

H→WW* analysis with semi-leptonic final states

Tong LI, Lianliang Ma Shandong University

The 4th CEPC Physics and Software Workshop 27-29 June 2018, IHEP, Beijing

Contents

 \rightarrow Analysis with $Z \rightarrow vv$, $H \rightarrow WW \rightarrow qqqq$

- > Plans
 - $Z \rightarrow ee$, $H \rightarrow WW \rightarrow \mu\nu qq$

Introduction

Higgs productions at CEPC.

ZH process is the most dominant Higgs production channel at the CEPC.

As is predicted in the Standard Model theory, the branching ratio of H→WW is around 22%.

MC samples

Process	Cross Section in fb	Number of Events in 5000fb ⁻¹			
Higgs production					
ZH	212	1.06×10^{6}			
$\nu \bar{\nu} H$	6.27	3.36×10^{4}			
e^+e^-H	0.63	3.15×10^{3}			
total	219	1.10×10^{6}			

Standard Model Background				
qq	50216	2.5×10^{8}		
$\mu\mu$	4405	2.2×10^{7}		
WW	15484	7.7×10^{7}		
ZZ	1033	5.2×10^{6}		
eeZ(single Z)	4734	2.4×10^{7}		
evW(single W)	5144	2.6×10^{7}		
total	801016	3.54×10^{8}		

Z boson decay W boson decay	ee	μμ	ττ	νν	qq
$WW^* \rightarrow evev$	95	88	88	603	1836
$WW^* \rightarrow \mu \nu \mu \nu$	93	87	87	593	1808
$WW^* \rightarrow e \nu \mu \nu$	188	175	175	1206	3644
$WW^* \rightarrow e \nu \tau \nu$	201	187	188	1281	3901
$WW^* \rightarrow \mu \nu \tau \nu$	200	186	186	1271	3872
$WW^* o au u au au$	107	99	99	681	2072
$WW^* \rightarrow evqq$	1196	1112	1114	7589	23112
$WW^* \rightarrow \mu \nu qq$	1187	1104	1105	7530	22939
$WW^* \rightarrow \tau \nu qq$	1271	1182	1183	8066	24558
$WW^* \rightarrow qqqq$	3764	3502	3506	23884	72735

Cross sections and number of events of signal and main SM background processes.

Signal events of H→WW processes.

MC samples

• Two sets of $Z \rightarrow vv$, $H \rightarrow$ inclusive samples for signal process:

```
CEPC_v1 (Vs = 250GeV, B field = 3.5Tesla...)
```

```
CEPC_v4 (Vs = 240GeV, B field = 3.0Tesla...)
```

- Integrated luminosity is 5 ab⁻¹, background events are generated by Whizard1.95 including ISR, detector model is simulated by Geant4.
- Object reconstruction is done using the particle flow algorithm, Arbor. Charged particles identification is performed by LICH, ee-k_T algorithm is used for jet clustering, performance of b-tagging is given by LCFIPlus.

Analysis with CEPC_v1 data

• The missing mass, total mass and total p_T are used as the pre-selections.

75 GeV/
$$c^2 < M_{Mis} < 150$$
 GeV/ c^2
100 GeV/ $c^2 < M_{Tot} < 150$ GeV/ c^2
20 GeV/ $c < p_T < 80$ GeV/ c

Pre-selections criteria.

Event selections

- Selections of jet is done by 2 steps:
- Assuming that there are only 2 jets in each event, all particles are forced into 2 jets.
- → 4 jets hypothesis are made, to form all possible jet-pairs and the invariant mass are calculated. The jet-pair with invariant mass closest to W mass is taken as the on-shell W decay and the remaining 2 jets are assigned to the off-shell W decay.

Distributions of discriminant variables

Cut flow tables

My results:

No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
24889		222278		22687012	
20454	82. 18%	144169	64.86%	3528746	15. 55%
19729	96. 46%	124341	86. 25%	537839	15. 24%
19390	98. 28%	28954	23. 29%	477099	88. 71%
19336	99. 72%	28761	99. 33%	433563	90. 87%
18657	96. 49%	14840	51.60%	309919	71. 48%
15211	81. 53%	6927	46. 68%	122866	39. 64%
9037	59. 41%	3071	44. 33%	38226	31. 11%
Total efficiency	36. 31%		1.38%		0. 17%

Results from Note:

No.	of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
	23938		208200		21314314	
	20405	85. 24%	143765	69. 05%	3166923	14. 86%
	19681	96. 45%	124112	86. 33%	537839	16. 98%
	19349	98. 31%	28857	23. 25%	477099	88. 71%
	19289	99. 69%	28673	99. 36%	433563	90. 87%
	18621	96. 54%	14793	51. 59%	309919	71. 48%
	15183	81. 54%	6919	46. 77%	122866	39. 64%
	9022	59. 42%	3075	44. 44%	38226	31. 11%
Tota	al efficiency	37. 68%		1. 47%		0. 17%

- Relative efficiency = Number of events after this cut / Number of events before this cut
- These results are consistent when considering the statistical uncertainty.

Results

Visible mass and missing mass after selections.

Signal efficiency = 36.31%, ZH background efficiency = 1.38%

Results

Precision of this channel is 2.00%.

Analysis with CEPC_v4 data

$Z \rightarrow vv$, $H \rightarrow inclusive$:

$Z \rightarrow vv$, selected by $H \rightarrow WW \rightarrow qqqq$:

Missing-mass, visible-mass, invariant mass of 2 jets from real/virtual W decay.

Distributions of discriminant variables in CEPC_v4

Comparison of cut flow tables

CEPC_v1:

No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
24889		222278		22687012	
20454	82. 18%	144169	64. 86%	3528746	15. 55%
19729	96. 46%	124341	86. 25%	537839	15. 24%
19390	98. 28%	28954	23. 29%	477099	88. 71%
19336	99. 72%	28761	99. 33%	433563	90. 87%
18657	96. 49%	14840	51.60%	309919	71. 48%
15211	81. 53%	6927	46. 68%	122866	39. 64%
9037	59. 41%	3071	44. 33%	38226	31. 11%
Total efficiency	36. 31%		1. 38%		0. 17%

CEPC_v4:

No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency
23675		211307	
18894	79. 81%	134785	63. 79%
18404	97. 41%	118963	88. 26%
18048	98. 07%	26928	22. 64%
18006	99. 77%	26710	99. 19%
17451	96. 92%	14247	53. 34%
14273	81. 79%	6480	45. 48%
8516	59. 67%	2868	44. 26%
Total efficiency	35. 97%		1. 35%

No obvious discrepancies showed in the cut flow tables.

Visible mass and missing mass after selections.

Signal efficiency = 35.97%, ZH background efficiency = 1.35%

Variables distributions of CEPC_v1 and v4

Distributions of visible mass and missing mass after selections.

Dash line: CEPC_v1, solid line: CEPC_v4.

Black line: signal, red line: Higgs background.

Summary and plans

 No distinct change of performance showed for ZH->vvqqqq channel when we turn to CEPC_v4 detector model from CEPC_v1.

- The other channels:
 - \gt Z \rightarrow ee, H \rightarrow WW \rightarrow µvqq

backup