Measurement of $X(3872) \rightarrow \gamma J/\psi$, $\gamma \psi(2S)$, and $D^{*0}D$

Junhao Yin, Jingyi Liu, Jielei Zhang, Changzheng Yuan, Jingzhi Zhang IHEP, CAS

Introduction

- After the first observation of *X*(3872), our knowledge of *X*(3872) has been greatly improved.
- The mass and width are measured preciously using $\pi\pi J/\psi$ decay

mode	VALUE (MeV	()	EVTS	DOCUMENT ID		TECN	COMMENT
moue	$\textbf{3871.69} \pm$	0.17 OUR	AVERAGE				
	$3871.9\ \pm$	$0.7\ \pm 0.2$	20 ± 5	ABLIKIM	14	BES3	$e^+e^- ightarrow J/\psi \pi^+\pi^-\gamma$
	$3871.95\pm$	0.48 ± 0.12	2 0.6k	AAIJ	12H	LHCB	$pp \rightarrow J/\psi \pi^+ \pi^- X$
	$3871.85\pm$	0.27 ± 0.19	$ ho~\sim 170$	¹ CHOI	11	BELL	$B \rightarrow K \pi^+ \pi^- J/\psi$
	3873 +	${}^{1.8}_{1.6}$ ± 1.3	27 ± 8	² DEL-AMO-SA	. 10 B	BABR	$B ightarrow \omega J/\psi K$
	$3871.61\pm$	0.16 ± 0.19	9 6k	^{2,3} AALTONEN	09 AU	CDF2	$p \overline{p} \rightarrow J/\psi \pi^+ \pi^- X$
	$3871.4\ \pm$	$0.6\ \pm 0.1$	93.4	AUBERT	08Y	BABR	$B^+ \rightarrow K^+ J/\psi \pi^+ \pi^-$
	$3868.7 \ \pm$	$1.5\ \pm 0.4$	9.4	AUBERT	08Y	BABR	$B^0 \rightarrow K^0_S J/\psi \pi^+ \pi^-$
	$3871.8~\pm$	$3.1 \ \pm 3.0$	522	^{2,4} ABAZOV	04F	D0	$p \overline{p} \rightarrow J/\psi \pi^+ \pi^- X$
	VALUE (MeV)) <u>CL%</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT

<1.2	90	CHOI	11	BELL	$B \rightarrow$	$K\pi^+\pi^-$	J/ψ
------	----	------	----	------	-----------------	---------------	----------

Datasets

- XYZ data around 4230:
- BOSS version: 7.0.3

\sqrt{s} (GeV) Luminosity (pb ⁻¹)			
4.1783	3189.0		
4.1888	521.9		
4.1989	523.7		
4.2092	511.2		
4.2187	508.2		
4.2263	1092		
4.2357	528.9		
4.2438	532.7		
4.2580	826		
4.2668	529.3		
4.2777	174.5		

$X(3872) \to \gamma J/\psi$

Event Selection

- Two good charged tracks
 - $\mu: p_{MDC} > 1.0, E_{EMC} < 0.4$
 - $e: p_{MDC} > 1.0, E_{EMC} > 0.8$
- At least two good photons
 - Cluster from barrel: E > 25 MeV
 - Cluster from endcap: E > 50 MeV
- 4C kinematic fit
 - The two photons with largest deposit energy are used
 - Photon with larger energy after 4C named γ_H , the other one named γ_L

We require $\chi_{4C}^2 < 40$.

Very clear signal in $\mu\mu$ mode, but not so evident in *ee* mode because the QED background is much higher.

Set signal region: $M(ll) \in [3.08, 3.12]$ and sideband region: $M(ll) \in [3.02, 3.06]$ and $M(ll) \in [3.14, 3.18]$.

For uu mode

7

- From the 2D plot we can find that there are some wrongidentified Jpsi with two photons peaking around π^0 .
- \succ There are also many e⁺e[−] → ηJ/ψ events.

