

May 18, 2018

Introduction	Calcualtion	Loop Induced	Result of $\Upsilon + J/\psi$	Result of $\Upsilon + J/\psi + \phi$	Summary
Outline					

- 2 The frame of Calculation
- Loop Induced Contributions
- **4** Numerical Result of $\Upsilon + J/\psi$
- **5** Numerical result of $\Upsilon + J/\psi + \phi$ and triple parton scattering

6 Summary

Introduction	Calcualtion	Loop Induced	Result of $\Upsilon + J/\psi$	Result of $\Upsilon + J/\psi + \phi$	Summary

Introduction

Quarkonium productions

Quarkonium production have been studied by

- Kuang-Ta Chao group
- Yu Jia group
- B. A. Kniehl group
- Cong-Feng Qiao group
- Jian-Xiong Wang group
- **i** ...

Quarkonium productions

NLO J/ψ polarization at CDF, arXiv:1201.2675

Quarkonium productions

NLO J/ψ at LHCb, Chao/Wang/Kniehl, 1506.03981

Long distance matrix elements (LDMEs)

The LDMEs of J/ψ extracted from the experimental $J/\psi/\eta_c$ hadronic production by five theory groups in unit of 10^{-2} GeV³ (1105.0820, 1201.2675, 1205.6682, 1403.3612, 1412.0508)

	$\langle 0 O^{J/\psi}(^1S_0^8) 0 angle$	$\frac{\langle 0 O^{J/\psi}(^{3}P^{8}_{0}) 0\rangle}{m^{2}_{c}}$	$M^{J/\psi}_{ m 3.9\pm0.8}$
Kniehl	4.97 ± 0.44	-0.716 ± 0.089	$\textbf{2.2}\pm\textbf{0.8}$
Chao, set1	8.9 ± 0.98	0.56 ± 0.21	11.1 ± 0.4
set2	0	2.4	$\textbf{9.4} \pm \textbf{1.9}$
set3	11	0	11
Wang	$\textbf{9.7}\pm\textbf{0.9}$	-0.95 ± 0.25	$\textbf{6.0} \pm \textbf{1.5}$
Bodwin	9.9 ± 2.2	0.49 ± 0.45	11.8 ± 2.8
Zhang	$0.44 \sim 1.13$	1.7 ± 0.5	$\textbf{7.4} \pm \textbf{2.4}$

LO $e^+e^- ightarrow e^+e^- J/\psi + X$ at LEP, hep-ph/0112259

NLO $e^+e^- \to e^+e^- J/\psi + X$ at LEP, 1105.0820

NLO $e^+e^- \to e^+e^- J/\psi + c\bar{c} + X$ at LEP, 1608.06231

CO LDMEs, 1212.2037

	Butenschoen, Gong, Wang,		Chao, Ma, Shao, Wang, Zhang 52		
	Kniehl ¹⁸	Wan, Zhang ⁵³	default set	set 2	set 3
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]})\rangle$	$1.32 \ {\rm GeV^3}$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV^3}$
$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$0.0497 \ \mathrm{GeV}^3$	$0.097 \ \mathrm{GeV}^3$	$0.089 \ \mathrm{GeV}^3$	0	$0.11 \ { m GeV}^3$
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$0.0022 \ \mathrm{GeV^3}$	$-0.0046~{\rm GeV^3}$	$0.0030 \ \mathrm{GeV^3}$	$0.014~{ m GeV^3}$	0
$\langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]})\rangle$	$-0.0161~{\rm GeV}^5$	$-0.0214~{\rm GeV^5}$	$0.0126~{\rm GeV^5}$	$0.054~{\rm GeV^5}$	0
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[1]})\rangle$		$0.758 \ { m GeV}^3$			
$\langle \mathcal{O}^{\psi'}({}^{1}S_{0}^{[8]})\rangle$		$-0.0001 \ \mathrm{GeV}^3$			
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[8]})\rangle$		$0.0034 \ \mathrm{GeV^3}$			
$\langle \mathcal{O}^{\psi'}({}^{3}P_{0}^{[8]})\rangle$		$0.0095~{\rm GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3P_0^{[1]})\rangle$		$0.107 \ \mathrm{GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3S_1^{[8]})\rangle$		$0.0022~{\rm GeV}^3$			

