$$
e^{+} e^{-} \rightarrow Z H \rightarrow \nu \bar{\nu} W W^{*} \rightarrow \nu \bar{\nu} \bar{l} \nu l \bar{\nu}(l=e, \nu)
$$

Xianke He Jun Yan
Adviser：Prof．Jun Guo Prof．Gang LI

SJTU
2018．6．28

Outline

- Precut
- BDT result
- Fit result
- Branch ratio
- Summary

Physics Motivation

- Measure the branch ratio of $H \rightarrow W W$ through $W W \rightarrow \bar{l} \nu l \bar{\nu}(l=e, \mu)$ on CEPC

Precut on $W W \rightarrow \bar{e} \nu \nu e \bar{\nu}$

- Number of Photon: N.Pho <4
- Number of Charge:
$1 \leq$ N.Charge <5
- Number of Isolated Lepton:
N.IsolatedLepton $=2$

Precut on $W W \rightarrow \bar{e} \nu \nu e \bar{\nu}$

- the Leading Leptons' Transverse Momentum: $5<P_{T}<70$
- the Leading Leptons'

Longitudinal Momentum:
$-55<P_{Z}<55$

- the Leading Leptons' Energy: $20<E_{l 1}<70$

Precut on $W W \rightarrow \bar{e} \nu \nu e \bar{\nu}$

- the second Leading Leptons' Energy: $E_{l 2}<45$
- Miss Energy: $150<$ MisEner
- the two leptons' Invariant Mass: $5<$ llInvMass <70

Precut on $W W \rightarrow \bar{e} \nu \nu e \bar{\nu}$

- included angle of the two leptons: $15<$ llAngle <130
- pull: $\sqrt{\left(\frac{\operatorname{trkD0_{0}^{2}}}{\operatorname{sig} D 0_{0}^{2}}+\frac{\operatorname{trk} Z 0_{0}^{2}}{\operatorname{sig} Z 0_{0}^{2}}\right) \cdot\left(\frac{\operatorname{trkD0_{1}^{2}}}{\operatorname{sig} D 0_{1}^{2}}+\frac{\operatorname{trk} Z 0_{1}^{2}}{\operatorname{sig} Z 0_{1}^{2}}\right)}<30$

BDT result of $W W \rightarrow \bar{e} \nu e \bar{\nu}$

Correlation Matrix (background)

TMVA overtraining check for classifier: BDT

Correlation Matrix (signal)

- RecPt1: the Leading Leptons' Transverse Momentum
- RecPt2: the second Leading Leptons' Transverse Momentum
- $\triangle \phi$: azimuth angle between the two leptons

BDT Cut Chain of $W W \rightarrow \bar{e} \nu e \bar{\nu}$

$B D T$	$S i g n a l$	$Z F I b k g$	$s Z$	SWV	SorW
-0.4	330.546	248.256	1330	51850	22431
-0.35	321.874	246.041	1117	34539	15801
-0.30	307.898	242.997	906	18032	9211
-0.25	290.969	239.076	715	7371	4957
-0.20	278.607	233.633	592	3520	3241
-0.15	263.016	221.963	500	2001	2328
-0.10	236.632	200.791	415	933	1514
-0.05	194.379	152.542	312	328	885
0	133.215	80.2149	198	90	459
0.05	64.301	25.9695	74	14	166

7371	7 7	MVTV	Z $\overline{\text { SorMVM }}$	$2 f$
-0.4	415.488	13201	12972	432
-0.35	371.498	9016	9535	324
-0.30	312.842	5605	5549	233
-0.25	265.475	3703	2988	168
-0.20	229.231	2734	2093	117
-0.15	197.729	1989	1625	79
-0.10	164.476	1370	1176	59
-0.05	121.627	762	732	29
0	79.1129	295	394	7
0.05	29.5636	64	180	7