➢ Require

 $|M(\gamma\gamma) - m(\pi^0)| > 0.015, |M(\gamma\gamma) - m(\eta)| > 0.03.$

To reject the background from $e^+e^- \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi$, require $\left| M \left(\gamma_L J/\psi - m(\chi_{c1,2}) \right) \right| > 0.02$

The 2D view on $M(\gamma J/\psi)$ versus M(ll) in $\mu\mu$ mode shows clear signal of X(3872). There is no peaking background from the inclusive MC study.

We generate $e^+e^- \rightarrow \gamma X(3872)$ assuming the signal come from Y(4230), the weighted reconstruction efficiency is computed as:

$$\epsilon = \frac{\sum_{i}^{11} \epsilon_i \cdot \mathcal{L}_i \cdot \sigma_i \cdot (1+\delta) \cdot (1+\delta)_{vp}}{\sum_{i}^{11} \mathcal{L}_i \cdot \sigma_i \cdot (1+\delta) \cdot (1+\delta)_{vp}}$$

= 31.7%(14.7% for *ee*)

where the cross section is obtained assuming X(3872) decay from Y4230 decays.

The parameters of Y4230 are obtained from PDG: M = 4230 MeV, $\Gamma = 55$ MeV.

- Unbinned maximum likelihood fit is performed simultaneously. The mass spectrum is fitted with two components:
 - > Signal: described with MC shape, assuming M(X3872) = 3.87246 GeV, $\Gamma = 0.0012$ GeV
 - Background: described with a 2nd-order Chebychev polynomial
- > Goodness of the fit: 90.9/92=0.99; the statistical significance of X3872 is 4.1σ
- → The efficiency and branching fraction corrected signal yields: $(24.3 \pm 6.6) \times 10^2$, branching fraction means Br $(J/\psi \rightarrow \mu\mu/ee)$.
- > The average Born cross section is 0.27 ± 0.07 pb for $\sqrt{s} = 4.18 -4.28$ GeV

 $X(3872) \rightarrow \gamma \psi(2S)(\mu \mu)$

 $\psi(2S) \rightarrow \mu\mu$ mode is also used in reconstruction require $M(\mu\mu) \in [m_{\psi'} - 0.02, \ m_{\psi'} + 0.02], \chi^2_{4C} < 40.$ The QED background is high and the signal of $\psi(2S)$ or X(3872) is not evident. The QED background in $\psi(2S) \rightarrow ee$ mode is much higher, which is not used.

$X(3872) \to \gamma \psi(2S)(\pi \pi J/\psi)$

Event Selection

- Four good charged tracks
 - $\mu: p_{MDC} > 1.0, E_{EMC} < 0.4$
 - $e: p_{MDC} > 1.0, E_{EMC} > 0.8$
 - $\pi: p_{MDC} < 1.0$
- At least two good photons
 - Cluster from barrel: E > 25 MeV
 - Cluster from endcap: E > 50 MeV
- 4C kinematic fit
 - The combination with least χ^2_{4C} is kept as best candidate
 - Photon with larger energy after 4C named γ_H , the other one named γ_L

 $\chi^2_{4C} < 40, \ M(ll) \in [3.08, \ 3.12] \text{ and}$ $[M(\pi\pi J/\psi) - m^0(\psi')] < 0.006 \text{ are required.}$

Sideband: $[M(\pi\pi J/\psi) - 3.668] < 0.006 || [M(\pi\pi J/\psi) - 3.704] < 0.006$

One kind of background is $ee \rightarrow \eta J/\psi$, $\eta \rightarrow \pi^+\pi^-\pi^0$, which has the same final states as signal MC. $|M(\gamma\gamma) - m(\pi^0)| > 0.015$ is required to veto this process.

The process of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$, $\psi(2S) \rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow \gamma J/\psi$ also share the same final states with the signal. We require $|M(\pi\pi)_{recoil} - (\psi')| > 0.02$ GeV to veto the $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ backgrounds.

40 steams Inclusive MC study implies low level of background and no peaking background. The background level from inclusive MC is under-estimated compared with data.

