

Study of the $\Xi^- \uparrow \overline{\Xi}^+ \uparrow$ decay parameters in J/ $\psi \rightarrow \Xi^- \uparrow \overline{\Xi}^+ \uparrow$

Patrik Adlarson, Uppsala University

Motivation

- Measure decay parameters
- To study hyperon-hyperon bar spin correlations
- Test CP violation in hyperon non-leptonic decays

General two spin $\frac{1}{2}$ particle state

16 parameters for each θ :

Master formula for $\Lambda\Lambda$:

 $W(\xi) = 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} + \alpha_{-} \alpha_{+} (\sin^{2} \theta_{\Lambda} \sin \theta_{1} \sin \theta_{2} \cos \phi_{1} \cos \phi_{2} + \cos^{2} \theta_{\Lambda} \cos \theta_{1} \cos \theta_{2})$ + $\alpha_{-} \alpha_{+} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \Big[\sin \theta_{\Lambda} \cos \theta_{\Lambda} (\sin \theta_{1} \cos \theta_{2} \cos \phi_{1} + \cos \theta_{1} \sin \theta_{2} \cos \phi_{2}) \Big]$ + $\alpha_{-} \alpha_{+} \alpha_{\psi} (\cos \theta_{1} \cos \theta_{2} - \sin^{2} \theta_{\Lambda} \sin \theta_{1} \sin \theta_{2} \sin \phi_{1} \sin \phi_{2})$ + $\sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} (\alpha_{-} \sin \theta_{1} \sin \phi_{1} + \alpha_{+} \sin \theta_{2} \sin \phi_{2})$

$$\begin{aligned} \xi &= (\theta_{\Lambda}, \theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) \\ G_{E}^{\psi} &= \frac{\sqrt{s}}{2M_{\Lambda}} \sqrt{\frac{1 - \boldsymbol{\alpha}_{\psi}}{1 + \boldsymbol{\alpha}_{\psi}}} e^{i\boldsymbol{\Delta}\boldsymbol{\Phi}} G_{M}^{\psi} \end{aligned}$$

Current work //

Master formula for $\Lambda\Lambda$:

 $W(\xi) = 1 + \alpha_{\psi} \cos^{2}\theta_{\Lambda} + \alpha_{-}\alpha_{+} (\sin^{2}\theta_{\Lambda} \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} + \cos^{2}\theta_{\Lambda} \cos\theta_{1} \cos\theta_{2})$ $+ \alpha_{-}\alpha_{+}\sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \Big[\sin\theta_{\Lambda} \cos\theta_{\Lambda} (\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} + \cos\theta_{1} \sin\theta_{2} \cos\phi_{2}) \Big]$ $+ \alpha_{-}\alpha_{+}\alpha_{\psi} (\cos\theta_{1} \cos\theta_{2} - \sin^{2}\theta_{\Lambda} \sin\theta_{1} \sin\theta_{2} \sin\phi_{1} \sin\phi_{2})$ $+ \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} (\alpha_{-} \sin\theta_{1} \sin\phi_{1} + \alpha_{+} \sin\theta_{2} \sin\phi_{2})$ $\alpha_{\psi} : = 0.461(6)_{stat} (7)_{syst} \qquad \alpha_{-} = \alpha(\Lambda \rightarrow p\pi^{-}) = 0.750(9)_{stat} (4)_{syst}$ $\Delta\Phi = \arg(G_{E}^{\psi} / G_{M}^{\psi}) = 0.740(10)_{stat} (8)_{syst} \qquad \alpha_{+} = \alpha(\bar{\Lambda} \rightarrow \bar{p}\pi^{+}) = -0.758(10)_{stat} (7)_{syst}$

BAM-116 J. Liu, J. Jiao, R. Ping, H.-B. Li, A. Kupsc

Current work //

Master formula for $\Lambda\Lambda$:

 $W(\xi) = 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} + \alpha_{-} \alpha_{+} (\sin^{2} \theta_{\Lambda} \sin \theta_{1} \sin \theta_{2} \cos \phi_{1} \cos \phi_{2} + \cos^{2} \theta_{\Lambda} \cos \theta_{1} \cos \theta_{2})$ $+ \alpha_{-} \alpha_{+} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \Big[\sin \theta_{\Lambda} \cos \theta_{\Lambda} (\sin \theta_{1} \cos \theta_{2} \cos \phi_{1} + \cos \theta_{1} \sin \theta_{2} \cos \phi_{2}) \Big]$ $+ \alpha_{-} \alpha_{+} \alpha_{\psi} (\cos \theta_{1} \cos \theta_{2} - \sin^{2} \theta_{\Lambda} \sin \theta_{1} \sin \theta_{2} \sin \phi_{1} \sin \phi_{2})$ $+ \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} (\alpha_{-} \sin \theta_{1} \sin \phi_{1} + \alpha_{+} \sin \theta_{2} \sin \phi_{2})$ $\alpha_{\psi} : = 0.461(6)_{stat} (7)_{syst} \qquad \alpha_{-} = \alpha (\Lambda \rightarrow p\pi^{-}) = 0.750(9)_{stat} (4)_{syst}$ $\Delta \Phi = \arg(G_{E}^{\psi} / G_{M}^{\psi}) = 0.740(10)_{stat} (8)_{syst} \qquad \alpha_{+} = \alpha (\overline{\Lambda} \rightarrow \overline{p}\pi^{+}) = -0.758(10)_{stat} (7)_{syst}$

