

CEPC Higgs Combination

Zhang Kaili¹, Wang Jin², Liu Zhen³

Institute of High Energy Physics
 University of Sydney
 University of Pittsburgh

The 4th CEPC Physics and Software Workshop

2018.06.27

Beijing

OUTLINE

- Why and How we do combination
- Results of $\sigma(ZH) * Br$
- κ Framework
- A brief look on individual study
- Summary

Why Combination?

- Uniformed, simultaneous statistical framework
 - Get likelihood scan result Robust & Reliable;
 - Correctly consider the correlations between individual channels
 - bb/cc/gg; ZH bkg; WW fusion; width.....
 - Extensibility
 - systematic uncertainties, theoretic assumptions.....
- Currently, with MC sample (always $\mu = 1$)
 - Build Asimov(1007.1727) data from signal and bkg spectrum
 - To fit the estimated precisions of $\sigma * Br$, and κ .
 - Calculation like Significance / Upper limit also obtained;
 - Can do more with observed data in the future.
 - Results shown in Layout=CEPC_v1, ECM=250GeV, B=3.5T.

Fit techniques

- Input: Various. binned/unbinned, 1d/2d spectrum used.
- Parameter of interest: $\sigma * Br$, Higgs coupling κ
 - $N_{total} = \mu * S + B$, $\mu = \sigma * Br = \frac{\kappa \kappa}{\Gamma}$ and share the same relative uncertainty;
- Nuisance parameter: Represents systematic uncertainties
 - $\sigma(ZH)$: 0.5%; $\sigma(Lumi)$: 0.1%; more NPs can be introduced in the future.
 - currently results are all determined by statistical uncertainty.
- PDF:

To describe the shape of the spectrum.

- signal: Double sided Crystal ball;
 bkg: 2rd-order poly exponential.
- RooHistPdf/RooKeysPdf used for some channels;
- Algorithm: Likelihood Scan
 - Asymmetric result, from Minuit2; $\pm 1\sigma$ deviation from profile likelihood

Fit techniques

• For each channel

٠

٠

- Input observables from MC sample.
- Build combined S+B Pdf
- For event number N_{bb}:
 - When measure $\sigma * Br$, $N_{bb} = N_{bb_SM} * \mu_{bb}$ N_{bb_SM} directly from event yield (5ab⁻¹)

 $Tot=N_{bb}*Pdf+N_{cc}*Pdf_{cc}+....+N_{bkg}*Pdf_{bkg}$

- When measure Br, $N_{bb} = N_{bb_SM} * \frac{Br}{Br_{SM}} * \frac{\sigma(ZH)}{\sigma(ZH)_{SM}} \Delta(\sigma(ZH)) = 0.50\%$
 - When measure κ , $N_{bb} = N_{bb} SM^* \kappa_z^2 (\kappa_w^2)^* \kappa_b^2 / \Gamma_H$
- Channel share the same μ s. $Z \rightarrow ee, \mu\mu, qq, \nu\nu$, share the same μ_{hh}
 - Events number N_{bb} is float and the Pdf shape fixed all the time.
- Use Combined pdf to make Asimov data
- Scan the likelihood and obtain the 1σ deviation

Channels Table (2018.6)

All channels scaled to 5ab⁻¹

Si	gnal	Dracicion	Si	gnal	Drasisian	Signal		Dragician	
Z	Н	Precision	Z	Н	Precision	Z	Н	Precision	
	H->qq			H->WW			Н→үү, Zү		
	bb	1.30%		lvlv	9.20%	μμ+ττ		41.00%	
ee	СС	11.77%	ee	evqq	4.60%	vv	γγ	13.70%	
	gg	6.17%		μνqq	3.90%	qq		10.30%	
	bb	1.00%		lvlv	7.30%	vv	Zγ(qqγ)	21.20%	
μμ	сс	9.41%	μμ	evqq	4.00%	vv	H(WW fusio	on)	
	gg	4.89%		μνqq	4.00%	vv	bb	3.10%	
	bb	0.48%		qqqq	2.00%		Н→μμ		
qq	СС	11.92%		evqq	4.70%	qq			
	gg	3.94%	vv	μνqq	4.20%	ee		15.00%	
	bb	0.40%		lvlv	11.30%	μμ	μμ	15.90%	
vv	СС	3.90%	qq	qqqq	1.80%	vv			
	gg	1.55%		H->ZZ		Η→ττ			
H->lı	nvisible	Br, Upper	vv	μμqq	7.90%	ee		2.80%	
qq		0.80%	vv	eeqq	35.20%	μμ		2.80%	
ee	ZZ(vvvv)	0.60%	μμ	vvqq	7.30%	qq	L	1.00%	
μμ		0.60%	ZH bkg c	ontribution	19.40%	VV		3.10%	

