Progress on $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ analysis

<u>Peilian Li^{a,1}</u>, Zhentian Sun^b, Ryan Mitchell^c, Ronggang Ping^b, Haiping Peng^{a,1}, Xuhong Li^{a,1}

a) USTC b) IHEP c) IU

1) State Key laboratory of Particle Detection and Electronics, Hefei, 230026, China

BESIII Charmonium Group Meeting

June 12, 2018

Overview | Motivation

- Measure the cross section of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ with all the data taking at 3.810 GeV ~ 4.600 GeV, fit to the line shape, and compare with charged process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- Measure the J^P of neutral Z_c(3900)⁰, as well as the mass and width, to confirm the results from charged process
- Extract the proportion of $e^+e^- \rightarrow \pi^0 Z_c(3900) \rightarrow \pi^0 \pi^0 J/\psi$ from partial wave analysis
- Previous talk:

https://indico.ihep.ac.cn/event/7447/session/17/contribution/35/material/sl ides/0.pdf

Overview | update

- Update all the data analysis to BOSS version 703
- Optimize the requirement on $\chi^2_{6C} < 75$
- Remove the contribution of $f_2(1270)J/\psi$ in nominal PWA fit
- Fit to of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ cross section line shape
- Study the systematic uncertainties
 - Systematic uncertainty of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ cross section
 - Systematic uncertainty of resonance parameters
 - Systematic uncertainty of Z_c⁰ parameters and fraction
- Summary

Event selection

Charged tracks

- |Vr|<1.0 cm, |Vz|<10.0 cm, |cosθ|<0.93 && nGood==2
- e: E/p>0.7
- μ : E/p<0.3 && at least one hits more than 6 MUC layers

Good photons

- Barrel(Endcap): Eγ>25 (50) MeV, |cosθ|<0.8 ([0.86, 0.92])
- 0<TDC<=14, $\theta_{\gamma chg} < 5^{\circ}$ && N(γ)>=4

Kinematic fit

- Constraint $\gamma\gamma$ invariant mass at nominal mass of π^0
- $0.110 < M(\gamma \gamma) < 0.150 \text{ GeV}/c^2 \&\& N(\pi^0 \pi^0) < = 2$
- 4C+1C (two π^0 s) fit to select the combination with minimal X²
- Particles momentum after 6C fit $(\chi^2_{6C} < 75)$ are used in further study

Cross section calculation $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

- Signal extraction: Fit to $M(l^+l^-)$ with MC shape \otimes Gaussian + 1st poly
- Efficiency:
 - obtain from MC generated according to PWA results (4.1780~4.4156 GeV)

- PHSP MC samples (other points with low statistics)

- Cross section calculation: $\sigma^B(\sqrt{s}) = \frac{N_{obs}}{\mathcal{L}_{int}(1+\delta^{ISR})(1+\delta^V)\epsilon Br}$
 - \mathcal{L}_{int} is the integrated luminosity
 - N_{obs} is observed number of events from data
 - ε is selection efficiency calculated from the MC samples
 - Br stands for the branching ratio of $J/\psi \to e^+e^-(\mu^+\mu^-)$
 - $(1+\delta^V)$ is vacuum polarization factor taken from QED
 - $(1+\delta^{ISR})$ is the radiative correction factor