- Non-zero phase
- Decay parameter α_ differs from current PDG by more than 15%

- What about $e^+e^- \rightarrow J/\Psi \rightarrow \Xi\Xi$? Is phase non-zero phase?
- If yes it becomes possible to measure α₌- and α₌+ simultaneously and test CP. Also possible to measure simulataneously φ₌- (measured), φ₌+ (not measured), ... and cross check α₋ value
- Exclusive analysis on decay chain $\Xi^+ \rightarrow \Lambda \pi^- \Lambda \pi^+ \rightarrow p \pi^- \pi^- p \pi^+ \pi^+$

(use Uppsala approach: G.Fäldt, AK, S. Leupold, E. Perotti)

General Motivation

- 9-dimensional phase space (compared to 5D for $\Lambda\Lambda$)
- Angles are given in the helicity frame $\xi = (\theta_{\Xi}, \theta_{\Lambda}, \varphi_{\Lambda}, \theta_{\overline{\Lambda}}, \varphi_{\overline{\Lambda}}, \theta_{p}, \varphi_{p}, \theta_{\overline{p}}, \varphi_{\overline{p}})$

Xiaongfei Wang inclusive analysis based on 225 mill J/ ψ and 106.4 mill ψ (3686)

TABLE I. The number of the observed events N_{obs} , efficiencies ϵ , α values, and branching fractions \mathcal{B} for $\psi \to \Xi^- \bar{\Xi}^+$, $\Sigma(1385)^{\pm} \bar{\Sigma}(1385)^{\pm}$. Only statistical uncertainties are indicated.

Channel	Nobs	$\epsilon(\%)$	α	$B(\times 10^{-4})$
$J/\psi \rightarrow \Xi^- \Xi^+$	42810.7 ± 231.0	18.40 ± 0.04	0.58 ± 0.04	10.40 ± 0.06
$J/\psi \rightarrow \Sigma(1385)^{-}\Sigma(1385)^{+}$	42594.8 ± 466.8	17.38 ± 0.04	-0.58 ± 0.05	10.96 ± 0.12
$J/\psi \rightarrow \Sigma(1385)^+\Sigma(1385)^-$	52522.5 ± 595.9	18.67 ± 0.04	-0.49 ± 0.06	12.58 ± 0.14
$\psi(3686) \rightarrow \Xi^{-}\Xi^{+}$	5336.7 ± 82.6	18.04 ± 0.04	0.91 ± 0.13	2.78 ± 0.05
$\psi(3686) \rightarrow \Sigma(1385)^- \overline{\Sigma}(1385)^+$	1374.5 ± 97.8	15.12 ± 0.04	0.64 ± 0.40	0.85 ± 0.06
$\psi(3686) \rightarrow \Sigma(1385)^+ \overline{\Sigma}(1385)^-$	1469.9 ± 94.6	16.45 ± 0.04	0.35 ± 0.37	0.84 ± 0.05

Decay parameters Ξ-Ξ+

- Best results from HyperCP experiment measuring 117x10⁶ Ξ⁻ and 42x10⁶ Ξ⁺ CP asymmetry: A_{ΞΛ} = [0.0 ± 5.1(stat.) ± 4.4(syst.)] x 10⁻⁴ [PRL 93 (2004) 262001]
- Spin decay parameter $\phi_{\Xi} = (-2.39 \pm 0.64 \pm 0.64)^{\circ}$ for $\Xi^{-} \rightarrow \Lambda \pi^{-}$ [PRL 93 (2004) 011802]
- $\alpha_{\pm} = -0.458(12)$ from PDG, BUT α_{\pm} and β_{\pm} are calculated from $\alpha_{\pm} \alpha_{\Lambda} / \alpha_{\Lambda,PDG} (= 0.642)$
- Cross check prel. BESIII result for α_{\wedge} = 0.750

Decay parameters at BESIII

Best results from HyperCP experiment measuring 117 x $10^6 \equiv -and 42 \times 10^6 \equiv +A_{\pm \wedge} = [0.0 \pm 5.1(stat.) \pm 4.4(syst.)] \times 10^{-4}$ [PRL 93 (2004) 262001]

BESIII lower statistics but:

- symmetric particle/anti particle conditions with very clean background situation—>controlled systematic uncertainties
- $\Xi^{-}\Xi^{+}$ measured in the same event
- use spin-spin correlations and polarization
- part of larger program, e.g. also Ξ⁰Ξ⁰
- Direct measurement of $\alpha(\Xi \rightarrow \Lambda \pi)$ and verification of $\alpha(\Lambda \rightarrow p \pi)$

General analysis strategy

Builds off of Xiaongfei Wang's (XW) original code, but modified. BOSS v6.6.4.

