

Measurement of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ in the vicinity of the X(3872) mass

Leonard Koch, Wolfgang Kühn, and Yutie Liang

Justus-Liebig-Universität Gießen

June 6th 2018 / BESIII Charmonium Group Meeting

Introduction	Signal MC	Preselection	Background Study	Cross Section	Upper Limit
					000000000000000000000000000000000000000

6 Upper Limit

< □ > < @ > < E > < E > E のQ 2

Section 1

Introduction

Introduction Signal MC Preselection Background Study Cross Section Upper Limit

Introduction

- 200 pb⁻¹ at X(3872) mass
- 200 pb⁻¹ ~ 5 MeV below X(3872) mass
- 1⁺⁺ state, need two photons!

Data taking in June 2017:

- Run 52108 52206 at $\sqrt{s} = 3.86741 \,\text{GeV}$: (108.87 ± 0.04) pb⁻¹
- Run 52207 52297 at $\sqrt{s} = 3.87131 \,\text{GeV}$: $(110.31 \pm 0.04) \,\text{pb}^{-1}$

Preselect

Background Study

Cross Section

Upper Limit 0000000000000000

Introduction

Parameters of the X(3872)

- *m* = (3871.69 ± 0.17) MeV
- $\Gamma_{tot} < 1.2 \, \text{MeV}$ (90 % C.L.)
- $\mathcal{B}(X(3872) \rightarrow J/\psi \pi^+ \pi^-) > 2.6\%$ (90% C.L.)
- $\Gamma_{ee} \times \mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) < 0.13 \text{ eV}$ (90 % C.L.)

Goal of this analysis

- \bullet Measure cross section of $e^+e^- \to \pi^+\pi^- J/\psi$
 - via $J/\psi \rightarrow \ell^+ \ell^-$
- Set improved limits on $\Gamma_{ee}(X(3872)) \times \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ and maybe $\Gamma_{tot}(X(3872))$

Preselec

Background Study

Cross Section

Upper Limit 00000000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 6

Data Sets

- 2017 X(3872) data:
 - $\sqrt{s} = 3.86741 \,\text{GeV}$: $(108.87 \pm 0.04 \pm 1.26) \,\text{pb}^{-1}$
 - $\sqrt{s} = 3.87131 \,\text{GeV}$: $(110.31 \pm 0.04 \pm 0.78) \,\text{pb}^{-1}$
- 2013 XYZ scan data:
 - $\sqrt{s} = 3.80765 \,\text{GeV}$: $(50.54 \pm 0.03 \pm 0.51) \,\text{pb}^{-1}$
 - $\sqrt{s} = 3.89624 \,\text{GeV}$: $(52.61 \pm 0.03 \pm 0.52) \,\text{pb}^{-1}$

Signal MC Preselection

Background Study

Cross Section

Upper Limit 0000000000000000

Section 2

Signal MC

<□> < @> < E> < E> E のQで 7

$e^+e^- ightarrow \pi^+\pi^- J/\psi$

Signal MC Preselect

Background Study

Cross Section

Upper Limit 000000000000000

Cross Section (Assuming Signal)

expected cross section

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > の < つ)</p>

Sianal MC

Signal MC

0000000

Signal MC

- KKMC + EvtGen, including ISR + FSR, flat lineshape
- for each energy point:
 - 5×10^5 with $J/\psi \rightarrow e^+e^-$
 - 5×10^5 with $J/\psi \rightarrow \mu^+\mu^-$
- model $X(3872) \rightarrow \rho^0 (\rightarrow \pi^+ \pi^-) J/\psi (\rightarrow \ell^+ \ell^-)$

• $e^+e^- \rightarrow \pi^+\pi^- J/\psi(\rightarrow \ell^+\ell^-)$ PHSP

•
$$e^+e^- \to \sigma(\to \pi^+\pi^-)J/\psi(\to \ell^+\ell^-)$$
 PHSP
• $e^+e^- \to \sigma(\to \pi^+\pi^-)J/\psi(\to \ell^+\ell^-)$ VVS_PWAVE

- $e^+e^- \rightarrow \pi^+\pi^- J/\psi(\rightarrow \ell^+\ell^-)$ Jpipi
- $e^+e^- \rightarrow \pi^+\pi^- J/\psi(\rightarrow \ell^+\ell^-)$ VVpipi

EvtGen Models

- for each energy point: • 5×10^5 with $J/\psi \rightarrow e^+e^-$

• 5×10^5 with $J/\psi \rightarrow \mu^+\mu^-$

• KKMC + EvtGen, including ISR + FSR, flat lineshape

Generator Settings

Signal MC Preselection

Continuum MC Models (1)