Cross section of $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$

\sqrt{s} (GeV)	L	$arepsilon_{\pi^0\pi^0 J/\psi}(\%)$	$N^{ m obs}_{\pi^0\pi^0 J/\psi}$	$1 + \delta^{\text{ISR}}$	$1 + \delta^V$	$\sigma^{ m Born}$ (pb)	$\mathcal{R}(rac{\pi^0\pi^0J/\psi}{\pi^+\pi^-J/\psi})$
3.8077	50.5 ± 0.5	19.11	10±4	0.865	1.056	$9.74 \pm 3.90 \pm 0.51$	$0.60 \pm 0.25 \pm 0.13$
3.8962	52.6 ± 0.5	18.80	9±3	0.869	1.049	$8.57 \pm 2.86 \pm 0.45$	$0.52 \pm 0.18 \pm 0.11$
4.0076	482.0 ± 4.8	20.60	84 ± 11	0.919	1.044	$7.57 \pm 0.99 \pm 0.39$	$0.48 \pm 0.06 \pm 0.05$
4.0855	52.8 ± 0.4	18.29	10 ± 3	0.943	1.052	$8.96 \pm 2.69 \pm 0.47$	$0.62 \pm 0.19 \pm 0.14$
4.1886	43.33 ± 0.3	18.51	10 ± 3	0.881	1.056	$11.50 \pm 3.45 \pm 0.60$	$0.77 \pm 0.24 \pm 0.20$
4.2077	54.9 ± 0.4	20.60	28 ± 5	0.760	1.057	$26.45 \pm 4.73 \pm 1.38$	$0.51 \pm 0.09 \pm 0.07$
4.2171	54.6 ± 0.4	21.83	28 ± 5	0.733	1.057	$26.02 \pm 4.65 \pm 1.35$	$0.45 \pm 0.08 \pm 0.06$
4.2263	1100.9 ± 7.0	21.90	823 ± 29	0.730	1.056	$38.01 \pm 1.38 \pm 1.98$	$0.47 \pm 0.02 \pm 0.04$
4.2417	55.88 ± 0.4	22.28	47±7	0.792	1.056	$38.74 \pm 5.78 \pm 2.01$	$0.48 \pm 0.07 \pm 0.05$
4.2580	828.4 ± 5.5	21.21	548 ± 24	0.847	1.054	$29.99 \pm 1.34 \pm 1.56$	$0.53 \pm 0.02 \pm 0.04$
4.3079	45.1±0.3	21.46	24 ± 5	0.896	1.052	$22.58 \pm 4.71 \pm 1.17$	$0.45 \pm 0.10 \pm 0.06$
4.3583	543.9 ± 3.6	18.36	188 ± 15	1.097	1.051	$12.97 \pm 1.04 \pm 0.67$	$0.57 \pm 0.04 \pm 0.05$
4.3874	55.6 ± 0.4	17.52	5±3	1.215	1.051	$3.45 \pm 2.07 \pm 0.18$	$0.18 \pm 0.11 \pm 0.03$
4.4156	1090.7 ± 6.9	15.28	160 ± 14	1.271	1.053	$6.05 \pm 0.53 \pm 0.31$	$0.53 \pm 0.05 \pm 0.05$
4.4671	111.1 ± 0.7	15.74	11 ± 4	1.285	1.055	$3.98 \pm 1.45 \pm 0.21$	$0.31 \pm 0.11 \pm 0.05$
4.5271	112.1 ± 0.7	16.06	12 ± 4	1.274	1.055	$4.26 \pm 1.42 \pm 0.22$	$0.42 \pm 0.14 \pm 0.08$
4.5745	48.9 ± 0.04	16.48	7±3	1.258	1.055	$5.62 \pm 2.41 \pm 0.29$	$0.43 \pm 0.19 \pm 0.11$
4.5995	586.9 ± 3.9	16.66	36±7	1.238	1.055	$2.42 \pm 0.47 \pm 0.13$	$0.39 \pm 0.08 \pm 0.05$
4.1780	3194.5±31.9	19.90	345 ± 20	0.919	1.055	$4.85 \pm 0.28 \pm 0.25$	
4.1888	522.5 ± 3.4	22.01	82 ± 10	0.877	1.056	$6.61 \pm 0.81 \pm 0.34$	$0.45 \pm 0.06 \pm 0.11$
4.1989	524.6 ± 2.5	20.85	114 ± 11	0.805	1.057	$10.52 \pm 1.02 \pm 0.55$	
4.2092	518.1 ± 1.8	20.40	222 ± 15	0.752	1.057	$22.68 \pm 1.54 \pm 1.18$	$0.45 \pm 0.03 \pm 0.05$
4.2187	514.3±1.9	21.02	312 ± 18	0.729	1.057	$32.15 \pm 1.87 \pm 1.67$	$0.56 \pm 0.03 \pm 0.06$
4.2357	530.6 ± 2.4	21.23	409 ± 21	0.763	1.056	$38.67 \pm 2.00 \pm 2.01$	
4.2438	537.4 ± 2.6	21.73	402 ± 20	0.794	1.055	$35.27 \pm 1.77 \pm 1.83$	
4.2668	529.7 ± 2.8	22.80	334±19	0.859	1.053	$26.25 \pm 1.51 \pm 1.37$	
4.2777	175.5 ± 0.9	21.72	94±10	0.870	1.053	$23.11 \pm 2.46 \pm 1.20$	

