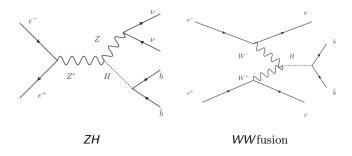
Measurement of WW fusion, $H \rightarrow b\bar{b}$ Cross-Section at CEPC

Hao Liang

CEPC Mini-workshop


June 28, 2018

Contents

- Motivation
- CEPCv1 and CEPCv4 at 250GeV
 - Monte Carlo Samples
 - Event Selection
 - Recoil Mass Reconstruction
 - ► Fit Model
 - Result
- Preliminary result for CEPCv4 at 240GeV

Motivation

▶ Two main channels for final states $\nu\nu H, H \rightarrow b\bar{b}$:

Motivation Cont'd

- ▶ Higgs width is strongly of interest for physicists.
- ▶ Impossible to be extracted from the line shape directly, because of the narrow Higgs decay width.
- ▶ Two methods of measuring Higgs width: First method is related to $Br(H \to ZZ)$. The precision is limited by the statistics of $H \to ZZ$, due to the small $Br(H \to ZZ)$, which is only 2.3% by the SM.
- ▶ Second method is related to WW fusion, $H \rightarrow b\bar{b}$.

Motivation Cont'd

$$\begin{split} \sigma_{ZH} &= F_1 \cdot g_Z^2 \\ \sigma_{ZH,H \to b\bar{b}} &= F_2 \cdot g_z^2 g_b^2 / \Gamma \\ \sigma_{ZH,H \to W^-W^+} &= F_3 \cdot g_z^2 g_W^2 / \Gamma \\ \sigma_{WW \mathrm{fusion},H \to b\bar{b}} &= F_4 \cdot g_W^2 g_b^2 / \Gamma \end{split}$$

Where F_i , i = 1...4 are constant factors, which can be calculated in theory. The Higgs width, Γ , can sovled from above four equations:

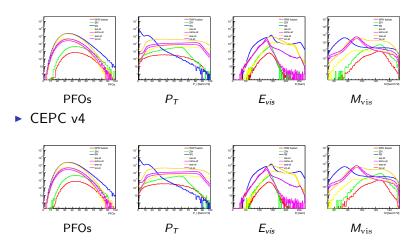
$$\Gamma = \frac{F_2 F_3}{F_1^2 F_4} \cdot \frac{\sigma_{WW \text{fusion}, H \to b\bar{b}} \sigma_{ZH}^2}{\sigma_{ZH, H \to b\bar{b}} \sigma_{ZH, H \to W^-W^+}} = \Gamma_{\text{SM}} \cdot \frac{\mu_{WW \text{fusion}, H \to b\bar{b}} \mu_{ZH}^2}{\mu_{ZH, H \to b\bar{b}} \mu_{ZH, H \to W^-W^+}} \tag{1}$$

where the μ means the signal stress, which is the cross section normalized by SM prediction, and $\Gamma_{\rm SM}$ is the Higgs width predicted by SM, which is about 4 MeV.

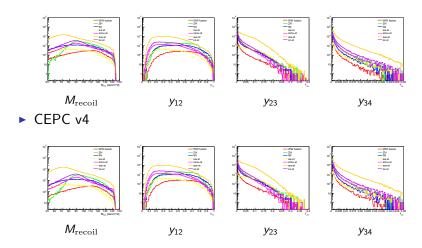
- Independent to the Higgs decay models.
- ▶ The bottleneck: WWfusion, $H \rightarrow b\bar{b}$

Monte Carlo Samples

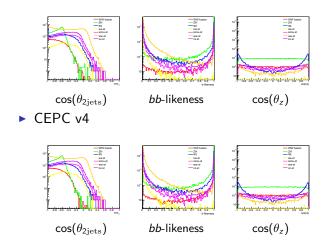
- Higgs samples
 - ▶ 100k WW fusion events
 - ▶ 100k ZH events
 - Samples for interference between WW fusion and ZH can not be generated by current software
 - Assign weights corresponding to 5 ab⁻¹
 - Simulated and reconstructed for CEPC-v1 and CEPC-v4 respectively
- SM backgrounds samples
 - ▶ Integral luminosity: 5 ab⁻¹
 - ▶ 2fermions + 4 fermions
 - The pre-selections were applied for saving the computation time
 - Simulated and reconstructed for CEPC-v1 only, but used for both cases