BDT result of $W W \rightarrow \bar{e} \nu e \bar{\nu}$

Cut efficiencies and optimal cut value

Cut Chain of $W W \rightarrow \bar{e} \nu e \bar{\nu}$

$e^{+} e^{-} \rightarrow$	Signal	ZHbkg	$s Z$	SW	ZorW
Total	11582	948400	871051	3.3278×10^{6}	520935
$N_{\gamma}<4,1 \leq<N_{c h}<5$	99.8\%	5.69\%	20.4\%	66.6\%	99.6\%
$N_{\text {iso_lep }}=1$	81.4\%	1.24%	13.3\%	36.6\%	81.0\%
$5 \mathrm{GeV}<P_{T}<7 \mathrm{OGeV}$	79.9\%	1.22%	10.8\%	30.5\%	68.7\%
$\left\|P_{z}\right\|<55 G e V$	77.8\%	1.20%	4.60\%	14.8\%	35.7\%
20GeV $<E_{l 1}<70 G e V$	76.0%	1.01%	3.43\%	11.5\%	28.1\%
$E_{l 2}<45 G e V$	75.3%	1.01%	1.68\%	7.92\%	17.4\%
150GeV $<E_{\text {Miss }}<215 G e V$	74.4\%	1.01%	0.59\%	5.80\%	11.9%
$5 \mathrm{GeV}<$ llinvMass < 70GeV	73.5%	1.00%	0.32\%	3.72\%	7.54\%
$15^{\circ}<$ Angle $<130^{\circ}$	68.5\%	0.92\%	0.24\%	2.53\%	6.14\%
Pull < 30	62.9\%	0.61%	0.19\%	2.08\%	5.61\%
-0.0252 < BDT	32.2\%	0.02%	0.00\%	0.00\%	0.1\%
number(weight considered)	172	120	256	174	701

$e^{+} e^{-} \rightarrow$	Z Z	$W W$	Z ZorWW	$2 f$
Total	1.12546×10^{6}	7.47571×10^{6}	838472	7.91415×10^{6}
$N_{\gamma}<4,1 \leq<N_{c h}<5$	6.29\%	16.4\%	80.7\%	12.5\%
$N_{\text {iso_lep }}=1$	2.96\%	5.37%	33.9\%	4.42\%
$5 \mathrm{GeV}<P_{T}<70 \mathrm{CeV}$	2.24\%	4.34\%	28.3\%	3.99\%
$\left\|P_{Z}\right\|<55 G e V$	1.34\%	1.88\%	14.8\%	1.18\%
20GeV $<E_{l 1}<70 G e V$	0.98\%	1.48%	11.7\%	1.00\%
$E_{l 2}<45 G e V$	0.64\%	1.22\%	8.33\%	0.79\%
$150 G e V<E_{\text {Miss }}<215 G e V$	0.26\%	0.97\%	6.52\%	0.30\%
$5 \mathrm{GeV}<$ llInvMass $<70 \mathrm{GeV}$	0.23\%	0.65\%	4.26\%	0.18\%
$15^{\circ}<$ Angle $<130^{\circ}$	0.15\%	0.37%	2.39\%	0.03\%
Pull < 30	0.05\%	0.25\%	1.92\%	0.01\%
-0.0252<BDT	0.00\%	0.00 \%	0.00\%	0.00\%
number(weight considered)	101	481	573	22

BDT fit

- left: before bdt cut; right: after bdt cut

the measurement of $B r_{H \rightarrow W W}(1 / 2)$

- after BDT cut

channel $(W W \rightarrow l \nu l \nu)$	N.sig	N.bkg	$\Delta N . s i g / N . s i g=\sqrt{s+b} / s$
$e \nu e \nu$	172	2428	29.6%

- considering

$$
B r_{H \rightarrow W W}=\frac{N \cdot \operatorname{sig} /\left(\omega \cdot \varepsilon_{s i g}\right)}{L \cdot \sigma_{Z H} \cdot B r_{W \rightarrow e \nu}^{2}}
$$

ω is weight, $\varepsilon_{\text {sig }}$ is cut flow efficiency,set $\Delta \omega=0, \Delta \varepsilon_{\text {sig }}=0$.
$\frac{\Delta \sigma}{\sigma}=0.5 \%$ and ignore the ΔL,so

$$
\frac{\Delta B r}{B r}=\sqrt{\left(\frac{\Delta N \cdot s i g}{N . s i g}\right)^{2}+\left(\frac{\Delta \sigma}{\sigma}\right)^{2}+\left(\frac{\Delta B_{H \rightarrow e \nu}}{B_{H \rightarrow e \nu}}\right)^{4}} \approx 29.6 \%
$$

the measurement of $B r_{H \rightarrow W W}(2 / 2)$

- from last page,before we adopt BDT cut,the cut efficiency is 62.9%
- but we don't adopt this value, we randomly select one half data from 11582 events, then get a new efficiency: $\varepsilon_{\text {sig }}$

channel $(W W \rightarrow e \nu e \nu)$	N.sig
before cut	11582
after cut	1902
$\varepsilon_{\text {sig }}$	32.3%