Treatment for ZH bkg

- In individual analysis, other ZH processes are tagged as bkg;
 - Signal in one channel can be bkg for another channel.
 - Should taken into account in combination.
 - $Z \rightarrow \mu\mu$, $H \rightarrow \tau\tau$, the main bkg is $H \rightarrow WW$.
 - These WW events should be considered in μ_{WW} .
 - Combined fit for H->bb/cc/gg/ww/zz hadronic decay, Fully correlated.
- Currently, to avoid the overlap,
 - Remove the bb/cc/gg part in Z->qq/vv, H->WW->qqqq;
 - Remove the WW/ZZ part in Z->qq/vv, H->bb/cc/gg.
 - Still need further discussion

- Correlation: $vvH \rightarrow bb$
- 2d fit M_{jj}^{reco} & Cos θ_{jj}
- Correlated with ZH process;
 - Fix ZH process, Initial error is 2.7%.
 - But must consider the uncertainty from ZH process.
- Use the likelihood from $Z \rightarrow ee/\mu\mu/qq$, $H \rightarrow bb$ to constrain
 - Already have the form of μ_{ZH} , no assumption made;
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -46%. (-34% in ILC(1708.08912))
- Simultaneous Fit 3.1%; consistent with individual study 3.1%.
 - Corresponding to this, $ZH \rightarrow bb$ precision 0.33%.
 - $\sigma(vvH)$ precision 3.16%.

Correlation: Higgs width

• In Pre_CDR, width determined by

$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)}$$
 and $\Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu\nu H \to \nu\nu bb)}{Br(H \to bb)Br(H \to WW)}$

- If two independent: 2.83% (consistent with pre_CDR, which gives 2.8%)
- But width correlated with all channels
 - Like correlation like $vvH \rightarrow vvbb$ and $ZH \rightarrow bb$ -46% not included -> would worse the result
- Combined fit in 10 κ framework:

$$\Delta(\Gamma_H) = 3.2\%$$

Fit result of $\sigma(ZH) * Br$

(5ab ⁻¹)	Pre_CDR	Current 2018.6	ILC 250	Fcc-ee
$\sigma(ZH)$	0.51%	0.50%	1.2%	0.40%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.28%	0.6%	0.2%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.3%	3.9%	1.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	1.3%	3.3%	1.4%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.1%	3.0%	0.9%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.1%	8.4%	3.1%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.2%	0.8%	2.0%	0.7%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	8.2%	16%	3.0%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	16%	46.6%	13%
$\sigma(\mathbf{v}\mathbf{v}H) * \mathrm{Br}(\mathbf{H} \to \mathbf{b}\mathbf{b})$	2.8%	3.1%	11%	2.4%
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%	0.4%	0.50%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	١	4σ(21%)		

ILC: 1310.0763 FCC-ee: 1308.6176

Difference from Pre_CDR

(5ab ⁻¹)	Pre_CDR	Combined	
$\sigma(ZH)$	0.51%	0.50%	 CrossSection: minor update.
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.28%	 bb,cc,gg: due to flavor tagging algorithm, The template gives b/c likeness, updated algorithm
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.3%	has less cc candidate events left.
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	1.3%	WW: more subchannels studied and 7H bkg
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.1%	contribution.
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.1%	• ZZ: the extrapolation in Pre_CDR from FCC-ee too optimistic.
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.2%	0.8%	• $\tau\tau$: τ finding algorithm updated.
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	8.2%	• $\gamma\gamma$: different estimation from full/fast simulation.
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	16%	 <i>vvH</i>: consider the correlation
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	3.1%	• $H \rightarrow invisible$: Pre_CDR studied an exotic decay $H \rightarrow \chi_1 \chi_1$ and assuming 200fb ⁻¹ , gives 0.28%.
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%	• Now we study the upper limit of $H \rightarrow ZZ \rightarrow \nu\nu\nu\nu$.
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	١	4σ(21%)	

