

中國科學院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Measurement of $\sigma(e^+e^- \rightarrow \Lambda \overline{\Lambda})$ at the center-of-mass energy from 3.773 to 4.6 GeV

Xiongfei Wang(王雄飞) Xinchou Lou IHEP April 18th, 2018 Charmonium group meeting

Outline

- Motivation
- Data sets
- Event selection
- Yield extraction (*counting*)
- Detection efficiency
- Born cross section &FFs calculation
- Systematic uncertainty
- Summary

Motivation

- The study of the production of Charmonium(-like) Y states in e^+e^- annihilations above open-charm threshold can provide a test for PQCD.
- The anomalous behavior differing from the pQCD prediction at threshold is observed. PRD 97,032013 (2018)

The unexpected features of baryon pair production have driven many theoretical interests in Ref.[PRC79, 054001 (2009), PLB643, 29 (2006)], including scenarios that invoke $B\overline{B}$ bound states or unobserved meson resonances. To test the hypotheses, a precision measurement of $\sigma^B (e^+e^- \rightarrow \Lambda\overline{\Lambda})$ beyond the threshold is desired.

■ BESIII so far has collected large data sample for above open charm threshold, it should be a good chance to measure cross section and form factor for $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ beyond threshold, which may provide us more insights into the nature above the open charm region and experimental evidence.

			Dat
ID	\sqrt{s} (MeV)	$L(pb^{-1})$	
3773	3773.0	2917.0	
4009	4007.6	482.0	
4180	4178.0	3189.0	
4190	4189.3	521.9	
4200	4199.6	523.7	
4210	4209.7	511.2	
4220	4218.8	508.2	
4230	4226.3	1047.3	
4237	4235.8	508.9	
4246	4243.9	532.7	
4260	4258.0	825.7	
4270	4266.9	529.3	
4280	4277.8	174.5	
4360	4358.3	539.8	
4420	4415.6	1028.9	
4600	4599.5	566.9	

BOSS version: 703

Event selection

Initial selection:

- Charged track :
 - $\checkmark N_+ = 2 \& N_- = 2$
 - \checkmark n(Charge) = 0
- > PID: Yes!

 $\checkmark N_p = 1 \& N_{\overline{p}} = 1 \& N_{\pi^+} = 1 \& N_{\pi^-} = 1$

Λ reconstruction:

✓ Using secondary-vertex reconstruction strategy by looping $p\pi$ with combination of $\delta_{min} = |M_{p\pi} - M_{\Lambda}|$.

> 4C kinematic fit ($\Lambda\overline{\Lambda}$ hypothesis)

■ Further selection: > $L_{\Lambda/\overline{\Lambda}} > 0$ > $\chi^2_{4C} < 100$

Extraction of signal yields (counting)

$$N^{obs} = N^{S} - \frac{1}{2}N^{B} + \frac{1}{4}N^{A}$$

The statistics significance for counting experiments can be calculated based on Poisson by