A constraint of LDMEs can be get through $e^+e^- \rightarrow J/\psi + X^$ at $\mathcal{O}(\alpha_s + v^2)$, 1409.2293 (EPJC77 (2017), 597)

- 2 $\sqrt{s} = 10.6 \text{ GeV: If } \sigma[J/\psi^{CO}] = \sigma[J/\psi + LH] = 0.43 \text{ pb}$ (0901.2775), $M_{3.9\pm0.8}^{J/\psi} = (2.5 \pm 1.0) \times 10^{-2} \text{ GeV}^3$

A constraint of LDMEs can be get through $e^+e^- \rightarrow J/\psi + X$ at $\mathcal{O}(\alpha_s + v^2)$, 1409.2293 (EPJC77 (2017), 597)

- 2 $\sqrt{s} = 10.6 \text{ GeV: If } \sigma[J/\psi^{CO}] = \sigma[J/\psi + LH] = 0.43 \text{ pb}$ (0901.2775), $M_{3.9\pm0.8}^{J/\psi} = (2.5 \pm 1.0) \times 10^{-2} \text{ GeV}^3$
- **③** \sqrt{s} = 4.6 − 5.6 GeV: If $\sigma[J/\psi^{CO}] = \sigma[J/\psi\pi^+\pi^-] \sim 10$ pb, $M_{11\pm3}^{J/\psi} = (2 \pm 1) \times 10^{-2} \text{ GeV}^3$

A constraint of LDMEs can be get through $e^+e^- \rightarrow J/\psi + X$ at $\mathcal{O}(\alpha_s + v^2)$, 1409.2293 (EPJC77 (2017), 597)

- ② $\sqrt{s} = 10.6 \text{ GeV: If } \sigma[J/\psi^{CO}] = \sigma[J/\psi + LH] = 0.43 \text{ pb}$ (0901.2775), $M_{3.9\pm0.8}^{J/\psi} = (2.5 \pm 1.0) \times 10^{-2} \text{ GeV}^3$
- **3** \sqrt{s} = 4.6 − 5.6 GeV: If $\sigma[J/\psi^{CO}] = \sigma[J/\psi\pi^+\pi^-] \sim 10$ pb, $M_{11\pm3}^{J/\psi} = (2\pm1) \times 10^{-2} \text{ GeV}^3$
- $\begin{array}{|c|c|c|} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$

LDMEs from e^+e^- and pp

NLO Color octet mechanism can not explain J/ψ production and polarization at e^+e^- and pp colliders with a set of universal LDMEs

• $e^+e^-: \langle 0|\mathcal{O}({}^3P_0^8)|0\rangle/m_c^2 \sim (-0.1 \pm 0.2) \times 10^{-2} \text{ GeV}^3$ and $\langle 0|\mathcal{O}({}^1S_0^8)|0\rangle \sim (3 \pm 2) \times 10^{-2} \text{ GeV}^3$

LDMEs from e^+e^- and pp

NLO Color octet mechanism can not explain J/ψ production and polarization at e^+e^- and pp colliders with a set of universal LDMEs

- $e^+e^-: \langle 0|\mathcal{O}({}^3P_0^8)|0\rangle/m_c^2 \sim (-0.1 \pm 0.2) \times 10^{-2} \text{ GeV}^3$ and $\langle 0|\mathcal{O}({}^1S_0^8)|0\rangle \sim (3 \pm 2) \times 10^{-2} \text{ GeV}^3$

LDMEs from e^+e^- and pp

NLO Color octet mechanism can not explain J/ψ production and polarization at e^+e^- and pp colliders with a set of universal LDMEs