Cross section of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

Fit to cross section

Line shape - Fit I:

 $\sigma_{\rm fit}(s) = |\mathrm{BW}_{\psi(3770)}(s)|^2 + |\mathrm{BW}_1(s) + \mathrm{BW}_2(s)\mathrm{e}^{\mathrm{i}\phi_1} + \mathrm{BW}_3(s)\mathrm{e}^{\mathrm{i}\phi_2}|^2$

• Relativistic Breit-Wigner amplitude for resonances:

Fit to cross section

Line shape - Fit II (nominal):

$$\sigma_{\rm fit}(\sqrt{s}) = |\sqrt{\sigma_{NY}(\sqrt{s})} + BW_1(s)e^{i\phi_1} + BW_2(s)e^{i\phi_2}|^2$$

$$\sigma_{NY}(\sqrt{s}) = PS(\sqrt{s})e^{-p_0(\sqrt{s}-M_{\text{threshold}})}p_1$$

 $\chi^2/ndf = 17.4313/16 - 1.09$

$\begin{array}{c ccccc} M(R_1) & 4220.4 \pm 3.1 & 4220.9 \pm 2.9 \\ \Gamma(R_1) & 49.0 \pm 4.3 & 44.1 \pm 3.8 \\ M(R_2) & 4336.2 \pm 13.3 & 4326.8 \pm 10.0 \\ \Gamma(R_2) & 99.7 \pm 74.2 & 98.2 \pm 25.4 \\ \end{array}$	$Values(MeV/c^2)$	Fit results	$\operatorname{Ref}_{(\pi^+\pi^-J/\psi)}$
$\begin{array}{c cccc} \Gamma(R_1) & 49.0 \pm 4.3 & 44.1 \pm 3.8 \\ M(R_2) & 4336.2 \pm 13.3 & 4326.8 \pm 10.0 \\ \Gamma(R_2) & 99.7 \pm 74.2 & 98.2^{\pm 25.4} \end{array}$	$M(R_1)$	4220.4 ± 3.1	4220.9 ± 2.9
$\begin{array}{c ccccc} M(R_2) & 4336.2 \pm 13.3 \\ \Gamma(R_2) & 99.7 \pm 74.2 \\ \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Gamma(R_1)$	$49.0{\pm}~4.3$	44.1 ± 3.8
$\Gamma(B_2)$ 99.7+74.2 98.2 ^{+25.4}	$M(R_2)$	$4336.2{\pm}13.3$	$4326.8{\pm}10.0$
	$\Gamma(R_2)$	$99.7 {\pm} 74.2$	98.2 $^{+25.4}_{-19.6}$

- The observed resonances Y(4220) and Y(4320) are consistent with $\pi^+\pi^-J/\psi$
- The significance of Y(4320) is about 4.2σ

Sources	Uncertainties (%)
Tracking for e^{\pm}/μ^{\pm}	2.0
MUC layer	0.4
Photon efficiency	4.0
π^0 reconstruction	0.3
Peaking background	2.0
Kinematic fit	2.6
Fit to $M_{\ell^+\ell^-}$	1.4
MC model	2.1
Radiative correction	0.3
Luminosities	1.0
$\mathcal{B}_{ ext{inter}}$	0.6
Total	6.3

