Search for $\mathrm{X}(3872) \rightarrow \pi^{0} \chi_{c 0}$

Will Imoehl
Indiana University

May 14, 2018

Motivation

- Have evidence for $X(3872) \rightarrow \pi^{0} \chi_{c 1}(1 P)$ (BAM-00321)
- Reconstructed in $\chi_{c J} \rightarrow \gamma \mathrm{~J} / \psi$ with $\mathrm{J} / \psi \rightarrow \ell^{+} \ell^{-}$
- $\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 1}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}=0.88_{-0.26}^{+0.31} \pm 0.16$
- For $\chi_{c 0}, \mathcal{B}\left(\chi_{c 0} \rightarrow \gamma J / \psi\right) * \mathcal{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=0.152 \%$
- Upper limit for $\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-J} / \psi\right)}=19$
- Better to use $\mathcal{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=2.24 \%$
- Goal: Use this channel to lower upper limit of the ratio of branching fractions to something more interesting

Initial Selection Criteria

Data: Photon Recoil Mass vs. Invariant 4π Mass

MC: Photon Recoil Mass vs. Invariant 4π Mass

- Decay: $e^{+} e^{-} \rightarrow \gamma X(3872) \rightarrow \pi^{0} \chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$
- Require recoil mass of γ to be between 3.75 and $4.0 \mathrm{GeV} / \mathrm{c}^{2}$
- Require $3.2<M\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)<3.7 \mathrm{GeV} / c^{2}$
- Standard track cuts
- Kinematic $\chi^{2} /$ dof <10
- $4.15<E_{C M}<4.3 \mathrm{GeV}$

Background Vetos

- Require $\left|M\left(\pi^{+} \pi^{-} \pi^{0}\right)-M(\eta)\right|>20 \mathrm{MeV} / \mathrm{c}^{2}$
- Require $\left|M\left(\pi^{+} \pi^{-} \pi^{0}\right)-M(\omega)\right|>50 \mathrm{MeV} / \mathrm{c}^{2}$

Additional Cuts

- Smallest angle between transition γ and charged track rejects γ from charged particles
- π^{0} pull cut for transition γ - rejects γ from π^{0}
- Tighter cut on kinematic $\chi^{2} /$ dof
- Optimize cuts using figure of merit.

$$
F O M=\frac{\text { signal }}{\sqrt{\text { signal }+ \text { backgroud }}}
$$

- Signal is signal MC scaled so

$$
\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}=1
$$

- Background from $X(3872)$ sidebands

Cut Optimization

- Use 50 MeV window in $\mathrm{M}(4 \pi)$ centered at $\chi_{c 0}$ mass
- Signal region is $50 \mathrm{MeV} / \mathrm{c}^{2}$ window centered at $\mathrm{X}(3872)$
- X(3872) sidebands are points outside of the signal region.

Data: Photon Recoil Mass vs. Invariant 4π Mass

MC: Photon Recoil Mass vs. Invariant 4π Mass

$\chi^{2} / D O F$ Cut Optimization

Photon Angle Cut Optimization

Smallest angle between transition photon and charged track

Photon π^{0} Pull Cut Optimization

σ from π^{0} mass when transition photon is combined with other photons in the event

Final 2D Plots

Data: Photon Recoil Mass vs. Invariant 4π Mass

MC: Photon Recoil Mass vs. Invariant 4π Mass

4π Mass 1D Projection

Photon Recoil 1D Projection

$\chi_{\text {co }}$ Photon Recoil Mass

Systematic Uncertainties

- χ^{2} /dof - Largest difference: 4.7%

$\chi^{2} /$ dof Cut	Number of Events	ϵ	Upper Limit (ratio)
1.5	5.6 ± 5.1	7.3%	3.42
2.5	9.3 ± 7.5	11.4%	3.43

- Tracking-4\%
- Photons - 2 photons not in reference channel - 2%
- Background shape - Largest difference: 1.2\%

Polynomial Order	Number of Events	Upper Limit $\left(N_{1}\right)$
0	8.5 ± 6.3	16.6
2	8.5 ± 6.3	16.6
3	8.3 ± 6.3	16.5

- Input branching fractions - 8\%

Decay	Branching Fraction	Relative Uncertainty
$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$2.24 \pm .18 \%$	8%

- Uncertainty in $N_{0}: 12 \%$

Upper Limit Calculation

- Upper limit for N_{1} calculated assuming the uncertainty is gaussian
- Add systematic and statistical uncertainties in quadrature

