

Precise measurement of m_W using threshold scan method

Peixun Shen, Li Gang NKU, IHEP

4th CEPC Physics and Software Workshop 2018-6-27

Outline

- **≻**Motivation
- **≻**Methodology
- ➤ Theoretical tool
- > Statistical and systematic uncertainties
- Data taking schemes
- > Summary

Motivation

https://arxiv.org/abs/1701.07240

- ➤ The m_W plays a central role in precision EW measurements and in constraint on the SM model through global fit.
- ➤ The direct measurement suffers the large systematic uncertainty, such as radiative correction, EW corrections, modeling of hadronization.

➤ For the threshold scan method, the precision is limited by the statistics of data and the accelerator performance (this work).

Methodology

> Why?

$$\sigma_{WW}(m_W, \Gamma_W, \sqrt{s}) = \frac{N_{obs}}{L\epsilon P}$$
 $(P = \frac{N_{WW}}{N_{WW} + N_{bka}})$

$$(P = \frac{N_{WW}}{N_{WW} + N_{bkg}})$$

so $m_W(\Gamma_W)$ can be obtained by fitting the N_{obs} , with the theoretical formula σ_{WW}

> How?

In general, these uncertainties are dependent on \sqrt{s} , so it is a optimization problem when considering the data taking.

➤If ..., then?

With the configurations of L, ΔL , ΔE ..., we can obtain: $m_W \sim$?

Theoretical Tool

The σ_{WW} is a function of \sqrt{s} , m_W and Γ_W , which is calculated with the GENTLE package in this work

	CC11	ISR	Coulumb	EW	QCD
Gentle	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

The ISR correction is also calculated by convoluting the Born cross sections with QED structure funtion, with the radiator up to NL O(α^2) and O(β^3)

 \sqrt{s} (GeV)

On the QED radiator at order α³
 Higher Order Radiative Correction

Statistical and systematic uncertainties

Statistical uncertainty

With
$$L=3.2ab^{-1}$$
, $\epsilon=0.8$, $P=0.9$:

 Δm_W =0.6 MeV, $\Delta \Gamma_W$ =1.4 MeV (individually)

Statistical uncertainty

- \triangleright When there are more than one data point, we can measure both m_W and Γ_W .
- ➤ With the chisquare defined as:

$$\chi^2 = \sum_{i} \frac{(N_{\text{fit}^i} - N_{\text{obs}}^i)^2}{N_{\text{obs}}^i} = \frac{(\mathcal{L}\epsilon P)^i (\sigma_{\text{fit}}^i - \sigma_{\text{obs}}^i)^2}{\sigma_{\text{obs}}^i}$$

the error matrix is in the form:

$$V = \frac{1}{2} \times \begin{pmatrix} \frac{\partial^{2} \chi^{2}}{\partial m_{W}^{2}} & \frac{\partial^{2} \chi^{2}}{\partial m_{W} \partial \Gamma_{W}} \\ \frac{\partial^{2} \chi^{2}}{\partial m_{W} \partial \Gamma_{W}} & \frac{\partial^{2} \chi^{2}}{\partial m_{\Gamma_{W}^{2}}} \end{pmatrix}^{-1} = \sum_{i} \begin{pmatrix} \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} (\frac{\partial \sigma}{\partial m_{W}})^{2} & \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} \frac{\partial \sigma}{\partial m_{W}} \frac{\partial \sigma}{\partial \Gamma_{W}} \\ \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} \frac{\partial \sigma}{\partial m_{W}} \frac{\partial \sigma}{\partial \Gamma_{W}} & \frac{(\mathcal{L} \epsilon P)^{i}}{\sigma_{\text{obs}}^{i}} (\frac{\partial \sigma}{\partial m_{W}})^{2} \end{pmatrix}^{-1}$$

➤ When the number of fit parameter reduce to 1:

$$\Delta m_W = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}}$$

Systematic uncertainty

Beam energy uncertainty ΔE

 \triangleright With $\triangle E$, the total energy becomes:

$$E = G(E_p, \Delta E) + G(E_m, \Delta E)$$

- $\triangleright E$ is used in the data simulation, and $E_0 = E_p + E_m$ is for the fit formula.
- The Δm_W will be large when ΔE increase, and almost independent with \sqrt{s} .