ID	N ^S	N ^B	<i>N</i> ^A −	N ^{obs.}	S(<i>σ</i>)	N ^{UP}
3773	$214.0^{+15.6}_{-14.6}$	$24.0^{+6.0}_{-4.9}$	$2.0^{+2.6}_{-1.3}$	$202.0^{+16.3}_{-15.0}$	29.1	
4009	$12.0^{+4.6}_{-3.4}$	$1.0^{+2.3}_{-0.8}$	0	$11.5^{+4.9}_{-3.4}$	7.3	
4180	$17.0^{+5.2}_{-4.1}$	$8.0^{+3.9}_{-2.8}$	$1.0^{+2.3}_{-0.8}$	$13.3^{+6.0}_{-4.6}$	5.0	
4190	$1.0^{+2.3}_{-0.8}$	0	0	$1.0^{+2.3}_{-0.8}$		3.89
4200	$4.0^{+3.2}_{-2.0}$	$1.0^{+2.3}_{-0.8}$	$1.0^{+2.3}_{-0.8}$	$3.8^{+3.8}_{-2.1}$	3.8	
4210	$1.0^{+2.3}_{-0.8}$	$3.0^{+2.9}_{-1.6}$	0	$-0.5^{+3.1}_{-1.4}$	0.5	2.60
4220	$1.0^{+2.3}_{-0.8}$	$1.0^{+2.3}_{-0.8}$	0	$0.5^{+2.8}_{-1.0}$	0.6	3.89
4230	$12^{+4.6}_{-3.4}$	$2.0^{+2.6}_{-1.3}$	0	$11.0^{+5.0}_{-3.5}$	6.1	
4237	$4.0^{+3.2}_{-2.0}$	$1.0^{+2.3}_{-0.8}$	0	$3.5^{+3.6}_{-2.1}$	3.1	
4246	$3.0^{+2.9}_{-1.6}$	$1.0^{+2.3}_{-0.8}$	0	$2.5^{+3.3}_{-2.1}$	2.4	6.68
4260	$5.0^{+3.4}_{-2.2}$	$2^{+2.6}_{-1.3}$	0	$4.0^{+3.9}_{-2.4}$	2.1	7.99
4270	$3.0^{+2.9}_{-1.6}$	0	0	$3.0^{+2.9}_{-1.6}$		6.68
4280	$1.0^{+2.3}_{-0.8}$	0	0	$1.0^{+2.3}_{-0.8}$		3.89
4360	$4.0^{+3.2}_{-2.0}$	0	$1.0^{+2.3}_{-0.8}$	$4.3^{+3.4}_{-2.0}$	3.8	
4420	$4.0^{+3.2}_{-2.0}$	$1.0^{+2.3}_{-0.8}$	0	$3.5^{+3.6}_{-2.1}$	3.1	
4600	$1.0^{+2.3}_{-0.8}$	$3.0^{+2.9}_{-1.6}$	0	$-0.5^{+2.8}_{-1.2}$	0.5	2.30

Upper limit for counting experiment is estimated by statistics http://people.na.infn.it/~lista/Statistics/slides/06%20-%20upper%20limits.pdf

Signal yields extraction

Detection efficiency @ KKMC

Iteration method

Initial state radiation correction

■ To be stable

(a) The curve of $(1 + \sigma) \cdot \epsilon$, (b) and (c) the Born cross section for last two iterations fitted by second polynomial.

The efficiency is defined by:
$$\epsilon = \frac{N_{\Lambda\bar{\Lambda}}^{detected}}{N_{\Lambda\bar{\Lambda}}^{generated}}$$

.

Signal MC

Calculation of Born cross sections and FFs

Experimentally, Born cross sections of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ are calculated by:

$$\sigma^{B} = \frac{N_{obs}}{\mathcal{L}(1+\delta)(1+\Pi)\epsilon \mathcal{B}^{2}(\Lambda \to p\pi)},$$

where N_{obs} number of observed events, \mathcal{L} luminosity, $1 + \sigma$ ISR factor, $1 + \Pi$ vacuum polarization factor, \mathcal{B} the branching fraction.

Theoretically, Born cross section can be expressed as:

$$\sigma^{B} = \frac{4\pi\alpha^{2}C\beta}{3s} [|G_{M}|^{2} + \frac{2m_{\Lambda}^{2}}{s}|G_{E}|^{2}].$$
The effective form factor defined by
$$|G_{eff}(s)| = \sqrt{\frac{|G_{M}|^{2} + \left(\frac{2m_{\Lambda}^{2}}{s}\right)|G_{E}|^{2}}{1 + 2m_{\Lambda}^{2}/s}}.$$

$$G_{M/E}: electric/magnetic FF$$

$$\beta = \sqrt{1 - \frac{4m_{\Lambda}^{2}}{s}}: velosity$$

$$\alpha = \frac{1}{137}: \text{ fine structure constant}}.$$

$$s: \text{ the square of CM energy}$$

is proportional to the square root of the baryon pair production cross section, to be

$$G_{eff}(s) = \sqrt{\frac{3s\sigma^B}{4\pi\alpha^2\beta(1+\frac{2m_\Lambda^2}{s})}}.$$