- □ Tracking efficiency: 1% is assigned to each e/µ, 2% in total
- □ MUC layers: change layer>=6 to layers>=5, (N_{obs}/ϵ_i) difference ~0.4%
- Photon efficiency: 1% is assigned to each photon, 4% in total
- □ π^0 reconstruction: enlarge π^0 mass window from (0.11, 0.15) GeV to (0.10, 0.16) GeV, (N_{obs}/ ϵ_i) difference ~ 0.3%
- **Branching fraction of \pi^0/J/\psi:** 0.03% for $\pi^0 \rightarrow \gamma\gamma$, 0.55% for $J/\psi \rightarrow l^+l^-$
- Luminosity: 1.0% from integrated luminosity measurement
- Radiative correction
 - Use the line shape from our measurement to replace the input line shape of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, difference of $(1+\delta^{ISR})\epsilon$

Kinematic fit

- select control sample $e^+e^- \rightarrow \gamma \psi' \rightarrow \gamma \pi^0 \pi^0 J/\psi$ at $\sqrt{s}=4.1780 \text{GeV}$
 - •Almost same events selections, except:
 - •Ny>=5
 - •Kinematic fit with one more photon track
 - •3.06 < M(l⁺l⁻) < 3.13 GeV/c²
 - •3.65 < $M(\pi^0\pi^0J/\psi)$ < 3.72 GeV/c²

Uncertainty=1- $\varepsilon_{MC}/\varepsilon_{data}$ =2.6%

- **Fit to M(l^+l^-)**
 - Fit range: change (2.90, 3.30) GeV/c² to (2.85, 3.35) and (2.95, 3.25) GeV/c² (difference of N_i/ε_i as uncertainty)
 - Signal shape: change MC shape⊗Gaussian to double Gaussian
 - Background shape: change 1st poly to 2nd poly

Sources	Uncertainties (%)
Fitting range	0.6
Signal shape	1.2
Background shape	0.1
Fit to $M_{\ell^+\ell^-}$	1.4

Peaking background

- Signal shape => (Signal + peaking bkg) MC shape
- Fix the expected number of event of peaking background in the fit

at \sqrt{s} =4.1780GeV	Decay channel	$\sqrt{s} = 4.1780 \text{ GeV}$	$\sqrt{s} = 4.2262 \text{ GeV}$
	$e^+e^- o \eta J/\psi, \eta o \pi^0\pi^0\pi^0$	1.9	1.4
	$e^+e^- o \gamma \psi \prime, \psi \prime o \pi^0 \pi^0 J/\psi$	16.1	5.3
	total	18	6.7

Uncertainty=(347-340)/347=2.0%

MC model

- For large statistic data points, we use PWA results to generate MC samples and obtain the efficiency by counting
- change the parameters of PWA amplitudes within errors randomly by a multi-variable Gaussian function 100 times
- regenerate MC sample to get new efficiencies
- fit the efficiency distribution by a Gaussian function

µ=0.22019±0.0004

σ=0.00281±0.0007

=> uncertainty as 1.4%

Systematic uncertainty | $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$ line shape

- c.m. energy measurement
 - All data sets are measured by di-muon events with uncertainty of 1 MeV
- Cross section measurement
 - The systematic error are common for all c.m. energy, thus it will not affect the mass and width of resonance
- **Fit model**
 - Consider the PDF of three BW as systematic uncertainty

□ Y(4320)		Sources	Uncertainties (MeV/c^2)		
		Sources	<i>M</i> (<i>Y</i> (4220))	Γ(Y(4220))	
		Float Y(4320) mass and width	c.m. energies	1.0	1.0
	rtout r(1526) mass and wrath		Fit model	0.2	0.4
			Y(4320)	0.0	1.1
			Total	1.0	1.8