κ Framework

 κ defined as the ratio of the Higgs coupling to SM expects.

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$$

- Model independent implication
 - Detector's benchmark;

Constrain to new physics models;

- In CEPC
 - We have $\sigma(ZH) = 0.5\%$ constrain $\sigma(\kappa_z) < 0.25\%$.
 - For Production, ZH & WW fusion process, all contribute to κ_Z^2 ; κ_W^2 ;
 - For Partial decay, no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_b^2 , κ_c^2 , κ_g^2 , κ_τ^2 , κ_γ^2 , κ_μ^2 ,
 - For Total width Γ_H . $\Gamma_H = \Gamma_{SM} + \Gamma_{BSM}$.
 - If we assume no exotic decay, Γ_{SM} can be resolved as: all κ correlated this way;

 $\Gamma_{SM} = 0.2137 \kappa_W^2 + 0.02619 \kappa_Z^2 + 0.5824 \kappa_b^2 + 0.08187 \kappa_q^2 + 0.002270 \kappa_V^2 + 0.06294 \kappa_\tau^2 + 0.02891 \kappa_c^2$

• $Z \to \mu\mu, H \to \tau\tau$ channel, the signal will be $\kappa_Z^2 \kappa_\tau^2 / \Gamma_H$; For $\nu\nu H \to bb$, it's $\kappa_W^2 \kappa_b^2 / \Gamma_H$

Fit result of κ

In different interpretation, Higgs width can be independent or resolved by branch ratio.

	10 <i>ĸ</i>	Pre_CDR	7κ	Pre_CDR	
κ _b	1.6%	1.3%	1.0%	1.2%	
κ _c	2.3%	1.7%	2.1%	1.6%	
κ _g	1.6%	1.5%	1.2%	1.5%	
κ_{γ}	4.4%	4.7%	4.3%	4.7%	
$\kappa_{ au}$	1.6%	1.4%	1.1%	1.3%	
$\kappa_{\rm Z}$	0.21%	0.26%	0.17%	0.16%	
$\kappa_{ m W}$	1.4%	1.2%	1.0%	1.2%	
κ_{μ}	8.1%	8.6%			
Br _{inv}	0.42%	0.28%	From 10 κ to 7 κ , we assume • No exotic decay Γ_{BSM} • Drop Br_{inv} • $\kappa_{\mu} = \kappa_{\tau}$		
Γ_{H}	3.3%	2.8%			

Integration to HL-LHC

The improvement of κ_{γ} from ${}^{Br_{ZZ}}/{}_{Br_{\gamma\gamma}} = 4\%$

ATL-PHYS-PUB-2014-016

*: here Br_{inv} for BSM.

Compared to ILC(1710.07621)

Correlation of κ

For each entry, upper one is CEPC result lower one is CEPC+HL-LHC result.