- Unbinned simultaneous maximum likelihood fit to extract signal yields.
 - Ratios of X3872 from the two samples are constraint to the corresponding branching fractions and reconstruction efficiencies.
- > The mass spectrum is fitted with two components:
 - > Signal: described with MC shape, assuming M(X3872) = 3.8719 GeV, $\Gamma = 0.0012$ GeV
 - > Background: described with a 2nd-order Chebychev polynomial
- ➤ Corresponding reconstruction efficiency and branching fraction corrected signal yields: $(0.0 \pm 5.1) \times 10^2$
- Goodness of fit: 68.2/92=0.74

After considering the systematic uncertainty, the upper limit at 90% confidence level of the number of production events is 10.3×10^2 .

The upper limit at 90% C.L. of the relative branching fractions ratio is calculated by sampling the $\gamma J/\psi$ and $\gamma \psi'$ likelihood distribution. The UL is set to be 0.47 after systematic uncertainty consideration where the common ones are cancelled.

$X(3872) \to \gamma DD$

• Event Selection

- Use double Dtag to reconstruct $D^0 \rightarrow K\pi, K\pi\pi\pi, K\pi\pi^0$
- At least two good photons
 - Cluster from barrel: E > 25 MeV
 - Cluster from endcap: E > 50 MeV
 - Cluster is not from *D* candidate
- 4+n(pi0 mass)+2(D mass)C kinematic fit
 - The combination with least χ^2_{nC} is kept as best candidate
 - Photon with larger energy after 4C named γ_H , the other one named γ_L
 - $\chi^2_{4C}(\gamma DD) < \chi^2_{4C}(\pi^0 DD)$

The main background learnt from the inclusive MC is $ee \rightarrow \gamma D^0 D^{*0}$, which will not contribute a peaking background.

3.88 3.9 3.92 3.94 M(γ₁ DD) GeV/c²

$X(3872) \to \pi^0 DD$

• Event Selection

- Use double Dtag to reconstruct $D^0 \rightarrow K\pi, K\pi\pi\pi, K\pi\pi^0$
- At least three good photons
 - Cluster from barrel: E > 25 MeV
 - Cluster from endcap: E > 50 MeV
 - Cluster is not from *D* candidate
- 4+n(pi0 mass)C+2(D mass)C kinematic fit
 - The combination with least χ^2_{nC} is kept as best candidate
 - Photon with larger energy after 4C named γ_H , the other one named γ_L
 - $\chi^2_{4C}(\gamma DD)>\chi^2_{4C}(\pi^0 DD)$

Comparison between data, signal MC, and inclusive MC, the χ^2_{nC} is required to be less than 60.

After require $D^*(2007)$ mass window $(m_{D^*} \pm 0.004 \text{ GeV/c}^2)$, the signal of X(3872) does not change.³²

Very clear signal of $D^{*0} \rightarrow \gamma D^0$ in the higher side in the $M(DD\pi^0)$ spectrum.

1.9

1.85 -3.8

3.9

M(DDπ⁰) GeV/c²

4.1

The weighted efficiency for γDD and $\pi^0 DD$ mode are 1.9% and 1.3%, respectively.

- > Requiring at least one of D mesons coming from D^{*0} , unbinned maximum likelihood fit are performed simultaneously to the mass spectra.
- > Two components are included in each fit:
 - Signal: described with MC simulated shape convolved free Gaussians. The fraction between two signals are fixed to the corresponding reconstruction efficiencies and branching fractions.
 - Background: described with an ARGUS function.
- > Goodness of fit: 53.6/70=0.77; statistical significance: 8.0 σ ;
- > Signal yields after efficiency and branching fraction correction: $(38.0 \pm 7.0) \times 10^3$
- Fitted mass of Gaussian:
 - > 5.3+-1.0 MeV for γDD and 1.3+-0.5 MeV for $\pi^0 DD$

We fit the $M(\pi^0 DD)$ and $M(\gamma DD)$ in each energy point simultaneously, and yield the number of production events.