ID	\sqrt{s} (MeV)	$L(pb^{-1})$	$ 1 + \Pi ^2$	$1 + \delta$	$\epsilon(\%)$	S(<i>σ</i>)	N _{obs}	N ^{UP}	$\sigma^B (pb imes 10^{-3})$	$ G_{eff}(s) \times 10^{-3}$
3773	3773.0	2917.0	1.06	0.79	33.12±0.18	29.1	$202^{+15.2}_{-14.2}$		$611.9^{+46.0}_{-43.0}$	$10.3^{+2.8}_{-2.7}$
4009	4007.6	482.0	1.05	1.16	24.32 <u>+</u> 0.16	7.3	$11.5^{+3.9}_{-2.9}$		$197.3^{+66.9}_{-49.7}$	$6.2^{+3.6}_{-3.1}$
4180	4178.0	3189.0	1.05	1.49	17.64 <u>+</u> 0.13	5.0	$13.3^{+4.4}_{-3.0}$		$37.0^{+12.2}_{-8.3}$	$2.8^{+1.6}_{-1.3}$
4190	4189.3	521.9	1.06	1.52	17.32±0.13		$1.0^{+2.3}_{-0.8}$	3.89	$16.8^{+38.7}_{-13.5} (< 65.6)$	$1.9^{+2.8}_{-1.7}$ (<3.7)
4200	4199.6	523.7	1.06	1.55	16.92 <u>+</u> 0.13	3.8	$3.8^{+4.4}_{-3.0}$		$63.9^{+74.0}_{-50.5}$	$3.7^{+3.9}_{-3.3}$
4210	4209.7	511.2	1.06	1.57	16.38 <u>+</u> 0.13	0.5	$-0.5^{+1.3}_{-0.5}$	2.60	-8.8 ^{+22.8} (<45.7)	-1.4 ^{+2.2} (<3.7)
4220	4218.8	508.2	1.06	1.60	16.49±0.13	0.6	$0.5^{+1.3}_{-0.3}$	3.89	$8.6^{+22.4}_{-5.2}$ (< 67.2)	$1.3^{+2.2}_{-1.0}$ (<3.1)
4230	4226.3	1047.3	1.06	1.63	16.28±0.13	6.1	$11.0^{+3.4}_{-2.3}$		$91.4^{+28.3}_{-19.1}$	$4.4^{+2.4}_{-2.0}$
4237	4235.8	508.9	1.06	1.66	15.52 <u>+</u> 0.13	3.1	$3.5^{+2.4}_{-1.4}$		$61.7^{+42.3}_{-18.5}$	$3.6^{+3.0}_{-2.3}$
4246	4243.9	532.7	1.06	1.68	15.34. <u>+</u> 0.13	2.4	$2.5^{+2.1}_{-1.1}$	6.68	$42.1^{+35.3}_{-18.5}$ (<112.8)	$3.0^{+2.7}_{-2.0}(<4.9)$
4260	4258.0	825.7	1.05	1.73	15.09±0.13	2.1	$4.0^{+3.2}_{-2.0}$	7.99	43.3 ^{+34.6} _{-21.6} (<86.6)	$3.1^{+2.7}_{-2.2}$ (<4.3)
4270	4266.9	529.3	1.05	1.76	14.48±0.13		$3.0^{+2.9}_{-1.6}$	6.68	$51.9^{+50.1}_{-27.7}$ (<115.9)	$3.3^{+3.3}_{-2.4} (< 5.0)$
4280	4277.8	174.5	1.05	1.79	14.08±0.12		$1.0^{+2.3}_{-0.8}$	3.89	53.0 ^{+122.0} (<206.8)	$3.4^{+5.1}_{-3.0}$ (<6.7)
4360	4358.3	539.8	1.05	2.18	11.42 ± 0.11	3.8	$4.3^{+2.9}_{-1.5}$		$74.6^{+50.33}_{-26.0}$	$4.1^{+3.4}_{-2.4}$
4420	4415.6	1028.9	1.05	2.55	9.44 ±0.10	3.1	$3.5^{+2.4}_{-1.4}$		$33.0^{+22.6}_{-13.2}$	$2.8^{+2.3}_{-1.7}$
4600	4599.5	566.9	1.05	4.79	8.03 ±0.10	0.5	$-0.5^{+1.3}_{-0.3}$	2.30	$-5.3^{+13.9}_{-3.2}$ (< 24.6)	$-1.2^{+1.9}_{-0.9}(<2.5)$

$$\sigma^{B}(e^{+}e^{-} \to \Lambda \overline{\Lambda}) = \frac{N_{obs}}{\mathcal{L} \cdot \epsilon \cdot |1 + \Pi|^{2} \cdot (1 + \sigma) \cdot \mathcal{B}^{2}(\Lambda \to p\pi)}$$

11

Systematic uncertainty

- Luminosity: the published paper and BESIII preliminary measurement.
- A reconstruction: track, PID are proposed to be combined, quoted by published paper Phys. Rev. D 87, 032007 (2013).
- **Branching fraction for** $\Lambda \rightarrow p\pi$ **: 1.1%**.
- ISR factor: the difference for last two iteration.
- A decay length: the difference between the data and MC with and without requirement of Λ decay length based on the all data.
- Angular distribution: the difference between the data and PHSP MC
- **4 C** kinematic fit: Done with control sample $\psi(3686) \rightarrow \Lambda \overline{\Lambda}$