Г		7-р	arame	ter fit (Correla	tion		7		1	10-р	aran	neter	fit C	orre	latio	n	
Kb	100.	-35. -32.	-52. -51.	-59. -56.	-44. -43.	66. 63.	-9.6 -3.7	Kb	- 100.	-4.4 -4.2	-7.6 -6.1	-19. -19.	4.2 4.2	78. 77.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	-92. -91.
K _c	-35. -32.	100.	2.5 -3.4	17. 16.	2.9 2.8	-38. -36.	2.4 0.92	K _C K _a	-4.4 -4.2 -7.6	100. -19. -18	-19. -18. 100.	-9.3 -8.6 -25.	2.3 2.2 9.2	-6.1 -5.7 3.2 8 7	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	2.7 2.5 -5.8
K _g -	-52. -51.	2.5 -3.4	100.	6.7 1.6	6.8 4.3	-39. -28.	2.2 0.55	KW	-19. -19.	-9.3 -8.6	-25. -19.	100.	-22. -21.	-6.9 -7.8	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	5.7 5.5
KW	-59. -56.	17. 16.	6.7 1.6	100.	-22. -21.	-55. -56.	2.8 1.1	K _T K _Z	4.2 4.2 78. 77.	2.3 2.2 -6.1 -5.7	9.2 7.4 3.2 8.7	-22. -21. -6.9 -7.8	100. 25. 24.	25. 24. 100.	<0.1 <0.1 2.8 -4.7	<0.1 <0.1 1.5 -0.61	<0.1 <0.1 <0.1 <0.1	-31. -31. -83.
Κτ	-44. -43.	2.9 2.8	6.8 4.3	-22. -21.	100.	1.8 1.3	-0.85 -0.32	Kγ	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	2.8 -4.7	100.	<0.1 <0.1	<0.1 <0.1	-3.4 -1.3
KZ	66. 63.	-38. -36.	-39. -28.	-55. -56.	1.8 1.3	100.	-4.7 -7.5	κ _μ Br _{inv}	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	-0.61 <0.1 <0.1	<0.1 <0.1 <0.1	100. <0.1 <0.1	<0.1 <0.1	-1.0 -1.1 <0.1 <0.1
ĸ _γ	-9.6 -3.7	2.4 0.92	2.2 0.55	2.8 1.1	-0.85 -0.32	-4.7 -7.5	100.	KΓ	-92. -91.	2.7 2.5	-5.8 -13.	5.7 5.5	-31. -31.	-83. -83.	-3.4 -1.3	-1.8 -1.1	<0.1 <0.1	100.
L	K _b	K _c	Kg	K _W	Kτ	KZ	K _Y		Kb	K _C	Kg	K _W	Kτ	ΚZ	κ_{γ}	κ_{μ}	Br _{inv}	KΓ

2018/6/26

Summary

	Current		10 κ	7 κ		10-pa	rameter fit	7-par	ameter fit		
						CEPC	+HL-LHC	CEPC	+HL-LHC		
$\sigma(ZH)$	0.50%	Къ	1 6%	1 0%	Γ_h	3.2	2.5	—	_		
		n _D	1.070	1.070	κ_b	1.6	1.2	1.0	0.9		
$\sigma(ZH) * Br(H \to bb)$	0.28%	14	2 20/	7 10/	κ_c	2.3	2.0	2.1	1.9		
$-(7H) \cdot Pr(H + cc)$	2 20/	κ _c	2.5%	2.170	κ_g	1.6	1.2	1.2	1.0		
$O(ZH) * Br(H \rightarrow CC)$	3.3%		4 604	4.00/	κ_W	1.4	1.1	1.0	0.9		
$\sigma(ZH) * Br(H \rightarrow aa)$	1 2%	κ _g	1.6%	1.2%	$\kappa_{ au}$	1.6	1.2	1.1	1.0		
0 (211) · D1 (11 · 99)	1.370				κ_Z	0.21	0.21	0.17	0.16		
$\sigma(ZH) * Br(H \rightarrow WW)$	1.1%	κ_{γ}	4.4%	4.3%	κ_γ	4.4	1.7	4.3	1.7		
	,.				κ_{μ}	8.1	4.9	_	—		
$\sigma(ZH)*Br(H\to ZZ)$	5.1%	$\kappa_{ au}$	1.6%	1.1%	BR _{inv}	0.31	0.31	_			
$\sigma(ZH) * Br(H \to \tau\tau)$	0.8%	$\kappa_{ m Z}$	0.21%	0.17%							
-(711) + Prr(11 + rm)	0.20/										
$O(Z\Pi) * BI(\Pi \rightarrow \gamma\gamma)$	$\sigma(ZH) * Br(H \to \gamma\gamma) \qquad 8.2\%$		1.4%	1.0%							
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	16%										
	1070	К.,	8 1%		• Up	pdated fi	t results of (CEPC Hig	gs are		
$\sigma(vvH) * Br(H \to bb) \qquad 3.1\%$		·μ	0.170		sh	shown.					
		Br.	0 / 20/		• Cc	rrelatior	ns are taken	in consid	deration in		
$Br_{upper}(H \rightarrow inv.)$	0.42%	Drinv	0.4270		th	the simultaneous framework					
		г	2 20/								
$\sigma(ZH) * Br(H \to Z\gamma)$	4σ(21%)	I_H	3.2%		• To	be used	in the CDR	and whit	te paper.		
					•						