1) Charged track selection, using standard $|\cos(\theta)_{\pm}| < 0.93$ selection. At least 3 positively and 3 negatively charged tracks required.

2) Select best Λ/Λ candidates from protons and pions. Then perform primary and secondary vertex fit keeping events passing fit. Pair closest to m(Λ) selected as candidate.

No PID used, but momentum cuts for separating protons from pions.

3) In the same loops pair the best Λ and Λ with remaining pions. Here a primary and secondary vertex fit is used for the $\Lambda \pi$ pairs Select combination closest to Ξ^{-}/Ξ^{+} mass.

4) Run Kalman Kinematic Fit 4C on hyp. e+e- --> Ξ-Ξ+

5) Final event selection: CL kinfit as veto + 4σ cuts on Λ/Λ and Ξ^{-}/Ξ^{+} mass distributions

Momentum vs theta angle. Momentum cuts for particle selection Charmonium Group Meeting, May 8, 2018

Pre-selected data sample

After pre-selection of data, requiring that KinFit converged ($X^{2}(4C) < 200$)

Pre-selected data sample

After pre-selection of data, requiring that KinFit converged ($X^{2}(4C) < 200$)

Event sample after cut on KinFit-4C χ^2 < 100

~4σ cuts on Λ/Λ (6 MeV) and Ξ⁻/Ξ⁺ (12 MeV) In final event sample, 67200 events ~ 1-2% background contamination Charmonium Group Meeting, May 8, 2018

- Only exploratory analysis with respect to final event selection
- For all analysis steps more careful systematic studies have to be performed and e.g. background considered.

Max log-likelihood method

$$P\left(\xi_{1},\xi_{2},\xi,\dots,60000,\xi_{N=67164};\alpha_{J_{/\psi}},\Delta\Phi,\alpha_{\Xi-},\alpha_{\Xi+},\phi_{\Xi},\alpha_{A}\right)$$

$$=\prod_{k=1}^{N}P\left(\xi_{k};\alpha_{J_{/\psi}},\Delta\Phi,\alpha_{\Xi-},\alpha_{\Xi+},\phi_{\Xi},\alpha_{A}\right)$$

$$=\prod_{k=1}^{N}\frac{W\left(\xi_{k};\alpha_{J_{/\psi}},\Delta\Phi,\alpha_{\Xi-},\alpha_{\Xi+},\phi_{\Xi},\alpha_{A}\right)*\varepsilon(\xi_{k})}{N(\Delta\Phi,\alpha_{\Xi-},\alpha_{\Xi+},\phi_{\Xi},\alpha_{A})}$$

$$L=-lnL=-\sum_{k=1}^{N}ln\frac{W\left(\xi_{k};\alpha_{J_{/\psi}},\Delta\Phi,\alpha_{\Xi-},\alpha_{\Xi+},\phi_{\Xi},\alpha_{A}\right)}{N(\Delta\Phi,\alpha_{\Xi-},\alpha_{\Xi+},\phi_{\Xi},\alpha_{A})}$$

MLL fit values exp data

$$\alpha_{J/\Psi} = 0.43(2) \quad \Delta \Phi = 0.76(4) \quad \alpha_{\Xi} = -0.45(1) \quad \alpha_{\Xi} = -0.47(1)$$

$$\alpha_{\Lambda} = 0.50(1), \quad \alpha_{\overline{\Lambda}} = -0.50(1) \quad \varphi_{\Xi} = 0.19(5)$$

"best fit" -In L = -2193

$$\alpha_{J/\Psi} = 0.34(1) \quad \Delta \Phi = 0.54(2) \quad \alpha_{\Xi} = -0.363(8) \quad \alpha_{\overline{\Xi}} = -0.380(8)$$

$$\alpha_{\Lambda} = 0.75(fix), \quad \alpha_{\overline{\Lambda}} = -0.75(fix), \quad \varphi_{\Xi} = +0.18(3)$$

"fixed fit" -In L = -1714

Results shows definitely polarization of $\Xi\Xi$

Big discrpancy for asymmetry parameters of $\Lambda \rightarrow p\pi$ Charmonium Group Meeting, May 8, 2018