Polynomial Order	Number of Events	Upper Limit $\left(N_{1}\right)$
1	$8.6 \pm 6.3 \pm 1.3$	16.8

- Calculate upper limit of ratio using
$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}=\frac{N_{1}}{N_{0}} \frac{\epsilon_{0}}{\epsilon_{1}} \frac{\mathcal{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)}{\mathcal{B}\left(\pi^{0} \rightarrow \gamma \gamma\right) * \mathcal{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)}$
- Here $N_{1}=16.8$ and $\epsilon_{1}=9.61 \%$
- $N_{0}=84.1$ and $\epsilon_{0}=32.3 \%$ are taken from BAM-00321
- Branching fractions taken from PDG
- New upper limit for the ratio of branching fractions is 3.63

Other hadronic modes - $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$

Data: Photon Recoil Mass vs. Invariant $\pi^{+} \pi^{-} K^{+} K^{-}$Mass

MC: Photon Recoil Mass vs. Invariant $\pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$Mass

Same cut optimization procedure gives

- $\chi^{2} /$ dof <3.5
- π^{0} pull >2
- Angle between γ and nearest track >12
- Keep same veto on ω and η

Other hadronic modes - $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$

- $\mathcal{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right)=1.75 \%$
- $N_{1}=23.7$ and $\epsilon_{1}=12.4 \%$
- Upper Limit for ratio of branching fractions: 5.07

Other hadronic modes - $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$

Data: Photon Recoil Mass vs. Invariant 4π Mass

MC: Photon Recoil Mass vs. Invariant 4π Mass

Same cut optimization procedure gives

- $\chi^{2} /$ dof <2
- π^{0} pull >2
- Angle between γ and nearest track >12
- Keep same veto on ω and η

Other hadronic modes - $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$

- $\mathcal{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}\right)=3.3 \%$
- $N_{1}=25.87$ and $\epsilon_{1}=5.05 \%$
- Upper Limit of ratio: 7.2

Summary

- Reconstructing $\mathrm{X}(3872) \rightarrow \pi^{0} \chi_{c 0}$ with $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ improves upper limit of $\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}$ from 19 to 3.63
- Ratio of branching fractions still much larger than $\chi_{c 1}$ value
- No clear signal for $X(3872) \rightarrow \pi^{0} \chi_{c 0}$ yet
- Next steps
- Can event selection be improved?
- Simultaneous fit of $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}, \chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$, and $\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$?

Backup

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$- Background Systematic

Polynomial Order	Number of Events	Upper Limit $\left(N_{1}\right)$
0	8.5 ± 6.3	16.6
2	8.5 ± 6.3	16.6
3	8.3 ± 6.3	16.5

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}-\chi^{2} /$ dof Systematic

$\chi_{c 0}$ Photon Recoil Mass

$\chi^{2} /$ dof Cut	Number of Events	ϵ	Upper Limit (ratio)
1.5	5.6 ± 5.1	7.3%	3.42
2.5	9.3 ± 7.5	11.4%	3.43

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$- Input Branching Fractions

Decay	Branching Fraction	Relative Uncertainty
$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$2.24 \pm .18 \%$	8%
$J / \psi \rightarrow \ell^{+} \ell^{-}$	$11.932 \pm 0.77 \%$	0.06%
$\pi^{0} \rightarrow \gamma \gamma$	$98.823 \pm 0.034 \%$	0.03%

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}-\chi^{2} / d o f$

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}-\pi^{0}$ Pull

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}-$Dang

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}-2 \mathrm{D}$ Distributions

Data: Photon Recoil Mass vs. Invariant $\pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$Mass

MC: Photon Recoil Mass vs. Invariant $\pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$Mass

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}$- Upper Limit
χ_{co} Photon Recoil Mass

- $\mathcal{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-} K^{+} K^{-}\right)=1.75 \%$
- $N_{1}=23.7$ and $\epsilon_{1}=12.4 \%$
- Upper Limit of ratio: 5.07

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}-\chi^{2} / d o f$

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}-\pi^{0} \mathrm{Pull}$

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$ - Dang

$\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}-2 \mathrm{D}$ Distributions

Data: Photon Recoil Mass vs. Invariant 4π Mass

MC: Photon Recoil Mass vs. Invariant 4π Mass

$\chi_{c 0} \rightarrow \pi+\pi^{-} \pi^{0} \pi^{0}$

- $\mathcal{B}\left(\chi_{c 0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}\right)=3.3 \%$
- $N_{1}=25.87$ and $\epsilon_{1}=5.05 \%$
- Upper Limit of ratio: 7.2