Individual analysis

A reminder for following discussion

A (not) quick introduction for statistics:

https://indico.ihep.ac.cn/event/7826/session/0/contributio n/4/material/slides/0.pdf and Cowan's Talk

bb/cc/gg

$$B_{likeness} = \frac{b_{j1}b_{j2}}{b_{j1}b_{j2} + (1 - b_{j1})(1 - b_{j2})}$$

- Template fit: Flavor tagging algorithm
 - $Z \rightarrow ee \ \mu\mu \ qq \ vv$, $H \rightarrow bb/cc/gg$ are studied.
 - 2D fit, with dijets' b/c likeness; mass info not used;
 - 7 parts, Tot=bb+cc+gg+ww+zz+tt+bkg_{sm}.
 - Build individual pdf by MC, then fit to determine fraction.
 - the shape of bkg is fixed.
 - Which means we have a wonderful understanding with bkg,
 - may be more suitable for CEPC.
 - ToyMC test to get precision
 - Now use 3d fit in IIH;
 - Systematic uncertainties ongoing;

Scan	µ_bb	μ_cc	µ_gg
eeH	1.3%	11.8%	6.2%
mmH	1.0%	9.4%	4.9%
qqH	0.5%	11.9%	3.94%
vvH	0.4%	3.9%	1.6%
Combined	0.28%	3.3%	1.3%

	preCDR	Now
ττ	1.2%	0.81%

- Pre_CDR concludes the precision 1.2% but no description.
- Develop LICH to identify lepton. Eff>99%
- Signal and ZH events(Main WW) share the same shape
 - use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal
 - Impact parameter, Distance from beam spot

	BR (H $\rightarrow \tau \tau$)	$\delta (\sigma \times BR) / (\sigma \times BR)$
$\mu\mu$ H	6.40	2.68%
eeH(extrapolated)	6.37	2.72%
$\nu \nu H$	6.26	4.38%
qqH	6.23	0.93%
combined	6.28	0.81%

С	E	P	C

WW

	preCDR	Now
WW	1.5%	1.1%

• Currently have 17 channels of WW

Si	gnal	Precisi
Ζ	Н	on
	H->WV	V
	lvlv	9.20%
ee	evqq	4.60%
	μνqq	3.90%
	lvlv	7.30%
μμ	evqq	4.00%
	μνqq	4.00%
	qqqq	2.00%
	evqq	4.70%
vv	μvqq	4.20%
	lvlv	11.30%
qq	qqqq	1.80%

7		preCDR	Now	Channel	Precision	Comment	CEDA
	77	1 20/	E 10/	$\sigma(Z(\nu\bar{\nu})H + \nu\bar{\nu}H) \times \mathrm{BR}(H \to ZZ)$	6.9%	CEPC Fast Simulation	UEPC
	LL	4.5%	5.1%	${ m BR}(H o ZZ^*)$	4.3%	Extrapolation from FCC-ee [36]	

• Pre_CDR's result from extrapolating the FCC-ee.