- so the reconstructed N .sig from $H \rightarrow W W \rightarrow e \nu e \nu$:

$\frac{11582 * 32.2 \%}{32.3 \%} \approx 11546$

- the measured $B r_{H \rightarrow W W}=\frac{11546 \cdot 21.5 \%}{11582} \approx 21.4 \%$
- so $B r_{H \rightarrow W W} \approx 21.4 \% \pm 29.6 \%$

Summary and To do

- Br of $H \rightarrow W W$ is $21.4 \% \pm 29.6 \%$ through $W W \rightarrow e \nu e \nu$
- the fit result seems not better than number counting
- the combined measurements of the 3 channels is not finished

Thanks !

backup

Explanation of my signal weight

- professor Gang Li helped me generated 997637($\approx 10^{6}$) $\nu \nu H(\rightarrow W W) \mathrm{MC}$ samples
- for my three signal channel
$W W \rightarrow e \nu e \nu, W W \rightarrow e \nu \mu \nu, W W \rightarrow \mu \nu \mu \nu$, i could roughly get $997637 \times\left(10.71 \%^{2}+2 \times 10.71 \% \times 10.63 \%+10.63 \%^{2}\right) \approx 45432$
events.
- considering $L \cdot \sigma_{Z H} \cdot B r_{Z \rightarrow \nu \nu} \cdot B r_{H \rightarrow W W^{*}} \cdot\left(B r_{W \rightarrow e \nu}^{2}+B r_{W \rightarrow \mu \nu}^{2}+\right.$ $\left.2 \cdot B r_{W \rightarrow e \nu} \cdot B r_{W \rightarrow \mu \nu}\right)=5050 \cdot 212.13 \cdot 20 \% \cdot 21.5 \% \cdot\left(10.71 \%^{2}+2\right.$. $10.71 \% \cdot 10.63 \%+10.63 \%^{2}$) ≈ 2097
- the weight value:2097/45432 ≈ 0.046
- actually,i get 46018 events, not reach but close to 45432 .
the measurement of $B r_{H \rightarrow W W}$ through number counting (2/2)
- after BDT cut

channel $(W W \rightarrow l \nu l \nu)$	N.sig	N.bkg	$\Delta s / s=\sqrt{s+b} / s$
$e \nu e \nu$	172	2428	29.6%
$e \nu \mu \nu$	419	3489	14.9%
$\mu \nu \mu \nu$	223	2801	24.6%

- combined $\Delta s / s=\frac{1}{\sqrt{(1 / 29.6 \%)^{2}+(1 / 14.9 \%)^{2}+(1 / 24.6 \%)^{2}}}=11.7 \%$
- considering
- considering

$$
B r_{H \rightarrow W W}=\frac{N}{L \cdot \sigma_{Z H} \cdot\left(B r_{W \rightarrow e \nu}^{2}+B r_{W \rightarrow \mu \nu}^{2}+2 \cdot B r_{W \rightarrow e \nu} \cdot B r_{W \rightarrow e \nu}\right)}
$$

$$
\frac{\Delta \sigma}{\sigma}=0.5 \% \text { and ignore the } \Delta L, \text { so ? }
$$

Previous result

- after BDT cut

channel $(W W \rightarrow l \nu l \nu)$	N.sig	N.bkg	$\Delta s / s=\sqrt{s+b} / s$
$e \nu e \nu$	179	3053	31.7265%
$e \nu \mu \nu$	419	3489	14.8996%
$\mu \nu \mu \nu$	223	2801	24.6314%

- combined

$$
\Delta s / s=\frac{1}{\sqrt{(1 / 31.7265 \%)^{2}+(1 / 31.7265 \%)^{2}+(1 / 31.7265 \%)^{2}}}=11.8293 \%
$$

- considering

$$
B r=\frac{N}{L \cdot \sigma}
$$

$\frac{\Delta \sigma}{\sigma}=0.5 \%$ and ignore the ΔL,so

$$
\frac{\Delta B r}{B r}=\sqrt{\left(\frac{\Delta s}{s}\right)^{2}+\left(\frac{\Delta \sigma}{\sigma}\right)^{2}}=\sqrt{0.5 \%^{2}+11.8293 \%^{2}} \approx 11.84 \%
$$

