B	Scenario C
$Br(H \to c\bar{c})$	0.133 ± 0.002	0.095 ± 0.001	0.078 ± 0.001
$Br(H \to b\bar{b})$	0.925 ± 0.001	0.914 ± 0.001	0.900 ± 0.001
$Br(H\to\tau^+\tau^-)$	0.77 ± 0.01	0.71 ± 0.01	0.68 ± 0.01

Figure 2. The ROC curve of c-tagging at different scenarios for b background (a) and g background (b).

Welcome Jianming!

软件队伍

吴志刚 顶点优化

软件

成栋:几何及

06/27/18

<mark>新人</mark>:赵祥虎 于丹:轻子甄别 <mark>新人</mark>:赖培筑 安芬芬: 软件 - 计算 PFA, tau 喷注 Pid ,软件

Summary

- The Particle Flow oriented detector is well established and serves as the baseline detector for the CEPC CDR studies
 - High efficiency/accuracy reconstruction of all key physics objects;
 - Clear Higgs signature in all SM Higgs decay mode
 - Mature software/reconstruction tool/team
- APODIS, Optimized for the CEPC collision environments
 - Significantly reduced B-Field (15%), #readout channels (75% in ECAL) & HCAL layer-thickness (20%) & cost (15%/30% w.r.t CEPC-v1/ILD)
 - Same Higgs performance & enhanced Pid Performance
 - Iterate with hardware studies
- Todo:
 - Physics study, especially flavor tagging & EW measurements (τ leptons)
 - Towards the TDR, Integration, Sub detector modeling, Systematic Studies

Summary

- My personal suggestion for the physics analysts
 - **Understand profoundly** your key object(s), final states, and distributions
 - Take reference to the performance study of APODIS, if that's not consistent with what you observed in both Signal/Background – try to understand what happened before you process further
 - Join the reconstruction development and made your own object!
- Contacts
 - **Chengdong**, Yin: For the Detector Geometry
 - Xianghu, Dan, Hang, Yongfeng: sample production status, sample (Bkgrd validation), and software usage
 - Gang: For massive production request, flavor tagging and analysis framework
 - Yaquan: ... If you got crazy with statistics/analysis skills...
 - Manqi: ...when you don't know who else you can contact...

Advertise

- 软件:
 - 怎么装?
 - 怎么知道装对了?
 - 怎样正确设置(版本,版本,版本!)?
- 样本:
 - 去哪找?
 - 没有怎么办?(提交申请!!)
 - 要等多久能产生?
- 我有资源,怎么贡献?

EPC Software	Guides Releases Packages News GitLab	囸
luction -		G Edit this page
ation and Quick Start	INSTAIL CEPC SOTTWARE Estimated reading time: 3 minutes	 Request docs changes
	This page will guide you on fully installing CEPC software on the local	Issues in GitLab
		0 (
C Software on CVMFS		Content on this page:
ker Image	environment of CEPC software. In order to install CEPC software, the	Install CEPCEnv
	CEPCEnv toolkit should be installed first. Install CEPCEnv with the following command:	Install CEPC Software
M (Sim-Rec Software Chain) 🛛 🗕		Requirements
are Architecture 🗸 👻	<pre>curl -sSL http://cepcsoft.ihep.ac.cn/package/cepcenv/sc</pre>	Available CEPC Software Versions
rmance 🗸 🗸	Change [CEPCENV_DIR] to where you want to install. If	Install CEPC Software
sis Examples 🚽 👻	CEPCENV_DIR is omitted, CEPCENV will be installed in the current	Configure CEPC Software Root
& Prototype Test 🛛 👻	The setup scripts setup.sh and setup.csh could be found in the	Setup CEPC Software Environment
uting 🚽	directory after the installation. They are used for the initialization of cepcenv command.	Frequently Asked Questions

http://cepcsoft.ihep.ac.cn/

backup

Benchmark detector for CDR: APODIS (A PFA Oriented Detector for HIggS factory. a.k.a CEPC_v4)

	qqH au au	qqH inclusive bkg	ZH inclusive bkg	ZZ	WW	singleW	singleZ	2 <i>f</i>
total generated (scaled to 5 ab^{-1})	45597	678158	357249	5711445	44180832	17361538	7809747	418595861
1st preselection	45465	677854	310245	5039286	42425195	1267564	1398362	148401031
2nd preselection	45145	174650	226059	293306	12452091	125735	117306	547402
$N_{ au^+} > 0, N_{ au^-} > 0$	24674	7342	33721	93955	723989	33887	54386	103642
$20 GeV < M_{\tau^+ \tau^-} < 120 GeV$	24284	6290	32344	88245	597480	24927	36039	56615
$70 GeV < M_{qq}$ <110 GeV	22937	2103	4887	65625	21718	738	1893	556
$\frac{100 GeV < M_{qq}^{Rec}}{< 170 GeV}$	22703	2045	4524	23789	13154	315	306	193
efficiency	49.97%	0.31%	1.26%	0.41%	0.04%	<0.01%	<0.01%	< 0.01%

