# Plan and Validation of 240 GeV Samples

Xianghu Zhao, Gang Li, Manqi Ruan

June 28, 2018

#### Outline

Production status

- ■Plan for 240 GeV samples production
- Deal user's requirement for MC samples

#### **Production Status**

- Generation data are ready for 240, 250, 350 GeV
  - Higgs signal
  - 2 fermion and 4 fermion background
- Using WHIZARD generator version 1.95
- For detailed list, please refer to the web page
  - http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/

# CEPC v4 MC Samples, 240 GeV

- Producing started, reconstructed with compressed dst format
- Existing samples
  - Higgs signal, samples with specified Higgs final states
  - qq background, 1M events
  - ww\_I, ww\_sI, zz\_h, zz\_I, zz\_sI backgrounds, not all fully produced
- Data location
  - /cefs/data/FullSim/CEPC240/CEPC\_v4
  - /cefs/data/DstData/CEPC240/CEPC\_v4

# CEPC v1 MC samples, 250 GeV

- Most samples are ready for use
- Simulation:
  - All signals, most 4 fermion backgrounds, part of 2 fermion backgrounds
- Reconstruction:
  - Mostly reconstructed corresponding to simulation
  - New data are being reconstructed with updated Arbor version, will soon be available
- Data location:
  - /cefs/data/FullSim/CEPC250/CEPC\_v1
  - /cefs/data/RecData/CEPC250/CEPC\_v1

#### How to Find the Samples

- Official samples are produced according to the generation data
  - http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/
- Data files could be found on the IHEP farm.
  - All data are located under /cefs/data
- Sample data type
  - stdhep, FullSim, FastSim, RecData, DstData
- Each data type has samples of different energy
  - Simulation and reconstruction data also divided into different CEPC detector version

```
/cefs/data

— DstData

— FastSim

— FiltedBKG

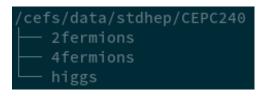
— FullSim

— RecData

— stdhep
```

```
/cefs/data/stdhep

— CEPC240


— CEPC250

— CEPC350

— generator

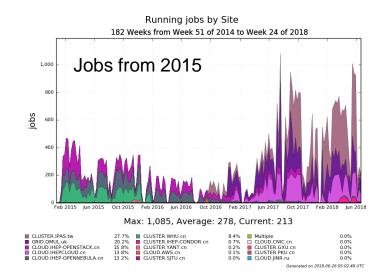
— lcio250

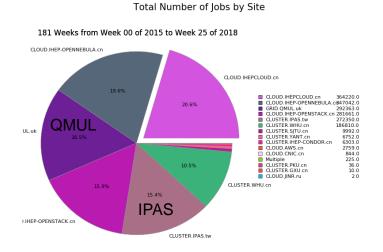
— whizard_in
```



#### Data Sample Location Convention

Similar structure for generator, simulation and reconstruction data


```
Generation
   $ ls /cefs/data/stdhep/CEPC240/4fermions/E240
                                                      lle0.p0.whizard195
  ww_l0ll.e0.p0.00001.stdhep
  ww_l0ll.e0.p0.00002.stdhep
  ww_l0ll.e0.p0.00003.stdhep
Simulation
                                                                          Process
 $ ls /cefs/data/FullSim/CEPC240(CEPC_v4)4fermions/E240.
                                                         Pww_l te0.p0.whizard195
ww_l0ll.e0.p0.00001_000000_sim.slcio
ww_l0ll.e0.p0.00001_001000_sim.slcio
ww_l0ll.e0.p0.00001_002000_sim.slcio
                                           Detector version
Reconstruction
 $ ls /cefs/data/DstData/CEPC240/CEPC_v4Y4fermions/E240.Pww_l)e0.p0.whizard195
ww l0ll.e0.p0.00001 000000 dst.slcic
ww l0ll.e0.p0.00001 001000 dst.slcio
ww_l0ll.e0.p0.00001_002000_dst.slcio
```


- For detailed naming rules of each process, please refer to note
  - "Generated sample status for cepc simulation studies", CEPC-TLS-GEN-2015-001

# Computing Resources

- The current computing resources are really limited
  - Most from distributed computing
- Thank QMUL, IPAS and IHEP cloud for their contributions
- Welcome more sites to contribute in distributed computing

| CLUSTER.IHEP-<br>CONDOR.cn | 48   |
|----------------------------|------|
| CLOUD.IHEPCLOUD.cn         | 200  |
| GRID.QMUL.uk               | 1600 |
| CLUSTER.IPAS.tw            | 500  |
| CLUSTER.SJTU.cn            | 100  |