General two spin $\frac{1}{2}$ particle state

16 parameters for each θ :

6000

hC00m

Phase Space

hC0xm

400

hC0zm

Fit values

Fit values

Phase Space

Fit values

Phase Space

Fit values

hCzym

hCzzm

Helicity angles best fit

Phase Space

Fit values

cosPrth

Lamph

Prbarph

Helicity angles best fit

Data / best fit

deviatons from 0 seen

Data MC comparison

• MC sample obtained with hit-and-miss method to reproduce the experimental distribution *exactly*, i.e. with the production and decay process fully described (within error bars of best fit)

$$\alpha_{J/\Psi} = 0.45 \quad \Delta \Phi = 0.79 \quad \alpha_{\Xi} = -0.45 \quad \alpha_{\Xi} = 0.45$$

 $\alpha_{\Lambda} = 0.50, \quad \alpha_{\overline{\Lambda}} = -0.50, \quad \varphi_{\Xi} = +0.20$

MLL fit values exp data

$$\alpha_{J/\Psi} = 0.45 \quad \Delta \Phi = 0.79 \quad \alpha_{\Xi} = -0.45 \quad \alpha_{\Xi} = 0.45$$

 $\alpha_{\Lambda} = 0.50, \quad \alpha_{\overline{\Lambda}} = -0.50, \quad \varphi_{\Xi} = +0.20$
True parameters

$$\alpha_{J/\Psi} = 0.45(2) \quad \Delta \Phi = 0.84(4) \quad \alpha_{\Xi} = -0.46(1) \quad \alpha_{\Xi} = 0.45(1)$$

$$\alpha_{\Lambda} = 0.52(1), \quad \alpha_{\bar{\Lambda}} = -0.50(1), \quad \varphi_{\Xi} = +0.17(3)$$

"pseudo data" -In L = -2577

In relatively good agreement with true input

MLL fit values exp data

$$\begin{aligned} \alpha_{J/\Psi} &= 0.43(2) \quad \Delta \Phi = 0.76(4) \quad \alpha_{\Xi} = -0.45(1) \quad \alpha_{\Xi} = -0.47(1) \\ \alpha_{\Lambda} &= 0.50(1), \quad \alpha_{\overline{\Lambda}} = -0.50(1) \quad \varphi_{\Xi} = 0.19(5) \\ & \text{``best fit'' -ln L = -2193} \\ \alpha_{J/\Psi} &= 0.45(2) \quad \Delta \Phi = 0.84(4) \quad \alpha_{\Xi} = -0.46(1) \quad \alpha_{\overline{\Xi}} = 0.45(1) \\ \alpha_{\Lambda} &= 0.52(1), \quad \alpha_{\overline{\Lambda}} = -0.50(1), \quad \varphi_{\Xi} = +0.17(3) \end{aligned}$$

"pseudo data" -In L = -2577

Disagreement between exp data and pseudo data log likelihood value

Helicity angles pseudo data

Phase Space

Fit values

Red follows pseudo data points better compared to real data!

Indication of systematic effect in experimental data

cosPrth

lamp

Prbarph

Data MC comparison

- In the following, each figure is shown is the final event sample comparing data (blue points) with MC (red histogram), normalized to the experimental data
- Again, MC is the sample generated with the hit-and-miss method and supposed to be exact representation of experimental data
- In sub-plots the ratio (data/mc) is shown
- In experimental data the 1-2% background events are not taken into account (i.e. pure EE sample is assumed)

Data MC comparison $\chi 2$

Data MC comparison $m(\Lambda)$ + bar vertex fit

Data MC comparison $m(\Xi)$ + bar vertex fit

Is PDG mass off? Is MC generated mass off? Is nominal magnetic field value off? *Charmonium Group Meeting, May 8, 2018*

Data MC comparison $m(\Xi)$ + bar vertex fit

Is PDG mass off? Is MC generated mass off? Is nominal magnetic field value off?

PDG = 1321.71(7) MeV MC = 1321.32 MeV

Previous analysis

In previous iteration of this analysis I used reconstructed, instead of fitted observables, also here some slight deviation seen

Charmonium Group Meeting, May 8, 2018

Previous analysis

...again more so for $\Xi \Xi$

Data MC comparison momentum

Data MC comparison momentum

Data MC comparison momentum proton

Data MC comparison angles

UNIVERSITET theta pions Λ (°) 800 700 600

Data MC comparison decay lengths Λ

Charmonium Group Meeting, May 8, 2018

50

Data MC comparison decay lengths Ξ

- Change masses in MC to better agree with what is seen experimentally? (how to do this technically?)
- Continue with the $\Xi^0 \Xi^0$ analysis
- Perhaps also study of Σ⁰Σ⁰ as a cross check of depending on the outcome of the neutral cascades.

Thank you