Systematic uncertainty | PWA

Amplitude construction (Helicity amplitude)

(a)

 $(a)A_{R}^{i}(\lambda_{Y},\lambda_{R},\lambda_{l^{+}},\lambda_{l^{-}}) = F_{\lambda_{R},\lambda_{J/\psi}}^{J_{Y}}D_{\lambda_{Y},\lambda_{R}-\lambda_{J/\psi}}^{J_{Y}}(\theta_{R},\phi_{R})BW_{i}(R)F_{0,0}^{J_{R}}D_{\lambda_{R},0}^{J_{R}}(\theta_{\pi^{0}},\phi_{\pi^{0}})$ $\cdot F_{\lambda_{l^{+}},\lambda_{l^{-}}}^{J_{J/\psi}}D_{\lambda_{J/\psi},\lambda_{l^{+}}-\lambda_{l^{-}}}^{J_{J/\psi}}(\theta_{l^{+}},\phi_{l^{+}})$

(b)

$$(b)A_{Z_c}(\lambda_Y,\lambda_{Z_c},\lambda_{l^+},\lambda_{l^-}) = F^{J_Y}_{\lambda_{Z_c},0}D^{J_Y}_{\lambda_Y,\lambda_{Z_c}}(\theta_{Z_c},\phi_{Z_c})BW(Z_c)F^{J_{Z_c}}_{\lambda_{J/\psi},0}D^{J_{Z_c}}_{\lambda_{Z_c},\lambda_{J/\psi}}(\theta_{J/\psi},\phi_{J/\psi})$$
$$\cdot F^{J_{J/\psi}}_{\lambda_{l^+},\lambda_{l^-}}D^{J_{J/\psi}}_{\lambda_{J/\psi},\lambda_{l^+}-\lambda_{l^-}}(\theta_{l^+},\phi_{l^+})$$

• Amplitudes include Z_c^0 , σ_0 , $f_0(980)$ and $f_0(1370)$ which have significances larger than 5σ .

\Box Z_c⁰ Parameterization

• Nominal: parameterized with Flatte-like formula:

$$f = \frac{1}{M^2 - s - i(g_1 \rho_{DD^*} + g_2 \rho_{\pi J \psi})}$$

- Alternative: $BW_{Z_c}(s) = \frac{1}{s M^2 + iM\Gamma}$
 - The likelihood only increases 2, no big difference

□ f₀(980) Parameterization

• Nominal: parameterized with Flatte formula: $f = \frac{1}{M^2 - s - i(g_1 \rho_{\pi\pi}(s) + g_2 \rho_{K\bar{K}(s)})}$

Fix $g_1=0.138$, $g_2/g_1=4.45$ according to BESII~[Phys. Lett., B 598, 149 (2004)]

• Alternative: change g_2/g_1 within error to 4.2 or 4.7

σ Parameterization

• Breit-Wigner with different widths: $BW(s) = \frac{1}{s - M^2 + iM\Gamma}$

• E791 type (nominal)
$$\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^0}^2}{s}}\Gamma$$

• PKU ansatz
$$\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^0}^2}{s} \frac{s}{M_0^2}} \Gamma$$

• Zou & Bugg's method

$$\Gamma(s) = g_1 \frac{\rho_{\pi\pi}(s)}{\rho_{\pi\pi}(M_{\sigma}^2)} + g_2 \frac{\rho_{4\pi}(s)}{\rho_{4\pi}(M_{\sigma}^2)}, \text{ with } g_1 = f(s) \frac{s - m_{\pi}^2/2}{M_{\sigma}^2 - m_{\pi}^2/2} e^{-\frac{s - M_{\sigma}^2}{a}}$$