Table 9 Cut Flow of MC sample for $qqH \rightarrow \tau\tau$ selection on signal and inclusive SM backgrounds

Benchmark measurements

Key SOFT ingredients

http://cepcdoc.ihep.ac.cn

Search Results

[DocDB Home] [New] [Search] [Last 20 Days] [List Authors] [List Topics] [List Events] [Help]

CEPC DocDB-doc- #	Title	Author(s)	Topic(s)	Last Updated
<u>176-v1</u>	Fast simulation of the CEPC detector with Delphes	Gang LI	Simulation: Full/Fast Simulation Software Journal Publications	17 May 2018
<u>175-v2</u>	Higgs Signal Reconstruction at CEPC-v4 Baseline Detector when CEPC Operate at 240GeV	YongFeng Zhu	<u>Software</u> <u>Higgs Physics</u>	13 May 2018
<u>174-v1</u>	Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR	Hang Zhao	Simulation: Full/Fast Simulation Higgs Physics	10 Apr 2018
<u>173-v1</u>	Detector Geometry in Model CEPC IDEA	<u>Yin Xu</u>	Implementation into Full Simulation Software Framework General of CEPC	27 Mar 2018
<u>172-v1</u>	Performance study of particle identification at the CEPC using TPC dE/dx information	fenfen An	TPC Physics at CEPC	15 Mar 2018
<u>171-v1</u>	Reconstruction of physics objects at the Circular Electron Positron Collider with Arbor	<u>Manqi RUAN</u>	Physics at CEPC General	06 Mar 2018
<u>170-v1</u>	Optimization for CEPC vertex	Zhigang Wu	<u>VTX</u>	10 Jan 2018
<u>169-v1</u>	PFA Oriented ECAL Optimization for the CEPC	Hang Zhao	Simulation: Full/Fast Simulation Calo	27 Dec 2017
<u>166-v3</u>	<u>Jet Energy Deposition Studies with CEPC Electromagnetic Calorimeter, Hadronic Calorimeter and Muon</u> <u>Detector</u>	Jifeng Hu et al.	Calo Muon Reconstruction Higgs Physics General of CEPC	14 Nov 2017
<u>168-v1</u>	Mannual of the CEPC software	Gang LI	Software	02 Nov 2017
<u>167-v1</u>	Full Simulation Software at CEPC	Chengdong Fu	Software	23 Oct 2017
<u>165-v1</u>	Physics Impact of the Solid Angle Coverage at CEPC	Peizhu Lai	<u>Detector Design</u> <u>Physic Analysis</u>	17 Oct 2017
<u>164-v1</u>	Jet Reconstruction at CEPC	Peizhu Lai	<u>Detector Design</u> <u>Physic Analysis</u>	17 Oct 2017

http://cepcsoft.ihep.ac.cn/

CEPC Software	Guides Releases Packages News GitLab	E
Introduction Installation and Quick Start Quick Start Install CEPC Software CEPC Software on CVMES	Install CEPC Software Estimated reading time: 3 minutes This page will guide you on fully installing CEPC software on the local machine. Install CEPCEnv	 Edit this page Request docs changes Issues in GitLab Content on this page:
CEPCEnv	CEPCEnvel is a tool used for managing the installation and environment of CEPC software. In order to install CEPC software, the CEPCEnv toolkit should be installed first. Install CEPCEnvel with the following command:	Install CEPCEnv Initialize CEPCEnv Install CEPC Software
Software Architecture	curl -sSL http://cepcsoft.ihep.ac.cn/package/cepcenv/sc	Requirements Available CEPC Software Versions
Performance - Analysis Examples -	Change [CEPCENV_DIR] to where you want to install. If CEPCENV_DIR is omitted, CEPCEnv will be installed in the current directory.	Install CEPC Software Configure CEPC Software Root Setup CEPC Software Envi <u>ronment</u>
Computing	The setup scripts setup.sh and setup.csh could be found in the directory after the installation. They are used for the initialization of cepcenv command.	Frequently Asked Questions

06/27/18

5 commands & you, got the cencs oft installed on an SL6 machine

CEPC Higgs Analyses

Higgs Physics @ CEPC-v1: event rate measurements almost fully covered (mostly with old reconstruction...)