Beam energy spread uncertainty ΔE_{BS}

 \triangleright With E_{BS} , the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$$

$$\approx \int_{E-6\sqrt{2}\Delta E_{BS}}^{E+6\sqrt{2}\Delta E_{BS}} \sigma(E') \times \frac{1}{\sqrt{2\pi}\sqrt{2}E_{BS}} e^{\frac{-(E-E')^2}{2(\sqrt{2}E_{BS})^2}} dE'$$

- $\triangleright E_{BS} + \Delta E_{BS}$ is used in the simulation, and E_{BS} is for the fit formula.
- The m_W insensitive to ΔE_{BS} when taking data around 162.1 GeV

Correlated sys. uncertainty

- The correlated sys. uncertainty includes: ΔL , $\Delta \sigma_{WW}$, $\Delta \epsilon$, ΔP ...
- $ightharpoonup ext{Since } N_{obs} = L \cdot \sigma \cdot \frac{\epsilon}{P}$, these uncertainties affect m_W and Γ_W in same way.
- ➤ We take *L* as an example, and use the total correlated sys. uncertainty in data taking optimization:

$$\sigma^{sys}(corr) = \sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2 + \Delta P^2}$$

Correlated sys. uncertainty ΔL (1)

 \triangleright With ΔL (relative), the L becomes:

$$L = G(L^0, \Delta L \cdot L^0)$$

L is used for simulation, and L^0 is for fit

$$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma \Delta L$$

The Δm_W almost increases linearly along with ΔL

Correlated sys. uncertainty ΔL (2)

 \triangleright If there is more than 1 data taking point, the correlated sys. uncertainty can be constructed into the χ^2 :

$$\chi^{2} = \sum_{i}^{n} \frac{(y_{i} - h \cdot x_{i})^{2}}{\delta_{i}^{2}} + \frac{(h-1)^{2}}{\delta_{c}^{2}}$$

 y_i , x_i are the true and fit results, h is a free parameter, δ_i and δ_c are the independent and correlated uncertainties.

 \triangleright There will be no bias in the fit result with this method, and the $\Delta m_W(\Delta L)$ will be reduced.

Data taking scheme

One point

- Smallest Δm_W , $\Delta \Gamma_W$ (stat.)
- Large sys. Uncertainties
- Only for m_W or Γ_W , without correlation

Two points

- Measure m_W and Γ_W simultanously
- Without the correlation

Three points

- Measure m_W and Γ_W simultaneously, with the correlation
- Maybe increase the Δm_W , $\Delta \Gamma_W$ (stat.)

With $L = 3.2 \ ab^{-1}$, $\epsilon P = 0.72$

Taking data at one point (just for m_W)

There are two special energy points:

 \triangleright The one which most statistical sensitivity to m_W :

$$\Delta m_W(\text{stat.}) \sim 0.59 \text{ MeV}$$
 at $E=161.2 \text{ GeV}$

(with $\Delta\Gamma_W$ and ΔE_{BS} effect)

ightharpoonup The one $\Delta m_W(\text{stat}) \sim 0.68 \text{ MeV}$ at $E \approx 162.5 \text{ GeV}$

(with small $\Delta\Gamma_W$, ΔE_{BS} effects)

With
$$\Delta L$$
 ($\Delta \sigma_{WW}$, $\Delta \epsilon$, ΔP)< 10^{-4} , σ^{sys} (corr)< 2×10^{-4}
 ΔE =0.5MeV, ΔE_{BS} = 10^{-2} , $\Delta \Gamma_{W}$ =42MeV)

\sqrt{s} (GeV)	161.2	162.5
σ^{sys} (corr)	0.35	0.44
ΔE	0.36	0.37
ΔE_{BS}	0.12	-
$\Delta\Gamma_{\!W}$	8	-
Stat.	0.59	0.68
$\Delta m_W({\sf MeV})$	8	0.9

Taking data at two energy points

To measure Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points:

1.
$$E_1, E_2 \in [155, 165] \text{ GeV}, \Delta E = 0.1 \text{ GeV}$$

2.
$$F \equiv \left(\frac{L_1}{L_2}\right) \in (0, 1), \ \Delta F = 0.05$$

Then we define the object function: $T = m_W + 0.1\Gamma_W$ to optimize the scan parameters (assume m_W is more important than Γ_W).