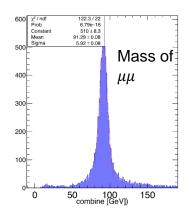


#### Plan for 240 GeV Production

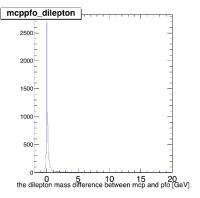
- Samples will be produced under CEPC\_v4
  - Produce with CEPC software version 1.x
- Basic priority
  - Higgs signal
  - 4 fermion background
    - Leptonic
    - Semileptonic
    - Hadron
  - 2 fermion background
- Computing resources
  - Distributed computing will still be the main resource type
  - Try to utilize HPC resources

#### Timeline for 240 GeV Production

- Production speed vary a lot among different sites
- The speed is also related to event type
- Estimate with 1 minute per event on average, 500 cpu cores simultaneously


| Process            | Events                      | Time Estimated |
|--------------------|-----------------------------|----------------|
| Signal             | ~ 1M                        | 2 days         |
| 4 fermion leptonic | ~ 16M                       | 1 month        |
| 4 fermion sl       | ~ 42M                       | 2 months       |
| 4 fermion hadronic | ~ 38M                       | 2 months       |
| 2 fermion          | ~ 1250M (only produce part) | ~ 2 months     |

#### Validation for Samples


- Validation of samples is important to ensure the data are correctly produced
- Each sample need its own validation method
  - We will provide validation method for each sample
  - Apply validation after each sample finished
- Validations are implemented by checking
  - Physics results
  - Reconstruction performance obtained from comparing MC truth

### Validation Examples

zz\_sl0mu\_up







209.7 / 22 1.432e-32 1047 ± 12.2

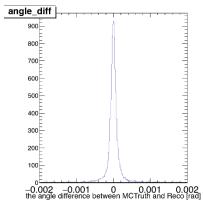
91.15±0.05 5.544±0.053

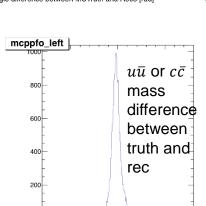
50 100 combine [GeV])

Mass of

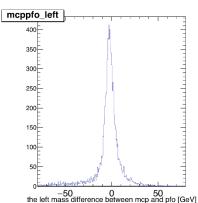
 $u\bar{u}$  or  $c\bar{c}$ 

1200 Prob Constant


1000

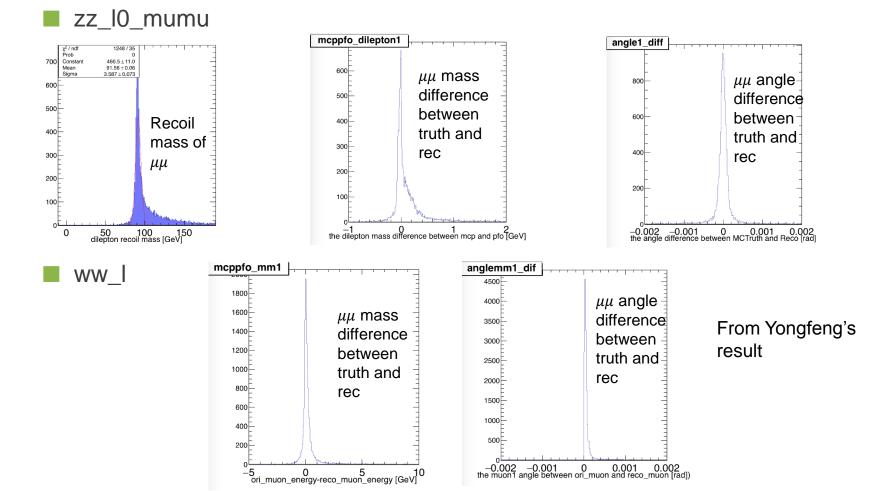

800

600


400

200






-50 0 50 the left mass difference between mcp and pfo [GeV]



From Yongfeng's result

# Validation Examples



# User Requirement for Data Samples

- If some samples are urgent for your analysis and not present, please send your request
- If the data are in the official list, but not yet produced
  - Raise the priority if sample size is small
  - For large samples, we could first produce part of them
- Not in the list, and may be common sample
  - Like the smart final state processes
  - Add to the production list and produce
- For small and uncommon samples, you could also produce it yourself

#### **CEPC Software Release Status**

- Official CEPC software release flow is established
- One release includes all sub packages of CEPC software
  - MokkaC, Arbor, ROOT, Geant4...
  - All packages and their versions are bind to a specific CEPC software release version now
- Release version for CEPC\_v4
  - Current version is 0.1.0-rc9, this version is in testing status
  - 1.0 version will be officially released in the next month
  - All release version for CEPC v4 will be 1.x.y

