Search for X(3872) $\rightarrow \pi^0 \chi_{c0}$

Will Imoehl Indiana University

May 14, 2018

Motivation

- Have evidence for $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ (BAM-00321)
- ▶ Reconstructed in $\chi_{cJ} \rightarrow \gamma J/\psi$ with $J/\psi \rightarrow \ell^+ \ell^-$
- $\blacktriangleright \ \frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)} = 0.88^{+0.31}_{-0.26} \pm 0.16$
- For χ_{c0} , $\mathcal{B}(\chi_{c0} \to \gamma J/\psi) * \mathcal{B}(J/\psi \to \ell^+ \ell^-) = 0.152\%$
- Upper limit for $\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)} = 19$
- Better to use $\mathcal{B}(\chi_{c0}
 ightarrow \pi^+\pi^-\pi^+\pi^-) = 2.24\%$
- Goal: Use this channel to lower upper limit of the ratio of branching fractions to something more interesting

Initial Selection Criteria

Data: Photon Recoil Mass vs. Invariant 4n Mass

MC: Photon Recoil Mass vs. Invariant 4n Mass

- ► Decay: $e^+e^- \rightarrow \gamma X(3872) \rightarrow \pi^0 \chi_{c0} \rightarrow \pi^+\pi^-\pi^+\pi^-$
- Require recoil mass of γ to be between 3.75 and 4.0 GeV/ c^2
- Require 3.2< $M(\pi^+\pi^-\pi^+\pi^-)$ <3.7 GeV/c^2
- Standard track cuts
- Kinematic $\chi^2/dof < 10$
- ▶ 4.15 < E_{CM} < 4.3 GeV</p>

Background Vetos

▶ Require | M(π⁺π⁻π⁰) - M(η) |> 20 MeV/c²
 ▶ Require | M(π⁺π⁻π⁰) - M(ω) |> 50 MeV/c²

Additional Cuts

- Smallest angle between transition γ and charged track rejects γ from charged particles
- ▶ π^0 pull cut for transition γ rejects γ from π^0
- Tighter cut on kinematic χ^2/dof
- Optimize cuts using figure of merit.

$$FOM = rac{signal}{\sqrt{signal + backgroud}}$$

Signal is signal MC scaled so

$$rac{\mathcal{B}(X(3872) o \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) o \pi^+ \pi^- J/\psi)} = 1$$

Background from X(3872) sidebands

Cut Optimization

- Use 50 MeV window in M(4 π) centered at χ_{c0} mass
- Signal region is 50 MeV/c² window centered at X(3872)
- ▶ X(3872) sidebands are points outside of the signal region.

χ^2/DOF Cut Optimization

Photon Angle Cut Optimization

Smallest angle between transition photon and charged track

Photon π^0 Pull Cut Optimization

 σ from π^0 mass when transition photon is combined with other photons in the event

Final 2D Plots

10/19

4π Mass 1D Projection

Photon Recoil 1D Projection

Systematic Uncertainties

• χ^2/dof - Largest difference: 4.7%

χ^2/dof Cut	Number of Events	ϵ	Upper Limit (ratio)
1.5	$5.6{\pm}5.1$	7.3%	3.42
2.5	9.3 ± 7.5	11.4%	3.43

- Tracking 4%
- Photons 2 photons not in reference channel 2%
- Background shape Largest difference: 1.2%

	_	
Polynomial Order	Number of Events	Upper Limit (<i>N</i> ₁)
0	8.5±6.3	16.6
2	8.5 ± 6.3	16.6
3	8.3 ± 6.3	16.5

Input branching fractions - 8%

Decay	Branching Fraction	Relative Uncertainty
$\chi_{c0} \to \pi^+ \pi^- \pi^+ \pi^-$	2.24±.18%	8%

▶ Uncertainty in N₀: 12%

Upper Limit Calculation

► Upper limit for *N*₁ calculated assuming the uncertainty is gaussian

Add systematic and statistical uncertainties in quadrature

Polynomial Order	Number of Events	Upper Limit (N ₁)
1	8.6±6.3±1.3	16.8

Calculate upper limit of ratio using

$$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)} = \frac{N_1}{N_0} \frac{\epsilon_0}{\epsilon_1} \frac{\mathcal{B}(J/\psi \to \ell^+ \ell^-)}{\mathcal{B}(\pi^0 \to \gamma \gamma) * \mathcal{B}(\chi_{c0} \to \pi^+ \pi^- \pi^+ \pi^-)}$$

- Here $N_1 = 16.8$ and $\epsilon_1 = 9.61\%$
- $N_0 = 84.1$ and $\epsilon_0 = 32.3\%$ are taken from BAM-00321
- Branching fractions taken from PDG
- New upper limit for the ratio of branching fractions is 3.63