□ f₀(1370) Parameterization

- Constant BW: $M = 1.35 \text{ GeV}, \Gamma = 0.35 \text{ GeV}$
- Alternative: mass-dependent BW $BW(s) = \frac{1}{s M^2 + i\sqrt{s}\Gamma(s)}$ $\Gamma(s) = \Gamma_0(\frac{p}{p_0})^{(2L+1)}\frac{M}{\sqrt{s}}B_L(p, p_0, d)^2$ $\Box f_2(1270)$ Parameterization
 - Add the contribution of $f_2(1270)$ as systematic uncertainty, since the significance of $f_2(1270)$ is about 3σ
 - Constant BW: $M = 1.2751 \text{ GeV}, \Gamma = 0.185 \text{ GeV}$

Barrier radius

• Change the nominal radius $r_0=0.6$ fm to 1.0 fm

Event selection

- Change the signal region from (3.06, 3.13) GeV to (3.05, 3.14) GeV, and the bkg region from (2.93, 3.00)&(3.20, 3.27) GeV to (2.95, 3.00)&(3.20, 3.24) GeV
- Mass resolution
 - Mass resolution affect the determined Z_c^0 width or coupling constant
 - MC simulation, generate Z_c^{0} with a BW function with a given mass and width

Sources	Mass	<i>c</i> /	fraction			
Sources	111455	${oldsymbol{\mathcal{Y}}}_1$	4.2263	4.2357	4.2438	4.2580
Nominal fit	3913.7 ± 4.2	0.077 ± 0.010	0.280 ± 0.034	0.233 ± 0.041	0.171 ± 0.038	0.069 ± 0.021
Event selection	3913.8 ± 4.2	0.076 ± 0.009	0.289 ± 0.033	0.231 ± 0.043	0.167 ± 0.037	0.070 ± 0.021
σ -ZB parametrization	3911.1 ± 4.2	0.085 ± 0.012	0.156 ± 0.023	0.209 ± 0.042	0.153 ± 0.033	0.069 ± 0.021
σ -PKU	3922.2 ± 5.8	0.079 ± 0.010	0.266 ± 0.030	0.249 ± 0.043	0.224 ± 0.047	0.093 ± 0.035
Z_c^0 parametrization	3892.4 ± 2.6	49.2±5.3 (width)	0.159 ± 0.024	0.201 ± 0.041	0.148 ± 0.033	0.079 ± 0.025
$f_0(980)$ Coupling constant	3913.3 ± 4.1	0.076 ± 0.010	0.277 ± 0.034	0.231 ± 0.041	0.169 ± 0.037	0.069 ± 0.021
$f_0(1370)$ parametrization	3914.5 ± 4.0	0.079 ± 0.010	0.287 ± 0.035	0.237 ± 0.041	0.176 ± 0.038	0.069 ± 0.020
Barrier radius	3914.9 ± 4.3	0.083 ± 0.011	0.283 ± 0.034	0.247 ± 0.041	0.176 ± 0.037	0.087 ± 0.025
$f_2(1270)$ amplitude	3916.4 ± 4.8	0.085 ± 0.012	0.229 ± 0.038	0.226 ± 0.047	0.170 ± 0.041	0.070 ± 0.023

Summary of systematic uncertainties in percentage

Sources	Mass	ď		$\pi^0 Z_c^0$ fraction		
Sources			4.2263	4.2357	4.2438	4.2580
Event selection	0.01	1.2	3.0	1.1	2.7	2.3
σ -ZB parametrization	0.06	11.0	44.3	10.7	10.6	0.9
σ -PKU parametrization	0.2	3.3	5.1	6.4	30.6	35.5
Z_c^0 parametrization	0.5	-	43.3	14.1	13.8	15.6
$f_0(980)$ Coupling constant	0.01	0.9	1.1	1.0	1.0	0.2
$f_0(1370)$ parametrization	0.02	2.9	1.2	1.5	2.6	0.9
Barrier radius	0.03	7.6	1.2	5.6	3.2	26.1
Mass resolution	0.01	2.6	0.1	0.2	0.1	0.4
$f_2(1270)$ amplitude	0.07	11.3	18.3	3.2	0.4	2.2
Total	0.55	18.3	64.9	20.0	35.6	46.9