Event Selection

► Pre-Cuts for SM backgrounds


Pre-cut	Cut on reconstructed variables
$60 \text{GeV}/c^2 < M_{\text{mis}} < 225 \text{GeV}/c^2$	$65 \text{GeV}/c^2 < M_{\text{mis}} < 135 \text{GeV}/c^2$
$50 \mathrm{GeV}/c^2 < M_{\mathrm{vis}}$	$100 { m GeV}/c^2 < M_{ m vis} < 135 { m GeV}/c^2$
$10 \mathrm{GeV}/c < P_T < 100 \mathrm{GeV}/c$	$13 \mathrm{GeV}/c < P_T < 90 \mathrm{GeV}/c$

- Main backgrounds
 - $ightharpoonup ZH, Z
 ightharpoonup vv, H
 ightharpoonup b\bar{b}$
 - ▶ q\(\bar{q}\)
 - ► Irreducible SM backgrounds: zz-sl, sznu-sl
 - ► Two *b* jets + single charged isolated lepton: ww-sl, sw-sl


► CEPC v1

► CEPC v1

► CEPC v1

Main SM backgrounds						
Cut	qq	sw-sl	sz-nu	ww-sl	zz-sl	
Generated	250283714	13025535	744000	23788000	2581000	
Pre-cut & reconstructed	5924182	1193000	658000	5208810	1112000	
$N_{\mathrm{PFO}(E>0.4\mathrm{GeV})} > 20$	5717282	1138089	629242	5077296	1066096	
$105 \text{GeV} < E_{ ext{total}} < 155 \text{GeV}$	3821137	356219	529778	2883329	911700	
$P_T > 13 { m GeV}/c$	826961	351546	520798	2799966	891644	
Isolation lepton veto	792950	59642	488958	1376469	818336	
$100 < M_{\rm vis} < 135$	76396	33928	70942	652630	127555	
$65 < M_{ m mis} < 135$	62586	19427	62508	446045	110631	
$0.15 < y_{12} < 1$	61719	18517	58941	409226	103750	
$y_{23} < 0.06$	54797	9651	53150	277300	92458	
$y_{34} < 0.01$	53711	8629	50802	245424	87819	
$-0.98 < \cos(\theta_{2jets}) < -0.4$	37224	5809	31017	133305	50646	
bb - likeness > 0.4	25630	124	5745	3230	9764	

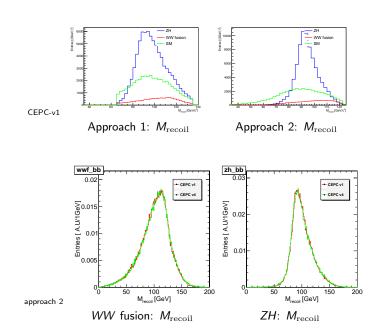
Signal and Higgs Backgrounds					
Cut	WW fusion (v1)	WW fusion (v4)	ZH (v1)	ZH (v4)	
$N_{PFO(E>0.4GeV)} > 20$	20102	19912	122403	122073	
$105 \text{GeV} < E_{ ext{total}} < 155 \text{GeV}$	18181	17939	115656	114926	
$P_T > 13 { m GeV}/c$	16935	16694	112297	111663	
Isolation lepton veto	14969	15463	106993	101951	
$100 < M_{ m vis} < 135$	13513	13929	97766	100289	
$65 < M_{ m mis} < 135$	13441	13846	96172	99750	
<i>y</i> ₁₂ , <i>y</i> ₂₃ , <i>y</i> ₃₄	11959	12251	85453	90976	
$-0.98 < \cos(\theta_{2iets}) < -0.4$	11158	11416	83308	88548	
bb - likeness > 0.4	10639	10916	79623	82597	

Recoil Mass Reconstruction

- ▶ The number of WW fusion, $H o b ar{b}$ events extracted from the fitting of recoil mass
- Approach 1: The recoil mass is calculated by

$$m_{\rm recoil} = \sqrt{(\sqrt{s} - E_H)^2 - p_H^2}$$

where E_H and p_H is reconstructed energy and momentum of Higgs, respectively.