Si	gnal	Dracision
Z	Н	Precision
vv	μμqq	7.90%
vv	eeqq	35.20%
μμ	vvqq	7.30%
ZH bkg c	ontribution	19.40%

γγ

	preCDR	Now
γγ	9.0%	8.1%

Sig	Drasision			
Z	Z H			
μμ+ττ		24.8%		
VV	γγ	11.7%		
qq		12.8%		

$H \rightarrow invisible$

	preCDR	Now	CEPP
invisible	0.28%	0.42%	

- Moxin studied H->ZZ->vvvv
 - Large irreducible bkg, use BDT and seek upper limit.
 - Huge fluctuation, use Asimov Data to get correct fit result.
 - precision 148%, upper limit for Br: 0.42%
 - Upper limit for BSM H->invisible: 0.31%

Ζγ

CEPC

- $Z \rightarrow qq$, $H \rightarrow Z\gamma \rightarrow qq\gamma$ studied;
 - Pre_CDR not conclude;
 - Take $m_{Z\gamma-Z}$ as observable;
 - 4σ significance; Precision about 21%.

- *e*μ, *ee* process studied.
 - Since low stats and no clear ratio, not taken into fit model.

Η→μμ • Z->ee

bkg shape all after smoothing.	
(10~100x bkg events used)	

Cutflow	signal	ZZ	WW	ZZorWW	SingleZ	2f
Init	4.7	18	0	9	22672	8
$120 < M_{\mu^+\mu^-} < 130$	4.3	0	0	0	747	0
$89 < M_{reco}^{\mu + \mu -} < 94$	3.0	0	0	0	56	0
$138 < E_{\mu+\mu-} < 140$	2.2	0	0	0	8	0
efficiency	46.81%					

Bkg: Sz(I)e.I0mu;

. .

• Z->mm combination to minimize

$$\delta = (\frac{pair1.M}{\Delta Z})^2 + (\frac{pair2.M}{\Delta H})^2$$

• $\Delta Z = 1.5, \Delta H = 0.75$

Category	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
Preselection	6.6	17631.0	0	0	0	0.0
$120 < E_{\mu^+\mu^-} < 130$	6.0	1685.2	0	0	0	0.0
$90.6 < M_{recoil_{\mu}} < 93.4$	3.9	128.8	0	0	0	0.0
$90.2 < M_{\mu^+\mu^-}(Z) < 92.8$	3.2	58.1	0	0	0	0.0
$\cos_{\mu^+\mu^-}(H) < -0.603$	3.2	50.0	0	0	0	0.0
$\cos_{\mu^+\mu^-}(Z) < -0.364$	3.2	47.0	0	0	0	0.0
$138.0 < E_{\mu^+\mu^-}$ (H)<139.8	3.0	15.5	0	0	0	0.0
$P_{T_{\mu^+\mu^-}}(\mathbf{H}) < 62.5$	3.0	14.7	0	0	0	0.0
efficiency	45.5%					

Bkg: ZZ(I).4mu;

$ZH \rightarrow \nu \nu \mu \mu, qq \mu \mu$

• Z->vv • 38%

Cutflow	signal	ZZ	WW	ZZorWW	SingleZ	2f
Init	41.7	34901	121952	489686	25619	1635887
$120 < M_{\mu^+\mu^-} < 130$	38.4	382	16677	56029	315	49490
$MET_{\ell}8.5$	37.9	291	16264	53740	305	8600
$89 < M_{reco}^{\mu+\mu-} < 94$	28.1	96	834	2034	79	184
$\cos\theta_{\mu_+} > 0, \cos\theta_{\mu} - 0$	9.1	22	11	86	17	9
efficiency	21.82%					

Cut for Z->qq H-> $\mu\mu$ may too tight; should reconsider.

Cutflow	signal	ZZ	WW	ZZorWW	$\operatorname{SingleZ}$	2f
Init	156.3	390775	183751	463361	101164	63217
$120 < M_{\mu^+\mu^-} < 130$	141.6	3786	181	227	244	100
$M_{j1} > 4.2, M_{j2} > 2.8$	133.0	3216	111	0	9	60
$M_{jj} > 76.0$	127.5	2917	2	0	8	59
$89 < M_{reco}^{\mu+\mu-} < 94$	86.1	1106	0	0	0	0
efficiency	55.08%					

Combined:15.9%

Main bkg: ZZ(sl)mu.down, ZZ(sl)mu.up

• Considering the scheduled time, CEPC could be the first detector to see this process.