Taking data at two energy points

- ➤ The 3D scan is performed, we just use 2D plots to illustrate the optimization results;
- When draw the ΔT change with one parameter, another is fixed with scanning of the third one;
- E_1 =157.5 GeV, E_2 =162.5 GeV (around $\frac{\partial \sigma_{WW}}{\partial \Gamma_W}$ =0, $\frac{\partial \sigma_{WW}}{\partial E_{BS}}$ =0) and F=0.3 are taken as the result.

(MeV)	σ^{sys} (corr)	ΔΕ	ΔE_{BS}	Stat.	Total
Δm_W	0.48	0.38	-	0.81	1.02
$\Delta\Gamma_{\!W}$	0.22	0.54	0.88	1.06	2.9

Taking data at three energy points

- \triangleright Fit parameters: m_W , Γ_W , h (associated with σ_{sys}^{corr})
- Scan parameters: E_1 , E_2 , E_3 , F_1 , F_2 ($F_1 = \frac{L_1}{L_2 + L_3}$, $F_2 = \frac{L_2}{L_3}$)
- > Scan procedure:
 - A. $E_1, E_2, E_3 \in (154, 165) \text{GeV}, F_1, F_2 \in (0,1), \Delta E_i = 1, \Delta F_i = 0.1 (\sigma_{stat})$
 - B. $E_1 \in (154, 160), E_2, E_3 \in (160, 164), F_1 \in (0, 0.5), F_2 \in (0, 1), \Delta F_2 = 0.2 \text{ (add } \sigma_{SVS}^{corr})$
 - C. Obtain the Δm_W , $\Delta \Gamma_W$ with optimization result from step B ($\sigma_{stat} + \sigma_{sys}^{corr} + \Delta E + \Delta E_{BS}$)

Taking data at three energy points

The optimized results:

E_1	157.5 GeV					
E_2	162.5 GeV					
F_1	0.3					
E_3	161.5 GeV					
F_2	0.9					

 $\Delta L (\Delta \sigma_{WW}, \Delta \epsilon, \Delta P) < 10^{-4}$ $\sigma^{sys}(corr) < 2 \times 10^{-4}$ $E_{BS} = 1.6 \times 10^{-3}$ $\Delta E = 0.5 MeV$ $\Delta \Gamma_{W} = 42 MeV$ $\Delta E_{BS} = 0.01$

Summary

- \succ The precise measurement of m_W (Γ_W) is studied (threshold scan method)
- ➤ Different data taking schemes are investigated, based on the stat. and sys. uncertainties analysis.
- ➤ With the configurations :

$$L_{tot} = 3.2 \ ab^{-1}, \epsilon P = 0.72, \sigma_{sys}^{corr} = 2 \times 10^{-4}$$

 $\Delta E = 0.5 \ \text{MeV}, E_{BS} = 1.6 \times 10^{-3}, \Delta E_{BS} = 0.01$

Data points	Δm_W (MeV)	$\Delta \Gamma_{ m W}$ (MeV)			
1	0.9	-			
2	1.0	2.9			
3	1.0	2.8			

Thank you!

Backup

Theoretical Tool

- ➤ Process: CC11, the minimal gauge-invariant subset of Feyman diagrams
- ➤ QED corrections: ISR, FSR, Coulomb, EM interaction of *W* pair
- ➤ EW correction: effective scale of the *W* pair production and decay process
- >QCD correction

Optimizing results for two data points

E_1 , E_2

The z axis is the accumulation of the fit results

 $\Delta T \in (0.8, 3)$ MeV is required in further study

The normal distribution of E_1 : E_2 is break, and divide into two parts. $E_1 < 160$ GeV, $E_2 > 160$ GeV is used

E_1

Workshop of CEPC, 27-29 June, Beijing

shenpx@mail.nankai.edu.cn

Workshop of CEPC, 27-29 June, Beijing

shenpx@mail.nankai.edu.cn

Workshop of CEPC, 27-29 June, Beijing

shenpx@mail.nankai.edu.cn

With: $E_1=157.5$ GeV, $E_2=162.5$ GeV, $\sigma^{sys}(corr.) = 2 \times 10^{-4}$ (relative), $\Delta E_{BS}=1.6 \times 10^{-3}$ (relative), $\Delta E=0.5$ MeV