Introduction

Background Study

Cross Section

Upper Limit 0000000000000000

Signal MC Preselect

Background Study

Cross Section

Upper Limit 000000000000000

Continuum MC Models(2) Comparisson

▶ <u>ह</u> ୬)९(२

Introduction Signal MC Preselection Background Study Cross Section Upper Limit

Continuum MC Models(3) Cross Check

482 pb⁻¹ of data at $\sqrt{s} = 4007.6$ MeV favors VVpipi and Jpipi models. We use the VVpipi model. $J/\psi \rightarrow u^{+}u^{-}$

troduction Signal MC

Preselection •000 Background Study

Cross Section

Upper Limit

Section 3

Preselection

<ロト < @ ト < E ト < E ト E の へ C 14

Preselection 0000 Background Study

Cross Section

Upper Limit 0000000000000000

(ロ) (四) (三) (三) (三) (15)

Event Selection

- boss version 7.0.3
- 4 good charged tracks, net charge = 0:
 - $|z_{POCA}| < 10 \, \text{cm}$
 - $r_{POCA} < 1 \, \mathrm{cm}$
 - $|\cos \theta| < 0.93$

Introduction Signal MC Preselection Background Study Cross Section Upper Limit

Particle ID (1): π^{\pm} or ℓ^{\pm} ?

π[±] momenta are required to be < 0.6 GeV
ℓ[±] momenta are required to be > 1.0 GeV

Preselection 000● Background Study

Cross Section

Upper Limit 0000000000000000

Particle ID (2): μ^{\pm} or e^{\pm} ?

• μ^{\pm} candidates should deposit < 0.35 GeV in EMC

• e^{\pm} candidates should deposit > 1.1 GeV in EMC

Introduction Signal MC Preselection Background Study

Cross Section

Upper Limit 000000000000000

Section 4

Background Study

<ロ><回><回><目><目><目><目><目><目><10</td>

Cross Section

Upper Limit 000000000000000

Background MC

for each energy point:

- 10^7 events $e^+e^- \rightarrow \gamma e^+e^-$ with Babayaga 3.5 ($\cong 3 \times$ luminosity)
- 10⁶ events $e^+e^- \rightarrow \gamma \mu^+\mu^-$ with Phokhara (\cong 180× luminosity)
- 10^7 events $e^+e^- \rightarrow e^+e^-e^+e^-$ with BesTwogam ($\cong 5 \times$ luminosity)
- 10^7 events $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ with BesTwogam ($\cong 12 \times$ luminosity)
- 10⁶ events $e^+e^- \rightarrow e^+e^-q^+q^-$ with BesTwogam ($\cong 6 \times$ luminosity)
- 10⁶ events $e^+e^- \rightarrow 2\pi^+2\pi^-$ with ConExc (\cong 45× luminosity)
- 10⁶ events $e^+e^- \rightarrow K_s^0 K^{\pm} \pi^{\mp}$ with ConExc (\cong 180× luminosity)
- 5×10^5 events $e^+e^- \rightarrow \pi^+\pi^-K^+K^-$ with ConExc ($\cong 23 \times$ luminosity)
- 10⁶ events $e^+e^- \rightarrow \gamma_{ISR}\psi'$ with EvtGen (\cong 150× luminosity)

red: ≈ 2.6 expected events under J/ψ peak, (e^+e^- mode), violet: ≈ 1.4 (e^+e^-), blue: ≈ 2.6 ($\mu^+\mu^-$), green: ≈ 0.0 (both modes), black: $0.1 \leq N_{exp} \leq 0.5$ (both modes)

Gamma Conversion Background Rejection (1) $J/\psi \rightarrow e^+e^-$

Cosine of opening angle between both π^{\pm} candidates All Data Points

Gamma Conversion Background Rejection (2) $J/\psi \rightarrow \mu^+\mu^-$

Cosine of opening angle between both π^{\pm} candidates All Data Points

Gamma Conversion Background Rejection (3) $J/\psi \rightarrow e^+e^-$

Cosine of opening angle between π^{\pm} and e^{\mp} candidates All Data Points

C Preselec o oooo Background Study

Cross Section

Upper Limit 0000000000000000

Gamma Conversion Background Rejection (4) $_{J/\psi \, \rightarrow \, \mu^+ \mu^-}$