Source	Value(%)
Luminosity	1.0
Branching fraction of of $\Lambda \rightarrow p\pi$	1.1
ISR factor	1.8
Λ and $\overline{\Lambda}$ reconstruction	5.4
Λ and $\overline{\Lambda}$ decay length	1.8
4C kinematic fit	1.0
Angular distribution	6.3
Total	8.8

Systematic uncertainty (σ^B) for ISR factor

The relative difference of $\epsilon(1 + \sigma)$ for each energy point.

3773	4009	4180	4190	4200	4210	4220	4230	4237	4246	4260	4270	4280	4360	4420	4600
0.0	0.8	1.8	0.5	0.5	0.2	1.7	1.7	0.2	0.3	0.1	0.9	0.9	0.0	0.7	1.5

Conservatively, we take the largest one 1.8% as the systematic uncertainty on the ISR factor for each energy point.

- The efficiency for each cosθ interval is defined by ε_i = N_i^{obs}/N_{all}^{obs}, where the subscript *i* runs over every cosθ interval, N_i^{obs} number of events for each cosθ interval, N_{all}^{obs} number of events for whole cosθ interval.
 The efficiency difference is defined by σ_i = 1 ε_{Data}/ε_{MC}.
- The weighted average difference is taken as the systematic uncertainty

$$\delta_{\Lambda} = \sqrt{\sum_{i} \sigma_{i}^{2}} / N = 5.1\%,$$

$$\delta_{\overline{\Lambda}} = \sqrt{\sum_{i} \sigma_{i}^{2}} / N = 6.3\%,$$

N is the number of $cos\theta$ intervals.

Conservatively, 6.3% is taken as the systematic uncertainty for angular distribution.

Line shape for Born cross section & FFs

Due to the limited statistics and energy points, we just perform a smooth fit to the dressed cross section (including the vacuum polarization effect).

Summary

Summary

- ✓ Using XYZ data for 16 energy points, Born cross section & FFs for $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ are measured for the first time in the center-of-mass energy between 3.773 and 4.6GeV/ c^2 .
- ✓ A fit to the dressed cross section is performed by exponent function without consideration of Charmonium(-like)Y states due to the limited statistics and energy points.

Next to do

- ✓ Improve the details
- \checkmark Prepare the memo

Backup

Error calculation

Exact Binomial and Poisson Confidence Intervals

Revised 05/25/2009 -- Excel Add-in Now Available! (read below)

Binomial || Poisson || Set Conf Levels

This page computes exact confidence intervals for samples from the Binomial and Poisson distributions.

By default, it calculates symmetrical 95% confidence intervals, but you can change the "tail areas" to anything you'd like.

The formulas used in this web page are also available as Excel macros, which you can download in the file: <u>confint.xls</u> (85k long). This spreadsheet now includes an extra page that can generate a customized table of confidence limits around the observed numerator (x) and around the observed proportion (x/N), for any value of the denominator (N). My thanks to Prof. Patrick J. Laycock (University of Manchester) for that enhancement.

If you would like to have the six functions (BinomLow, BinomHigh, BinomP, PoisLow, PoisHigh, and PoisP) which appear in this spreadsheet available all the time (just as if they were built-in Excel functions), you can download and install the <u>confint.xla</u> Excel "add-in". Save the downloaded file in some reasonably "permanent" location on your computer's hard disk. Then install it, using the appropriate steps for your version of Excel (see Excel's Help section for "add-ins").

Note: Before using this page for the first time, make sure you read the JavaStat user interface guidelines for important information about interacting with JavaStat pages.