		Δm _W (MeV)					$\Delta\Gamma_{W}$ (MeV)					
\mathbf{F}		Sys.					Sys.					
	Stat.	σ (corr.)	ΔE	ΔE_{BS}	σ_{tot}^{sys}	Total	Stat.	σ (corr.)	ΔE	ΔE_{BS}	σ_{tot}^{sys}	Total
0. 1	0.71	0.47	0.35	_	0.92	0.92	4.6	0.31	0. 52	0.43	0.74	4. 7
0. 15	0.73	0.47	0.37	-	0.94	0.94	3. 7	0. 28	0.52	0.55	0.8	3.8
0.2	0.76	0.45	0.37	_	0.96	0.96	3. 3	0.26	0.52	0.60	0.84	3.4
0.25	0.78	0.46	0.37	-	0.98	0.98	3.0	0.23	0.51	0.76	0.94	3. 1
0.3	0.81	0.48	0.38	_	1.02	1.02	2. 7	0.22	0.54	0.88	1.06	2.9

Optimizing results for three data points

Step A: E_1, E_2

The z axis is the acumulation of the fit result. The edge of the distributions will affect the optimization results.

 E_1 <160, E_2 >160 GeV is used in further optimization

Step A: E_1 , E_2

The optimal regions of E_1 , E_2 are similar as two data points: $E_1 \sim (157,158) \text{ GeV}$, $E_2 \sim (162,163) \text{GeV}$

Step A: F_1

The optimal region of F_1 is similar as two data points: $F_1 \sim 0.3$

Optimization of E_1

Default values:

$$E_2$$
=162 GeV
 E_3 =161 GeV
 $F_1 = F_2$ = 0.5

- We change one variable with fixing other three, and get the ΔT along E_1 distributions.
- $Fightharpoonup E_1 = 157.5 \text{ GeV}$ is taken as the optimized result.

Optimization of E_2

Default values:

$$E_1$$
=157 GeV
 E_3 =161 GeV
 $F_1 = F_2$ = 0.5

- We change one variable with fixing other three, and get the ΔT along E_2 distributions.
- E_2 =162.5 GeV is taken as the optimized result.

Optimization of F_1

> Default values:

$$E_1$$
=157 GeV
 E_2 =162 GeV
 E_3 =161 GeV
 F_2 = 0.5

- We change one variable with fixing other three, and get the ΔT along E_2 distributions.
- $F_1=0.3$ is taken as the optimized result.

Step B

> Use the rough results from step A, the requirements below are used:

```
E_1 \in (155,160)

E_2 \in (160,164)

E_3 \in (160,164)

F_1 = 0.3, F_2 \in (0,1)
```

the σ_{sys}^{corr} is considered in the fit.

- > For each specific scan, 200 samplings are used, $\sigma_{WW} \sim G(\sigma_{WW}^0, \sigma_{sys}^{corr})$
- \triangleright So we can get the results by fitting the distributions of m_W , Γ_W of the specific scan results.

Optimization of E_3 and F_2

 E_3 =161.5 GeV and F_2 =0.9 are taken as the optimized results

Step B: E_1 , E_2

Step B: F_2

The $F_2 = 0.9$ is used in further study

Step B: E_3

The minimal result favors $E_3 \sim 161.5 \text{ GeV}$

Step C

➤ Use the rough results from step B, the configurations below are used:

$$E_1 = 157.5, E_2 = 162.5, E_3 = 161.5, F_1 = 0.3, F_2 = 0.9$$

 $\sigma_{SVS}^{corr} = 2 \times 10^{-4}, \Delta E = 0.5 \text{ MeV}, E_{BS} = 1.6 \times 10^{-3}, \Delta E_{BS} = 0.01$

- $\succ \sigma_{WW} \sim G(\sigma_{WW}^0, \sigma_{Sys}^{corr}), E \sim G(E_p^0, \Delta E) + G(E_m^0, \Delta E), E_p^0 \text{ and } E_m^0 \text{ are smeared with } E_{BS},$ $E_{BS} \sim G(E_{BS}^0, \Delta E_{BS})$
- \triangleright By 500 samplings, we fit the distributions of m_W , Γ_W , and the corresponding uncertainties are : $\Delta m_W \sim 1$ MeV, $\Delta \Gamma_W \sim 2.8$ MeV