Cosine of opening angle between π^{\pm} and μ^{\mp} candidates All Data Points

Preselect

Background Study

Cross Section

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 24

Kinematic Fit

 Perform a kinematic fit (total four momentum + vertex): include beam energy spread (2017 data)

All Data Points

All Data Points

C Preselec

Background Study

Cross Section

Upper Limit 0000000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 27

$mass(\pi^+\pi^-)$ Distribution (1) $_{J/\psi \rightarrow e^+e^-}$

No Cut (would introduce a large systematic uncertainty)

C Preselec o oooo Background Study

Cross Section

Upper Limit 000000000000000

$\mbox{mass}(\pi^+\pi^-)$ Distribution (2) $_{J/\psi \, \rightarrow \, \mu^+\mu^-}$

All Data Points

<ロト < 回 ト < 三 ト < 三 ト 、 三 の Q C 28</p>

C Preselec o oooo Background Study

Cross Section

Upper Limit 000000000000000

$\mbox{mass}(e^+e^-)$ distribution (1) $_{J/\psi \ \rightarrow \ e^+e^-}$

All Data Points

<□><□><□><□><□><□><□><□><□><□><□><□><000 20

IC Preselec

Background Study

Cross Section

Upper Limit 0000000000000000

$\mbox{mass}(\mu^+\mu^-)$ distribution (2) $_{J/\psi \, \rightarrow \, \mu^+\mu^-}$

All Data Points

C Preselect

Background Study

Cross Section

Upper Limit 000000000000000

(ロ) (四) (三) (三) (三) (31)

Conclusion of Background Study

- Almost perfect description of bakground by MC
- Background seems to be flat

troduction S

Preselect 0000 Background Study

Cross Section •00000000000000 Upper Limit

Section 5

Cross Section

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 32

Preselecti 0000 Background Study

Cross Section

Upper Limit 0000000000000000

Fit to the $\ell^+\ell^-$ Spectrum: Get N_{obs}

- N_{obs} obtained by a maximum likelihood fit to the $mass(\ell^+\ell^-)$ spectrum
- Signal shape: MC lineshape
- Background shape: linear function

C Preselecti

Background Study

Cross Section

Upper Limit

Fit to the $mass(e^+e^-)$ Spectrum: Get N_{obs}

<ロト < 回 > < 臣 > < 臣 > 、 臣) のへで 34

C Preselecti

Background Study

Cross Section

Upper Limit

Fit to the $mass(\mu^+\mu^-)$ Spectrum: Get N_{obs}

<ロト < 回 > < 臣 > < 臣 > 三 の へ で 37

Center-of-Mass Energy / GeV

Introduction Signal MC Preselection Background Study Cross Section Upper Limit

Cross Section (1)

$$\sigma(e^+e^- \to \pi^+\pi^- J/\psi) = \frac{N_{obs}}{\int \mathcal{L}dt \cdot \varepsilon \cdot (1+\delta) \cdot \mathcal{B}(J/\psi \to \ell^+\ell^-)}$$

- N_{obs} obtained from fit to $\ell^+\ell^-$ spectrum
- $\int \mathcal{L} dt$ determined from Bhabha events
- ε see previous slide
- $\mathcal{B}(J/\psi \rightarrow e^+e^-) = 5.971$ % taken from PDG
- $\mathcal{B}(J/\psi \rightarrow \mu^+\mu^-) = 5.961$ % taken from PDG
- $1 + \delta = 0.895$ obtained from KKMC (flat lineshape)

Cross Section (2)

Center-of-Mass Energy / GeV

<ロト < 回 > < 臣 > < 臣 > 三 のへで 39

Cross Section (3)

Center-of-Mass Energy / GeV

・ロト <
ゆ > <
言 > <
言 >
・
ま の へ の 40

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ 41

Preselect

Background Study

Cross Section

Upper Limit 0000000000000000

Systematic Uncertainties (1)

systematic uncertainties independent from \sqrt{s}

- Tracking Efficiency: 4% (tracks)
- J/ψ branching fraction (from PDG): 0.6% for both J/ψ modes

kinematic fit

• 0.5× efficiency difference between kinematic fit with and without correction of the helix parameters

C Preselect

Background Study

Cross Section

Upper Limit 0000000000000000

Systematic Uncertainties (2)

fit to the $mass(\ell^+\ell^-)$ spectrum

- Change the background parameterization to 2nd order polynomial
- take deviation as systematic uncertainty

decay model in the continuum MC

- Decay modeled as $e^+e^- \to \pi^+\pi^- J/\psi(\to \ell^+\ell^-)$ in VVpipi
- Change this to $e^+e^- \to \sigma(\to \pi^+\pi^-)J/\psi(\to \ell^+\ell^-)$ in PHSP
- take the difference in efficiency as systematic uncertainty