► Approach 2: The energy is replaced with the one calculated from the momentum

$$m_{\text{recoil}} = \sqrt{(\sqrt{s} - \sqrt{m_H^2 + p_H^2})^2 - p_H^2}$$

▶ The approach 2 is expected to be better, because:

(sensitivity of m_{recoil} to p_H) \times (p_H resolusion) < (sensitivity of m_{recoil} to E_H) \times (E_H resolusion)

Recoil Mass Reconstruction Cont'd

Fit Model

- Methodology objective: as much realism as possible within acceptable analysis complexity
- ► SM backgrounds where assumed to be known very well, so the expected numbers of SM backgrounds events were fixed

Fit Model Cont'd

- Additional information of $ZH, Z \rightarrow \nu \nu, H \rightarrow b\bar{b}$ obtained from $eeH, \ \mu\mu H$, and qqH where $H \rightarrow b\bar{b}$.
 - ► Assumption 1: The uncertainties due to electroweak physics are assumed to be negligible.
 - ► Assumption 2: ZZ fusion contribution to eeH is negligible
 - Consequent: Three signal strengthes are proportional to the $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$
 - ► Assumption 3: The measurement correlation of signal strengthes of three channels are negligible
 - ▶ Conclusion: The external constraint of ZH, $Z \rightarrow \nu\nu$, $H \rightarrow b\bar{b}$:

$$\blacktriangleright \ 1/\sqrt{\left(\frac{1}{\sigma_{\text{eeH},H\to b\bar{b}}}\right)^2 + \left(\frac{1}{\sigma_{\mu\mu H,H\to b\bar{b}}}\right)^2 + \left(\frac{1}{\sigma_{qqH,H\to b\bar{b}}}\right)^2}$$

- $1/\sqrt{\left(\frac{1}{1.2\%}\right)^2+\left(\frac{1}{1.1\%}\right)^2+\left(\frac{1}{0.4\%}\right)^2}=0.375\%$
- See Yu Bai's report for newest values.

Fit Model Cont'd

Binned log likelihood constructed as

log
$$L = \log P(data; \mu_{WWF}, \mu_{ZH}) - 0.5 \left(\frac{\mu_{ZH} - 1}{0.375\%}\right)^2$$
 (2)

$$\log P = \sum_{i} \log \operatorname{Poisson}(n_{i,data}; n_{i,bkg} + n_{i,ZH}\mu_{ZH} + n_{i,WWF}\mu_{WWF})$$
(3)

where $n_{i,data}$ is the events number in bin i; $n_{i,bkg}$, $n_{i,ZH}$, $n_{i,WWF}$ the expected events number of backgrounds, $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$, and $WW {\rm fusion}, H \rightarrow b\bar{b}$ in bin i; Backgrounds means all backgrounds (SM backgrounds and Higgs backgrounds) except the $ZH, Z \rightarrow \nu\nu, H \rightarrow b\bar{b}$.