Other hadronic modes - $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$

Data: Photon Recoil Mass vs. Invariant ###K Mass

MC: Photon Recoil Mass vs. Invariant π*π K*K Mass

Same cut optimization procedure gives

- $\chi^2/dof < 3.5$
- ▶ π^0 pull >2
- Angle between γ and nearest track > 12
- Keep same veto on ω and η

Other hadronic modes - $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$

Other hadronic modes - $\chi_{c0} \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

Data: Photon Recoil Mass vs. Invariant 4π Mass

Recoil Mass (GeV/c²) Recoil Mass (GeV/c² 04 10 3.95 3.95 0.3 0.3 3.9 3.9 0.2 3.85 3.8 0 1 3.8 3.8 0.0 3.75 3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 36 365 37 3 45 35 4π Mass (GeV/c²) 4π Mass (GeV/c²)

MC: Photon Recoil Mass vs. Invariant 4π Mass

Same cut optimization procedure gives

- $\chi^2/dof < 2$
- ▶ π^0 pull >2
- \blacktriangleright Angle between γ and nearest track ${>}12$
- \blacktriangleright Keep same veto on ω and η

Other hadronic modes - $\chi_{c0} \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

- $\mathcal{B}(\chi_{c0} \to \pi^+ \pi^- \pi^0 \pi^0) = 3.3\%$ • $N_1 = 25.87$ and $\epsilon_1 = 5.05\%$
- Upper Limit of ratio: 7.2

Summary

- ► Reconstructing X(3872) $\rightarrow \pi^0 \chi_{c0}$ with $\chi_{c0} \rightarrow \pi^+ \pi^- \pi^+ \pi^$ improves upper limit of $\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$ from 19 to 3.63
- ▶ Ratio of branching fractions still much larger than χ_{c1} value
- No clear signal for $X(3872) \rightarrow \pi^0 \chi_{c0}$ yet
- Next steps
 - Can event selection be improved?
 - Simultaneous fit of $\chi_{c0} \rightarrow \pi^+ \pi^- \pi^+ \pi^-$, $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$, and $\chi_{c0} \rightarrow \pi^+ \pi^- \pi^0 \pi^0$?

Backup

$\chi_{c0} \rightarrow \pi^+\pi^-\pi^+\pi^-$ - Background Systematic

Polynomial Order	Number of Events	Upper Limit (N ₁)
0	8.5±6.3	16.6
2	8.5 ± 6.3	16.6
3	8.3 ± 6.3	16.5

$\chi_{c0} \rightarrow \pi^+\pi^-\pi^+\pi^-$ - χ^2/dof Systematic

χ^2/dof Cut	Number of Events	ϵ	Upper Limit (ratio)
1.5	$5.6{\pm}5.1$	7.3%	3.42
2.5	9.3 ± 7.5	11.4%	3.43

 $\chi_{\rm c0} \to \pi^+\pi^-\pi^+\pi^-$ - Input Branching Fractions

Decay	Branching Fraction	Relative Uncertainty
$\chi_{c0} \to \pi^+ \pi^- \pi^+ \pi^-$	2.24±.18%	8%
$J/\psi ightarrow \ell^+ \ell^-$	$11.932 \pm 0.77\%$	0.06%
$\pi^0 \to \gamma\gamma$	$98.823 \pm 0.034\%$	0.03%

$$\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$$
 - χ^2/dof

$$\chi_{c0}
ightarrow \pi^+ \pi^- K^+ K^-$$
 - π^0 Pull

 $\chi_{c0} \rightarrow \pi^+\pi^- K^+ K^-$ - Dang

$\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$ - 2D Distributions

 $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$ - Upper Limit

•
$$\mathcal{B}(\chi_{c0} \to \pi^+ \pi^- K^+ K^-) = 1.75\%$$

• $N_1 = 23.7$ and $\epsilon_1 = 12.4\%$
• Upper Limit of ratio: 5.07

$$\chi_{c0}
ightarrow \pi^+\pi^-\pi^0\pi^0$$
 - χ^2/dof

 $\chi_{c0} \rightarrow \pi^+\pi^-\pi^0\pi^0$ - π^0 Pull

 $\chi_{c0} \rightarrow \pi^+\pi^-\pi^0\pi^0$ - Dang

$\chi_{c0} \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ - 2D Distributions

$$\chi_{c0} \to \pi + \pi^- \pi^0 \pi^0$$

- $\mathcal{B}(\chi_{c0} \to \pi^+ \pi^- \pi^0 \pi^0) = 3.3\%$ • $N_1 = 25.87$ and $\epsilon_1 = 5.05\%$
- Upper Limit of ratio: 7.2