The Born cross section is calculated with formula:

$$\sigma^{Born} = \frac{N_{pro}}{L \cdot (1+\delta) \cdot \frac{1}{(1-\Pi)^2}}$$

where N_{pro} is the number of production events, L is the corresponding luminosity, $(1 + \delta)$ is the ISR correction factor and $\left(\frac{1}{(1-\Pi)^2}\right)$ is the vacuum polarization factor. We fit the Born cross section with a BW and the fitted parameters are: $M = 4217 \pm 8 \text{ MeV}, \Gamma = 59 \pm 36 \text{ MeV}, \Gamma_{ee} \cdot B(Y4260 \rightarrow \gamma X3872) \cdot B(X3872 \rightarrow DD^*) = (5 \pm 2) \times 10^{-10}$

$X(3872) \to \gamma D^+ D^-$

Event Selection

- Use double Dtag to reconstruct $D^{\pm} \rightarrow K\pi\pi$, $K\pi\pi\pi^{0}$
- At least two good photons
 - Cluster from barrel: E > 25 MeV
 - Cluster from endcap: E > 50 MeV
 - Cluster is not from *D* candidate
- 4+n(pi0 mass)+2(D mass)C kinematic fit
 - The combination with least χ^2_{nC} is kept as best candidate
 - Photon with larger energy after 4C named γ_H , the other one named γ_L
 - $\chi^2_{4C}(\gamma DD) < \chi^2_{4C}(\pi^0 DD)$

 $\chi^2_{nC} < 60$, $|M(\gamma\gamma) - m^0_{\pi}| > 0.02$. Weighted efficiency is 4.4%.

- Use unbinned maximum likelihood fit to extract signal yields.
- > The mass spectrum is fitted with two components:
 - > Signal: described with MC shape, assuming M(X3872) = 3.8719 GeV, $\Gamma = 0.0012$ GeV
 - > Background: described with a 1st-order Chebychev polynomial
- Corresponding reconstruction efficiency and branching fraction corrected signal yields: $(0.0 \pm 4.2) \times 10^2$
- ➢ Goodness of fit: 0.52

Systematic uncertainty

- Tracking, photon detection, PID, luminosity, π^0 reconstruction
- Decay model
- kinematic fit
- Cross feed
- Fitting
 - Background description
 - Fitting range
- Lineshape
 - Use measured $\pi\pi J/\psi$ lineshape; take 1%.
- Branching fraction

Fitting procedure

• For $X3872 \rightarrow \gamma J/\psi$

	Enlarge range	Normal range	Narrow range
2 nd order Chebychev	11.5%	-	8.3%
3 rd order Chebychev	5.6%	2.8%	5.2%

• For $X3872 \rightarrow D^{*0}D$

	Enlarge range	Normal range	Narrow range
Argus Function	2.5%	-	0.4%
2 nd order Chebychev	12.7%	13.2%	10.1%

	$\gamma J/\psi$	γψ′	D * ⁰ D	D^+D^-
Tracking	2	4	5.1	6
Photon detection	2	2	4.7	2.5
PID			5.1	6
Pi0 reconstruction			1.7	2.7
Kinematic fit	1	1	1	1
Cross feed			0.2	0.2
Luminosity	1	1	1	1
lineshape	1	1	1	1
Fitting	11.5	-	13.2	-
Branching ratio	0.5	6.7	6.4	3.7
Total	12.0	8.2	17.1	10.1

Summary

- The processes of $e^+e^- \rightarrow \gamma X(3872)$ are searched for at BESIII based on current XYZ data around 4230 GeV with $X(3872) \rightarrow \gamma J/\psi, \gamma \psi', D^{*0}D$, and γD^+D^- modes.
- We find evidence of $\gamma J/\psi$ but no signal of $\gamma \psi'$. The upper limits of the relative ratio $R \equiv \frac{\mathcal{B}(X(3872) \rightarrow \gamma \psi(2S))}{\mathcal{B}(X(3872) \rightarrow \gamma J\psi)} < 0.47 @ 90\%$ C.L. is obtained, which disagree with LHCb's result.
- We observe $X(3872) \rightarrow D^{*0}D$ with statistical significance of 8σ . The relative ratios are also given.

