Update cross section of $e^+ e^- ightarrow \pi^+ \pi^- J/\psi$

Jiang Houbing Liu Zhiqing Huang Xingtao

Shandong university

Motivation

- We plan to update the $e^+ e^- \rightarrow \pi^+ \pi^- J/\psi$ cross section with new XYZ data, to precisely measure Y(4260) parameters;
- We might have a chance to study $Y \rightarrow \pi^{\pm} Z_c (3900)^{\mp}$ at BESIII;

Intial check(@4230 and @ 4260):

- boss version boss664p01;
- MC of $e^+e^- \rightarrow Y(4260) \rightarrow \pi^+\pi^- J/\psi$ MassH2 (produced by Zhiqing);

Event Selection

Initial Selection

- Charged track :
 - > Rxy<1cm, |Rz| < 10cm; $|cos\theta| < 0.93$;
 - charged track =4 ; total charge =0;
 - identify charged track:
 - P>1.06 GeV leptons
 - P<=1.06 GeV pion
 - identify leptons:
 - E_emc < 0.35 GeV muon;
 - E_emc > 1.1 GeV electron;
 - Vertex and 4C kinematic fit ;

Given Selection:

Obviously, there are large gamma conversion events

- To suppress gamma conversion events
 ➢ let cos (π⁺ π⁻) <0.98;
- Check others angle distribution:

- > still have large gamma conversion events in ee channel , let $\cos(\pi^+ e^-) < 0.98\&\&\cos(\pi^- e^+) < 0.98;$
- After above cut(MC after PULL distribution correction):

• Further selection summary:

Cos (
$$\pi^+ \pi^-$$
) <0.98&&cos ($\pi^+ e^-$) <0.98&& cos ($\pi^- e^+$) <0.98&& χ^2_{4c} < 60 in $J/\psi \rightarrow e^+ e^-$ channel;

$$\succ$$
 cos (π⁺ π[−]) <0.98 && χ^2_{4c} < 60 in $J/\psi \to \mu^+ \mu^-$ channel;

Cross Section Measurement

After all the above selection, the dominant background event come from $e^+ e^- \rightarrow \pi^+ \pi^- \pi^+ \pi^$ both in $e^+ e^-$ and $\mu^+ \mu^-$ channel (inMC study), we use J/ψ sideband describe this background:

$$\sigma_{dress} = \frac{N_{sig}}{\mathcal{L}(1+\delta)\epsilon\mathcal{B}}$$

- N_{sig} is the number of J/ψ events , we get it by using MC shape convolving with a free parameter Gaussian function add 1nd-order Chebychev polynomial fit to DATA ;
- \mathcal{L} is the integrate luminosity;
- $(1 + \delta)$ is radiative correction factor (Use the value in memo[1]);
- \mathcal{B} is the Branching fraction of $J/\psi \rightarrow l^+ l^-$;

[1] http://docbes3.ihep.ac.cn/DocDB/0004/000473/013/ppJpsi_v8.pdf

4/3/2018

Fit result @4230

 $\sqrt{s} (\text{GeV}) \ \mathcal{L} (\text{pb}^{-1}) \qquad N^{\text{sig}}(\mu^+\mu^-/e^+e^-) \qquad \epsilon (\%:\mu^+\mu^-/e^+e^-) \ 1+\delta \qquad \sigma^{\text{dress}}(\text{pb}:\mu^+\mu^-/e^+e^-)$ $4.2263 \qquad 1091.7 \quad 2261.9 \pm 52.4/1591.2 \pm 44.4 \qquad 0.544/0.385 \qquad 0.748 \quad 85.3 \pm 2.0 \pm 4.9/84.8 \pm 2.4 \pm 5.0$

Fit result @4260

Zhiqing's Memo:

 \sqrt{s} (GeV) \mathcal{L} (pb⁻¹) $N^{\text{sig}}(\mu^+\mu^-/e^+e^-)$ $\epsilon(\%:\mu^+\mu^-/e^+e^-)$ $1+\delta$ σ^{dress} (pb: $\mu^+\mu^-/e^+e^-)$ 4.2580825.71318.6 ± 41.3/901.5 ± 34.30.522/0.3660.853 60.1 ± 1.9 ± 3.4/58.6 ± 2.3 ± 3.5

Summary

@4230	σ_{dress} $(\mu\mu)$ pb	σ_{dress} (ee) pb	@4260	σ_{dress} $(\mu\mu)$ pb	$\sigma_{dress}^{}$ (ee) pb
My results	84.98±1.89	84.34 ± 2.26	My results	59.01 ± 1.78	59.13±2.10
Zhiqing's	85.3± 2.0	84.8± 2.4	Zhiqing's	60.1± 1.9	58.6± 2.3
Difference (%)	0.38	0.55	Difference (%)	1.84	0.89

• The difference between the results is small, we plan to measure all energy points' cross section;

Thank you!