Binomial Confidence Intervals										
Enter the observed numerator and denominator counts, then click the Compute button:										
Numerator (x):	10									
Denominator (N):	20									
Compute										
Proportion (x/N):										
Exact Confidence Interval around Proportion:	to									

ID	$\sqrt{\mathbf{s}}$ (MeV)	$L(pb^{-1})$	$ 1 + \Pi ^2$	$1 + \delta$	N _{obs}	σ	$\epsilon(\%)$	$\sigma^{B}(pb)$
3773	3773.0	2917.0	1.06	0.79	$202^{+15.2}_{-14.2}$	29.1	33.11±0.18	0.16 ± 0.04
4009	4007.6	482.0	1.05	0.75	$11.5^{+3.9}_{-2.9}$	7.3	30.18±0.17	
4180	4178.0	3189.0	1.05	1.00	$13.3^{+4.4}_{-3.0}$	5.0	24.45±0.16	0.11 ± 0.01
4190	4189.3	521.9	1.06	1.02	$1.0^{+2.3}_{-0.8}$		24.21±0.16	
4200	4199.6	523.7	1.06	1.02	$3.8^{+4.4}_{-3.0}$	3.8	23.78±0.16	
4210	4209.7	511.2	1.06	1.03	$-0.5^{+1.3}_{-0.5}$	0.5	23.55 <u>+</u> 0.16	
4220	4218.8	508.2	1.06	1.04	$0.5^{+1.3}_{-0.3}$	0.6	23.32±0.15	
4230	4226.3	1047.3	1.06	1.04	$11.0^{+3.4}_{-2.3}$	6.1	23.45±0.15	0.09 ± 0.02
4237	4235.8	508.9	1.06	1.04	$3.5^{+2.4}_{-1.4}$	3.1	22.77±0.15	
4246	4243.9	532.7	1.06	1.05	$2.5^{+2.1}_{-1.1}$	2.4	22.75±0.15	
4260	4258.0	825.7	1.05	1.05	$4.0^{+3.2}_{-2.0}$	2.1	22.48±0.15	0.10 ± 0.03
4270	4266.9	529.3	1.05	1.05	$3.0^{+2.9}_{-1.6}$		22.34±0.15	
4280	4277.8	174.5	1.05	1.07	$1.0^{+2.3}_{-0.8}$		22.12 ± 0.15	
4360	4358.3	539.8	1.05	1.15	$4.3^{+2.9}_{-1.5}$	3.8	19.26 ±0.14	
4420	4415.6	1028.9	1.05	1.19	$3.5^{+2.4}_{-1.4}$	3.1	17.96 ±0.13	0.04±0.02
4600	4599.5	566.9	1.05	1.26	$-0.5^{+1.3}_{-0.3}$	0.5	13.87 ±0.12	

The statistical significance is calculated to be $\sigma = s/\sqrt{s+b}$

$$\sigma^{B}(e^{+}e^{-} \to \Xi^{-}\overline{\Xi}^{+}) = \frac{N_{obs}}{2 \cdot \mathcal{L} \cdot \epsilon \cdot |1 + \Pi|^{2} \cdot (1 + \sigma) \cdot \mathcal{B}(\Xi \to \pi\Lambda) \cdot \mathcal{B}(\Lambda \to p\pi)}$$

ID	\sqrt{s} (MeV)	$L(pb^{-1})$	$ 1 + \Pi ^2$	$1 + \delta$	N _{obs}	σ	$\epsilon(\%)$	$\sigma^{B}(pb)$
3773	3773.0	2917.0	1.06	0.79	$202^{+15.2}_{-14.2}$	14.3	33.12±0.18	$0.16 {\pm} 0.04$
4009	4007.6	482.0	1.05	1.15	$11.5^{+3.9}_{-2.9}$		24.26 <u>±</u> 0.16	
4180	4178.0	3189.0	1.05	1.45	$13.3^{+4.4}_{-3.0}$	3.8	18.03±0.13	0.11 ± 0.01
4190	4189.3	521.9	1.06	1.46	$1.0^{+2.3}_{-0.8}$		17.60±0.13	
4200	4199.6	523.7	1.06	1.50	$3.8^{+4.4}_{-3.0}$		17.61±0.13	
4210	4209.7	511.2	1.06	1.52	$-0.5^{+1.3}_{-0.5}$		16.88 <u>+</u> 0.13	
4220	4218.8	508.2	1.06	1.54	$0.5^{+1.3}_{-0.3}$		16.75±0.13	
4230	4226.3	1047.3	1.06	1.55	$11.0^{+3.4}_{-2.3}$	3.4	16.76±0.13	0.09±0.02
4237	4235.8	508.9	1.06	1.58	$3.5^{+2.4}_{-1.4}$		16.06±0.13	
4246	4243.9	532.7	1.06	1.60	$2.5^{+2.1}_{-1.1}$		15.64. <u>+</u> 0.13	
4260	4258.0	825.7	1.05	1.66	$4.0^{+3.2}_{-2.0}$	2.1	15.39±0.13	0.10 ± 0.03
4270	4266.9	529.3	1.05	1.68	$3.0^{+2.9}_{-1.6}$		16.90 ± 0.13	
4280	4277.8	174.5	1.05	1.71	$1.0^{+2.3}_{-0.8}$		14.47 ± 0.12	
4360	4358.3	539.8	1.05	2.03	$4.3^{+2.9}_{-1.5}$		11.99 ±0.11	
4420	4415.6	1028.9	1.05	2.35	$3.5^{+2.4}_{-1.4}$	1.6	10.00 ± 0.10	0.04±0.02
4600	4599.5	566.9	1.05	3.59	$-0.5^{+1.3}_{-0.3}$		8.52 ±0.10	