► The statistical uncertainty was determined via the hessian matrix at maximum point of the log likelihood

Result

 \blacktriangleright 2D-fit: recoil mass and θ

	CEPC-v1	CEPC-v4
Approach 1	3.8%	3.8%
Approach 2	3.1%	3.1%

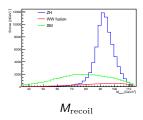
In approach 1,
$$m_{\rm recoil} = \sqrt{(\sqrt{s}-E_H)^2-\rho_H^2}$$
. In approach 2, E_H is replaced with $\sqrt{\rho_H^2+m_H^2}$

- ▶ 0.7% improvement by replacing E_H with $\sqrt{p_H^2 + m_H^2}$
- ► Compared to pre-CDR of CEPC, the method is more realistic, the result get a bit worse (pre-CDR: 2.8%).
- ▶ BTW: 0.1% (absolute) improvement for 2D fit compared to 1D-fit

Result for CEPC-v4 at 240GeV

Cross-section

- Cross-section of WW fusion decreases by 20.4%
- Cross-section of ZH decreases by 3%
- ► Most SM backgrounds increase (by up to 10%)

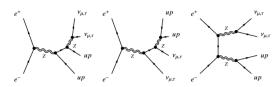

Events selection

Cut	WW	WW	WW	ZH	ZH	ZH
	(250 v1)	(250 v4)	(240 v4)	(250 v1)	(250 v4)	(240 v4)
$N_{PFO(E>0.4GeV)} > 20$	20102	19912	15859	122403	122073	116808
$105 \mathrm{GeV} < E_{\mathrm{total}} < 155 \mathrm{GeV}$	18181	17939	14496	115656	114926	109426
$P_T > 13 \text{GeV}/c$	16935	16694	13384	112297	111663	104818
Isolation lepton veto	14969	15463	13384	106993	101951	104818
$100 < M_{ m vis} < 135$	13513	13929	12446	97766	100289	97293
$65 < M_{ m mis} < 135$	13441	13846	11546	96172	99750	95080
y ₁₂ , y ₂₃ , y ₃₄	11959	12251	10197	85453	90976	86269
$-0.98 < \cos(\theta_{2iets}) < -0.4$	11158	11416	9594	83308	88548	83855
bb - likeness > 0.4	10639	10916	9210	79623	82597	81283

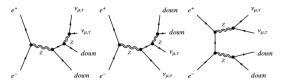
Events number WW fusion after events selection is 15.6% smaller compared to 240GeV

Result for CEPC-v4 at 240GeV

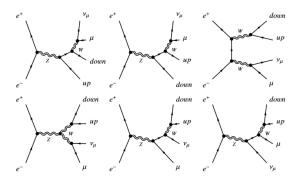
- Monte Carlo samples
 - SM backgrounds samples for CEPC-v1 at 250GeV reused for CEPC-v4 at 240GeV by assign weight
- Recoil Mass

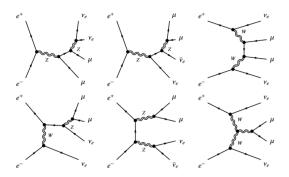

▶ Fit Result

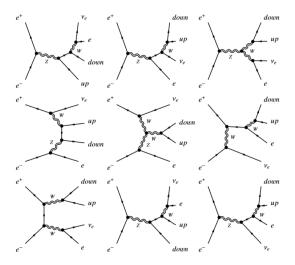
CEPC-v1 250	CEPC-v4 250	CEPC-v4 240
3.1%	3.1%	3.66%


18% worse than the result at energy of 250GeV
Analysis strategy for 250 GeV still valid for energy of 240GeV
The statistics change is responsible for the degeneration

Thansks!

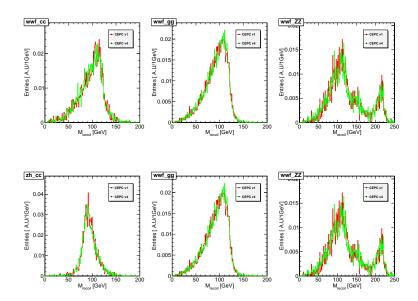

185 6.5 zz_sl0nu_up


186 6.6 zz_sl0nu_down


6.21 ww_sl0muq

6.33 sznu_10mumu

6.39 sw_sl0qq



▶ bb-likeness: the likeness of a pair of *b* jets.

bb – likeness =
$$\frac{b_1b_2}{(b_1b_2) + (1-b_1)(1-b_2)}$$

where b_i is the b flavor likeness of the ith jet.

Recoil Mass Reconstruction Cont'd