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

IDEA Simulation & Validation

CEPC NOTE

CEPC_TLS_SIM_2018_001 March 27, 2018

Figure 4: SVX

Figure 5: CDCH

Detector Geometry in Model CEPC_IDEA

Yin Xu

Geant4 Based full simulation is indispensable for the CEPC physics analyses and detector optimization studies. So we integrated IDEA detector geometry into the simulation framework – Mokka [1]. This note introduces the IDEA model and how to develop with Makka some simula assumpts are also given

Implemented into Simulation

Both Wire Chamber & Dual readout Calorimeter have been implemented;

Need Validation, Digitization & Dedicated Analysis to Study the performance at jet and Physics event level

TPC Usage

- Feasibility not limited by
 - Voxel occupancy (1E-4 1E-6)
 - IBF & Ion Charge Distortion
- Dedx: TPC +50 ps ToF: a full range pi-kaon separation at Z pole operation
- Tech. Difficulties to be further studied
 - Complex, unstable field maps
 - Stability & Homogeneity of Amplification/DAQ system, temperature/pressure monitoring & corrections
 - Radiation background: Working Gas selection is essential
 - Neutron Flux + Working gas with hydrogens
 - Delta Ray Noise
 - Gamma Ray Noise
- Be iterated with Hardware/Electronic Design & Test beam studies

Feasibility of TPC at Z pole

- 600 Ion Disks induced from Z->qq events at 2E34cm⁻²s⁻¹
- Voxel occupancy & Charge distortion from **Ion Back Flow** (IBF)
- Cooperation with CEA & LCTPC

TPC Feasibility

- Conclusion (JINST_12_P07005, CEPC-DocDB-id-147):
 - Voxel occupancy ~ (10⁻⁴ 10⁻⁶) level, safe
 - Safe for CEPC If the ion back flow be controlled to per mille level (k = 5) -
 - The charge distortion at ILD TPC would be one order of magnitude then the intrinsic resolution (L = 2E34 cm⁻²s⁻¹)
 - TPC usage is not limited by the Physics Hits;
 - Beam background needs further investigation (a priori not the dominant source at Z pole)

R&D on the IBF control

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

Br(H→WW) @ 10mm/20mm Cell size

Br(H→WW) via vvH, H→WW*→lvqq

No lose in the object level efficiency: JER degraded, ~ 5/10% at 10/20 mm

Over all: event reco. efficiency varies ~1%

Welcome Jianming!

PFA Oriented Reconstruction

06/27/18

Welcome Jianming!

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 – 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 – 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	P(Neutron → γ) = 1-5%
Charged Kaons**	86 - 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathbb{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	P(uds → b) = 1% P(c → b) = 10%
c-jets	60%	60% at Z pole runs	P(uds → c) = 5% P(b → c) = 15%

CEPC: absolute Higgs measurements

	2015)	
H)	0.51%	0.50%
H→bb)	0.28%	0.21%
H→cc)	2.1%	2.5%
H→gg)	1.6%	1.2%
I→WW)	1.5%	1.0%
H→ZZ)	4.3%	4.3%
(Н→тт)	1.2%	1.0%
[Н→үү)	9.0%	9.0%
H→Zγ)	-	~4 σ
H→µµ)	17%	12%
(H→bb)	2.8%	2.8%
ss/MeV	5.9	5.0
H→inv)	95%. CL = 1.4e-3	1.4e-3
e/emu)	-	1.7e-4/1.2e-4
obxx)	<10 ⁻³	3.0e-4

aa

PreCDR (Jan

VV

Z boson

decav

Now (Aug 2016)

Tracker Radius: the optimized value

- Detector cost is sensitive to tracker radius, however, I recommend TPC radius >= 1.8m:
 - Better separation & JER
 - Better dEdx
 - Better (H->di muon) measurement

Welcome Jianming!

Detectors for the CDR

- APODIS (Baseline)
 - A PFA Oriented Detector for HIggS factory (Reference: ALEPH, SiD and ILD)
 - Low material tracker + ultrahigh granularity calorimeter (serve also as ToF) + large Solenoid
 - Dedicated MDI (Ongoing)
 - Fully implemented into Geant 4 simulation and full reconstruction
 - Optimized versus Physics Benchmarks
- IDEA (Alternative)
 - Wire Chamber + Dual Readout based: implementing into full simulation
- Multiple detectors & New ideas are welcome!

- 以 Arbor 为核心的完整软件工具
- CEPC-v1, reference detector for the CEPC PreCDR studies
- Feasibility & Optimized Parameters
- CDR 基线探测器 APODIS
- Lepton
- Kaon
- Photon

- 以 Arbor 为核心的完整软件工具
- CEPC-v1, reference detector for the CEPC PreCDR studies
- Feasibility & Optimized Parameters
- CDR 基线探测器 APODIS
- Lepton
- Kaon
- Photon

- Benchmark Higgs Analaysis
- An Analysis Example: g(HTT) at qqH
- An Optimization Example: g(Hττ) at μμH
- Issues to be solved at performance
- 软件队伍
- Summary
- Summary
- Advertise
- backup

Welcome Jianming!