BACK UP

The average Born cross section is 0.27+-0.07 pb for $\sqrt{s} = 4.18 - -4.28 \ GeV$

Etac由16个道重建:

states: $p\bar{p}$, $2(\pi^{+}\pi^{-})$, $2(K^{+}K^{-})$, $\pi^{+}\pi^{-}K^{+}K^{-}$, $\pi^{+}\pi^{-}p\bar{p}$, $3(\pi^{+}\pi^{-})$, $2(\pi^{+}\pi^{-})K^{+}K^{-}$, $K_{S}^{0}K^{\pm}\pi^{\mp}$, $K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{0}$, $p\bar{p}\pi^{0}$, $K^{+}K^{-}\eta$, $\pi^{+}\pi^{-}\eta$, $2(\pi^{+}\pi^{-})\eta$, $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$, and $2(\pi^{+}\pi^{-}\pi^{0})$.

部分作业失败: N(末态含piO或eta): 10/448 C(末态不含piO或eta或Ks): 10/448 K(含Ks): 0

事例筛选后重新组合所有pi+pi-,gam: 要求pi的动量小于: sqrt((3.872*3.872-(mpi+2.983+mpi)*(mpi+2.983+mpi))*(3.872*3.872-2.983*2.983))/(2*3.872)+0.1; 要求gam能量:在(m_ecms*m_ecms-3.872*3.872)/(2*m_ecms)左右0.15范围内 要求剩余gamma:可以两两组合为eta或者pi0(左右15MeV) 要求gamma反冲在3.872左右250MeV,gammapipi反冲在2.8-3.2

gamma反冲: 对含pi0或eta的末态,要求gampipi反冲在2.9386-3.0286, chisq4c<20 对其它末态,要求gampipi反冲在2.9336-3.0336, chisq4c<35

Gammapipi反冲:上述chisq cut

Gammapipi反冲,etac不明显

Gamma反冲

Summary

• The ratio

$$R \equiv \frac{\mathcal{B}(X(3872) \rightarrow \gamma \psi(2S))}{\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)}$$
$$= \frac{N_{\gamma \psi(2S)}/\epsilon_{\gamma \psi(2S)}/\mathcal{B}(\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi)}{N_{\gamma J/\psi}/\epsilon_{\gamma J/\psi}} = 0.2 \pm 0.4 (< 0.8 @ 90\% C.L.) \text{ (stat. err only)}$$

- This result is consistent with Belle's result(~0.47), while is way much different from LHCb's result (~2.46).
- Next to do
 - Systematic uncertainty
 - Analysis on $X(3872) \rightarrow D^0 D^0 \pi^0$, $D^{\pm} D^{\mp *}$, $D^0 \overline{D^0} \gamma$ are urgent work to do

The process of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$, $\psi(2S) \rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow \gamma J/\psi$ also share the same final states with the signal. We require $M(\gamma_H J/\psi) < 3.49$ to veto the $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ backgrounds.

Require $\chi^2_{4C} < 40$, and the signal region $M(\gamma_L \pi \pi J/\psi) \in [3.85, 3.9]$ GeV/c2. The signal of ψ' is not evident. The $\psi' \rightarrow \mu\mu$ mode is not used.

Fitting procedure

• For $X3872 \rightarrow \gamma J/\psi$

	Enlarge range	Normal range	Narrow range
2 nd order Chebychev	11.5%	-	8.3%
3 rd order Chebychev	5.6%	2.8%	5.2%

• For $X3872 \rightarrow \gamma \psi(2S)$

	Enlarge range	Normal range	Narrow range
3 rd order Chebychev	0.8	0.0	-0.8
2 nd order Chebychev	-2.1	-1.2	-1.3

• For $X3872 \rightarrow D^{*0}D$

	Enlarge range	Normal range	Narrow range			
Argus Function	2.5%	-	0.4%			
2 nd order Chebychev	12.7%	13.2%	10.1%			