The statistical significance is calculated to be $\sigma = s/\sqrt{s+b}$

$$\sigma^{B}(e^{+}e^{-} \to \Xi^{-}\overline{\Xi}^{+}) = \frac{N_{obs}}{2 \cdot \mathcal{L} \cdot \epsilon \cdot |1 + \Pi|^{2} \cdot (1 + \sigma) \cdot \mathcal{B}(\Xi \to \pi\Lambda) \cdot \mathcal{B}(\Lambda \to p\pi)}$$

ID	$\sqrt{\mathbf{s}}$ (MeV)	$L(pb^{-1})$	$ 1 + \Pi ^2$	$1+\delta$	$oldsymbol{\epsilon}(\%)$	S(<i>σ</i>)	N _{obs}	N ^{UP}	$\sigma^{B}(pb)$
3773	3773.0	2917.0	1.06	0.79	33.12±0.18	29.1	$202^{+15.2}_{-14.2}$		0.16 ± 0.04
4009	4007.6	482.0	1.05	1.16	24.12 <u>±</u> 0.16	7.3	$11.5^{+3.9}_{-2.9}$		
4180	4178.0	3189.0	1.05	1.49	17.96±0.13	5.0	$13.3^{+4.4}_{-3.0}$		0.11 ± 0.01
4190	4189.3	521.9	1.06	1.52	17.40±0.13		$1.0^{+2.3}_{-0.8}$	3.89	
4200	4199.6	523.7	1.06	1.54	16.95 <u>+</u> 0.13	3.8	$3.8^{+4.4}_{-3.0}$		
4210	4209.7	511.2	1.06	1.56	16.52 <u>+</u> 0.13	0.5	$-0.5^{+1.3}_{-0.5}$	2.60	
4220	4218.8	508.2	1.06	1.58	16.41±0.13	0.6	$0.5^{+1.3}_{-0.3}$	3.89	
4230	4226.3	1047.3	1.06	1.62	16.10±0.13	6.1	$11.0^{+3.4}_{-2.3}$		0.09 ± 0.02
4237	4235.8	508.9	1.06	1.64	15.74 <u>+</u> 0.13	3.1	$3.5^{+2.4}_{-1.4}$		
4246	4243.9	532.7	1.06	1.67	15.48. <u>+</u> 0.13	2.4	$2.5^{+2.1}_{-1.1}$	6.68	
4260	4258.0	825.7	1.05	1.72	15.17 ± 0.13	2.1	$4.0^{+3.2}_{-2.0}$	7.99	0.10 ± 0.03
4270	4266.9	529.3	1.05	1.76	14.61 ± 0.13		$3.0^{+2.9}_{-1.6}$	6.68	
4280	4277.8	174.5	1.05	1.78	14.03 ± 0.12		$1.0^{+2.3}_{-0.8}$	3.89	
4360	4358.3	539.8	1.05	2.16	11.53 ±0.11	3.8	$4.3^{+2.9}_{-1.5}$		
4420	4415.6	1028.9	1.05	2.50	9.70 ±0.10	3.1	$3.5^{+2.4}_{-1.4}$		0.04 ± 0.02
4600	4599.5	566.9	1.05	4.65	8.15 ±0.10	0.5	$-0.5^{+1.3}_{-0.3}$	2.30	

$$\sigma^{B}(e^{+}e^{-} \to \Lambda \overline{\Lambda}) = \frac{N_{obs}}{\mathcal{L} \cdot \epsilon \cdot |1 + \Pi|^{2} \cdot (1 + \sigma) \cdot \mathcal{B}^{2}(\Lambda \to p\pi)}$$

Single tag takes large background