C Preselec

Background Study

Cross Section

Upper Limit

Systematic Uncertainties (3)

\sqrt{s}	3.80765	3.86741	3.87131	3.89624
∫£dt	1.0%	1.2%	0.7 %	1.0%
tracking	4.0%	4.0%	4.0%	4.0%
$\mathcal{B}(J/\psi \rightarrow e^+e^-)$	0.6%	0.6%	0.6%	0.6%
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	0.6%	0.6%	0.6%	0.6%
kinematic fit (e^+e^-)	0.88%	0.84%	0.88%	0.86 %
kinematic fit ($\mu^+\mu^-$)	0.69%	0.70%	0.73%	0.68 %
fit (e^+e^-)	4.9%	3.9%	5.1%	10.4 %
fit ($\mu^+\mu^-$)	0.66 %	2.0%	8.1%	1.4%
decay model (e^+e^-)	2.2%	2.7 %	2.2%	2.4%
decay model ($\mu^+\mu^-$)	3.6%	4.0%	3.7 %	4.0%
Sum (<i>e</i> + <i>e</i> -)	6.8%	6.4%	7.0%	11%
Sum ($\mu^+\mu^-$)	5.6%	6.2 %	9.8%	5.9%

Preselect

Background Study

Cross Section

Upper Limit

Cross Section Result (1)

	$\sigma(e^+e^- ightarrow \pi^+\pi^- J/\psi)/pb$		
\sqrt{s}	e+e- mode	$\mu^+\mu^-$ mode	both modes combined
3.80765	$23.5 \pm 6.0 \pm 1.6$	$14.7 \pm 3.5 \pm 0.8$	$16.9 \pm 3.0 \pm 0.7$
3.86741	$17.5 \pm 3.3 \pm 1.1$	$16.3 \pm 2.7 \pm 1.0$	$16.8 \pm 2.1 \pm 0.7$
3.87131	$13.5 \pm 3.1 \pm 0.9$	$11.0 \pm 2.2 \pm 1.1$	$11.8 \pm 1.8 \pm 0.7$
3.89624	$17.8 \pm 4.6 \pm 2.0$	$14.9 \pm 4.0 \pm 0.9$	$16.1 \pm 3.0 \pm 0.8$

Preselect

Background Study

Cross Section

Upper Limit 0000000000000000

Cross Section Result (2)

Tiny horizontal lines indicate effect of systematic uncertainties

(ロ) (回) (三) (三) (三) (300 - 46)

roduction Signal MC

Preselect 0000 Background Study

Cross Section

Upper Limit •0000000000000000

Section 6

Upper Limit

<ロト < @ ト < 注 > < 注 > 注 の < で 47

Introduction 0000	Signal MC 0000000	Preselection 0000	Background Study	Cross Section	Upper Limit 00000000000000000000000000000000000

Lineshape

• Model of flat continuum and relativistic Breit-Wigner:

$$\sigma_{e^+e^- \to \pi^+\pi^- J/\psi}(\sqrt{s}) = \sigma_{cont} + 12\pi \frac{\Gamma_{tot}\Gamma_{ee} \times \mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi)}{\left(s - m_0^2\right)^2 + m_0^2\Gamma_{tot}^2}$$

- $\Gamma_{ee} \times \mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi)$ treated as one parameter
- in total 3 parameters
- This parameterization is convolved with a Gaussian modelling the beam spread (1.4 MeV for off-resonance point, 1.7 MeV for on-resonance, determined by BEMS)

Cross Section

Upper Limit

Bayesian Formalism (1)

Common approach: "... integrate the likelihood until 90%" In Bayesian formalism, this is possible because:

- Likelihood function L(x|θ) is interpreted as conditional pdf f(x|θ) of data x, given the parameter θ
- Using Bayes' Theorem, this is converted into the pdf f(θ|x) of the parameter θ, given the data x:

$$f(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta) \, \mathrm{d}\theta} \propto f(x|\theta)\pi(\theta)$$

- Prior pdf π(θ) is very often taken to be constant within the physical region, zero otherwise. Other choices possible.
- Construction of credible interval (confidence interval for frequentists) by integration of pdf f(θ|x) is natural.