$e^+e^- \rightarrow \pi^0 Z_c(3900)^0$ cross section

\sqrt{s}	$R_{Z_c^0}$	$\sigma_{e^+e^-\to\pi^0Z^0_c}(pb)$
4180	$0.285 \pm 0.053 \pm 0.185$	$1.38 \pm 0.27 \pm 0.90$
4190	$0.309 \pm 0.106 \pm 0.201$	$2.04 \pm 0.74 \pm 1.33$
4200	$0.504 \pm 0.111 \pm 0.327$	$5.30 \pm 1.27 \pm 3.45$
4210	$0.148 \pm 0.060 \pm 0.096$	$3.36 \pm 1.38 \pm 2.19$
4220	$0.238 \pm 0.056 \pm 0.154$	$7.65 \pm 1.85 \pm 4.98$
4230	$0.280 \pm 0.034 \pm 0.182$	$10.83 \pm 1.68 \pm 2.24$
4237	$0.234 \pm 0.041 \pm 0.047$	$8.25 \pm 1.40 \pm 2.97$
4246	$0.171 \pm 0.038 \pm 0.061$	$4.49 \pm 1.31 \pm 2.92$
4260	$0.069 \pm 0.021 \pm 0.032$	$1.59 \pm 1.70 \pm 1.04$
4270	$0.230 \pm 0.049 \pm 0.149$	$8.74 \pm 1.33 \pm 5.69$
4280	$0.111 \pm 0.073 \pm 0.072$	$3.33 \pm 0.65 \pm 1.57$

-

Systematic uncertainty | Z_c⁰ pole mass

□ Statistic error: Pole mass: (3893.3 ± 4.4±11.4)-i(34.3±4.8±13.7)

- use multi-variable Gaussian function to sample by considering the error matrix
- 1000 samples of mass and g₁' to calculate the pole mass
- Fit to pole mass distribution with Gaussian function

Systematic error:

• consider all the sources discussed in systematic uncertainty study for $e^+e^- \rightarrow \pi^0 Z_c^0$ parameters and fraciton

Summary

- Measure the cross section of $e^+e^- \rightarrow \pi^0\pi^0 J/\Psi$ from 3.81~4.60 GeV, which is consistent with half of those cross section of $e^+e^- \rightarrow \pi^+\pi^- J/\Psi$
- Fitting to the measured $e^+e^- \rightarrow \pi^0\pi^0 J/\Psi$ cross section line shape gives the mass and width of Y(4220) to be (4220.4±3.1±1.0)MeV/c² and (49.0±4.3±1.8)MeV/c², and shows the evidence of Y(4320) with 4.1 σ
- Amplitudes analysis is applied to $\pi^0\pi^0 J/\Psi$ and the spin and parity of $Z_c(3900)^0$ is measured to be 1⁺, and the pole mass of $Z_c(3900)^0$ is (3893.3 ± 4.4±11.4)-i(34.3±4.8±13.7) MeV/c²
- $e^+e^- \rightarrow \pi^0 Z_c(3900)^0$ component is extracted from PWA, ratio to $\pi^0 \pi^0 J/\Psi$ cross section is given.
- Memo has been finished and will be released soon

Thanks!

χ^2_{6C} distribution

Signal extraction for $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$

MC shape ⊗ Gaussian + 1st polynomial

For data taken in 2016/2017

PWA results

PWA results

Significance to distinguish the quantum number $J^P = 1^+$ over other different J^P

J^P	$\Delta(-2\ln L)$	N _{par}	significance
0-	-163.6	$4 \times 4 + 5$	10.1σ
1-	-172.9	$4 \times 4 + 5$	10.5 σ
2^{+}	-160.0	$4 \times 4 + 5$	10.0σ
2-	-122.1	$4 \times 4 + 5$	8.2σ