## Brief Usage for CEPC Software

- Release 0.1.0-rc9 could be directly used on lxslc6
  - source /cvmfs/cepc.ihep.ac.cn/software/cepcenv/setup.sh
  - cepcenv use 0.1.0-rc9
- CEPC software could also be installed on your local PC
  - Detailed guides on installation could be found on web
  - http://cepcsoft.ihep.ac.cn/guides/scratch/docs/local/
- A simple example of  $\nu\nu H$ ,  $H \rightarrow \mu\mu$  is provided
  - wget <a href="http://cepcsoft.ihep.ac.cn/file/example/cepc">http://cepcsoft.ihep.ac.cn/file/example/cepc</a> example.tar.gz
  - This example includes simulation, reconstruction and a script to draw the  $\mu\mu$  mass
  - Run this example to verify everything is working correctly

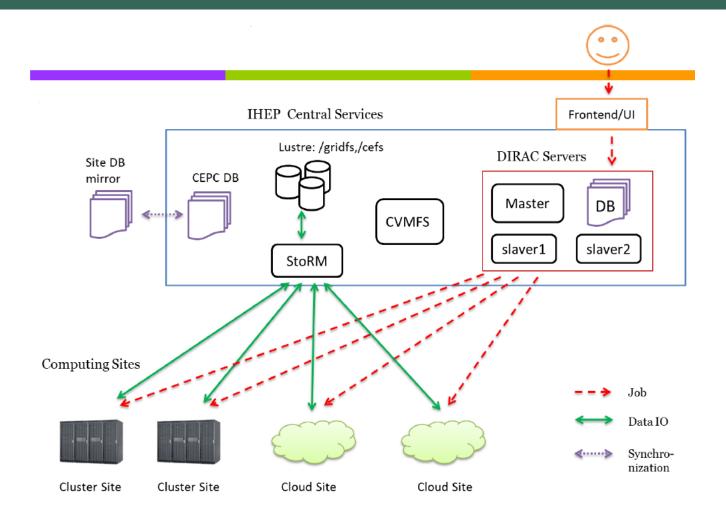
#### About LICH Processor

- LICH processor is developed by Dan Yu in order to improve particle identification efficiency
- This algorithm is already integrated in release 0.1.0-rc9
- Some configurations are needed in the Marlin steering file
  - MyLICH processor must be enabled before MyLCIOOutputProcessor
  - MyRecoMCTruthLinker should be enabled before MyLICH if not
  - More parameters could be set in the MyLICH section
- A new collection "typedPFOs" will be added to the slcio file
  - "typedPFOs" could be safely used to replace "ArborPFOs" in the analysis with better PID

```
comcTruthLinker"/>
comcTruthLinker"/>
comcessor name="MyLICH"/>
```

## Issues related to "typedPFOs"

- Is it suitable to just rename typedPFOs to ArborPFOs?
  - This could simplify analysis, but may cause inconsistency with old reconstructed files
  - Or let them coexist?
- Dst files should also include typedPFOs?
- Will it affect fast simulation?

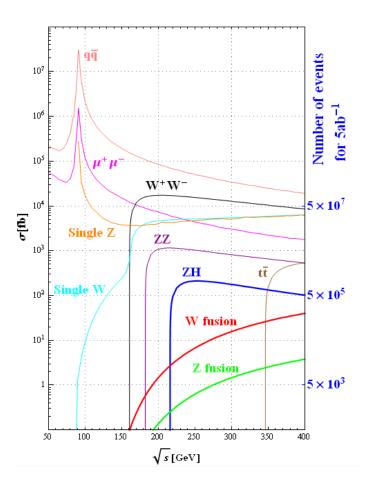

# Summary

- MC samples are being produced with various resources steadily
- Some CEPC v4 240 GeV samples are already available
- CEPC v1 250 GeV samples are almost done
- User's requirements could be considered in the production procedure

# **Thanks**

# Backup

# Distributed System Architecture




#### Problems in Production

- Database access and synchronize
  - Access remote database could always be
- Data transfer
- Distributed system stability

#### **Cross Sections**

Cross Sections of the leading Standard Model processes



#### **LICH Parameters**

```
<parameter name="InputDetectorModules" type="StringVec">barrel1 barrel2 overlap endcap 
<parameter name="InputMCParticle" type="string">MCParticle </parameter>
<parameter name="InputPFO" type="string">ArborPFOs </parameter>
<parameter name="InputPositions" type="FloatVec">0 0.3 0.55 0.75 1 </parameter>
<parameter name="OutputPFO" type="string">typedPFOs </parameter>
<parameter name="TrainingFlag" type="int">0 </parameter>
<parameter name="TreeOutputFile" type="string">LICHOUT1 </parameter>
<parameter name="TrainingEn" type="string">TRAININGEN </parameter>
<parameter name="weightDir" type="string">/cvmfs/cepc.ihep.ac.cn/software/data/yudan/CEPCV4/Reco/ </parameter>
<parameter name="mvacut mu" type="float">0.5 </parameter>
<parameter name="mvacut_pi" type="float">0.5 </parameter>
```