Preselection 0000

Background Study

Cross Section

<ロ> < 回> < 回> < 三> < 三> < 三> のへで 50

Bayesian Formalism (2)

Treatment of nuisance parameters (parameters in likelihood function, but not of interest):

 Marginlaization (integration) of likelihood over nuisance parameters θ_n (θ̃: parameter of interest, not normalized):

$$f(\tilde{\theta}|x) = \int f((\tilde{\theta}, \theta_n)|x) \, \mathrm{d}\theta_n$$

• This is not the same as profiling the likelihood (frequentist method)

Cross Section

Upper Limit

Likelihood Function (1)

Marginalized likelihood functions of cross section at each energy point. Convolution with Gaussian to incorporate systematic uncertainties.

d / pb

Preselection 0000

Background Study

Cross Section

<ロ> < 回> < 回> < 三> < 三> < 三> のへで 52

Likelihood Function (2)

Global likelihood function is product of the likelihood functions of the previous page evaluated at the cross section given by the lineshape parameterization:

$$L = \prod_{i=1}^{4} L_i(\sigma = \sigma_{\sqrt{s} = \sqrt{s}_i}(\Gamma_{ee} \times \mathcal{B}, \Gamma_{tot}, \sigma_{cont}))$$

 $\sigma_{\textit{cont}}$ is a nuisance parameter and needs to be marginalized over.

Background Study

Cross Section

Systematic Uncertainties (1)

Systematic uncertainties of lineshape parameters are:

- X(3872) mass, uncertainty taken from PDG ($m_0 = (3871.69 \pm 0.17) \text{ MeV}/c^2$)
- \sqrt{s} taken from the BEMS measurement (2017 data) or using official values (2013 data)
- Spread of \sqrt{s} calculated from BEMS result

\sqrt{s} / MeV	$\delta\sqrt{s}/MeV$
3807.7 ± 0.6	
3867.410 ± 0.031	1.406 ± 0.025
3871.31 ± 0.06	1.73 ± 0.06
3896.2 ± 0.8	

Cross Section

Upper Limit 000000000000000

<ロ> < 回> < 回> < 三> < 三> < 三> のへで 54

Systematic Uncertainties (2)

Systematic uncertainties of lineshape parameters are accounted for by the following procedure:

- Lineshape parameters are randomly sampled from Gaussians with mean and variance according to its central value and uncertainty.
- Likelihood function is calculated.
- These steps are repeated several times
- The average of the likelihood functions of each iteration is the likelihood function including systematic uncertainties.

(ロ) (日) (日) (王) (王) (王) (10,00 - 55)

C Preselec

Background Study

Cross Section

Upper Limit 00000000000000000

Full Likelihood Function

Grey line: current upper limit on Γ_{tot}

Preselec

Background Study

Cross Section

Upper Limit 00000000000000000

Total Width Dependent Upper Limit

 $\Gamma_{tot} = 1.207500 \text{ MeV}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 57

C Preselec

Background Study

Cross Section

Upper Limit

Total Width Dependent Upper Limit

C Preselect

Background Study

Cross Section

Upper Limit 00000000000000000

Full Likelihood Function with Prior for Total Width

Likelihood function of Γ_{tot} from the original Belle paper (Phys. Rev. D 84, 052004). We approximate the shape by a zero-mean Gaussian. The variance is set in such a way, that the upper limit coincides with 1.2 MeV. This function is then used as the prior for Γ_{tot} .

Preselect

Background Study

Cross Section

Upper Limit

Full Likelihood Function with Prior for Total Width

Marginalized Likelihood

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Preselec

Background Study

Cross Section

2D Credible Region

C Preselect

Background Study

Cross Section

Upper Limit

Upper Limit Independent from Total Width

- Analysis of $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ at 4 different \sqrt{s} close to the X(3872) mass
- No significant enhancement at the X(3872) mass
- Measurement is consistent with constant cross section
- An upper limit on $\Gamma_{ee} \times \mathcal{B}(X(3872) \rightarrow \pi^+\pi^-)$ has been determined in a Γ_{tot} dependent and independent way:
 - $\Gamma_{ee} \times \mathcal{B} < 11 \text{ meV}$ at the 90% confidence level for $\Gamma_{tot} = 1.2 \text{ MeV}$
 - $\Gamma_{ee} \times \mathcal{B} < 9 \text{ meV}$ at the 90% confidence level (factor 14 improvement compared to previous measurement)
- 2D credible region for $(\Gamma_{ee} \times \mathcal{B}) \times \Gamma_{tot}$ has been determined as well

Introduction Signal MC Preselection Background Study Cross Section Upper Limit

Thank You!