- $e^+e^-: \langle 0|\mathcal{O}({}^3P_0^8)|0\rangle/m_c^2 \sim (-0.1 \pm 0.2) \times 10^{-2} \text{ GeV}^3$ and $\langle 0|\mathcal{O}({}^1S_0^8)|0\rangle \sim (3 \pm 2) \times 10^{-2} \text{ GeV}^3$
- Solution Chao's and Bodwin's LDMEs will give $\sigma[e^+e^- \rightarrow J/\psi^{CO}] \sim 2 \text{ pb}$, which is about a factor of 5 larger than $\sigma[J/\psi + LH] = 0.43 \text{ pb}$ at $\sqrt{s} = 10.6 \text{ GeV}$ (0901.2775).

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

• $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- **2** $J/\psi + charm$ and $\Upsilon + charm$ (LHCb, arXiv:1205.0975, 1510.05949)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)
- **3** $\Upsilon + J/\psi$ (D0, arXiv:1511.02428)

Multi parton scattering

The inclusive cross section to produce *n* hard particles in hadronic colliders is a convolution of generalized *n*-parton distribution functions (PDF) and elementary partonic cross sections summed over all involved partons,

$$\begin{aligned} \sigma_{hh' \to a_{1}...a_{n}}^{\text{NPS}} &= \\ \left(\frac{m}{n!}\right) \sum_{i_{1},..,i_{n},i'_{1},..,i'_{n}} \int \Gamma_{h}^{i_{1}...i_{n}}(x_{1},..,x_{n};\mathbf{b}_{1},..,\mathbf{b}_{n};\mathbf{Q}_{1}^{2},..,\mathbf{Q}_{n}^{2}) \\ &\times \hat{\sigma}_{a_{1}}^{i_{1}i'_{1}}(x_{1},x'_{1},\mathbf{Q}_{1}^{2}) \cdots \hat{\sigma}_{a_{n}}^{i_{n}i'_{n}}(x_{n},x'_{n},\mathbf{Q}_{n}^{2}) \\ &\times \Gamma_{h'}^{i'_{1}...i'_{n}}(x'_{1},...,x'_{n};\mathbf{b}_{1}-\mathbf{b},...,\mathbf{b}_{n}-\mathbf{b};\mathbf{Q}_{1}^{2},...,\mathbf{Q}_{n}^{2}) \\ &\times dx_{1}...dx_{n} dx'_{1},...,dx'_{n} d^{2}b_{1},...,d^{2}b_{n} d^{2}b. \end{aligned} \tag{1}$$

Double parton scattering and Single parton scattering

SPS and DPS

Figure: SPS and DPS of $pp \rightarrow J/\psi + \Upsilon + X$.

Triple parton scattering

TPS

Figure: TPS of $pp \rightarrow c\bar{c} + c\bar{c} + c\bar{c}$ (PRL118, 122001).

The *n*-parton distribution function (1708.07519)

It encodes all the 3D structure information of the hadron.

 Assumption 1: the n-PDF are factored in terms of longitudinal and transverse components,

$$\Gamma_{h}^{i_{1}...i_{n}} = D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2})f(\mathbf{b_{1}})...f(\mathbf{b_{n}})$$
(2)

- We can get hadron-hadron overlap function $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} \mathbf{b}) d^2 b_1$, where $1 = \int T(\mathbf{b}) d^2 b$.
- Assumption 2: the longitudinal components reduce to the product of independent single PDF

$$D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2}) = D_{h}^{i_{1}}(x_{1};Q_{1}^{2})\cdots D_{h}^{i_{n}}(x_{n};Q_{n}^{2})$$
(3)

 $\sigma_{\rm eff}^{\rm nPS}$

$$\left(\frac{1}{\sigma_{eff}^{nPS}}\right)^{n-1} = \int d^2 b \, T^n(\mathbf{b}) \tag{5}$$

$\sigma_{\rm eff}^{\rm DPS}$ (arXiv:1608.01857)

Experiment (energy, final state, year)

ATLAS	
ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016)	
CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993)	⊢ →
UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991)	+→
AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986)	I
DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016)	⊢−−− + ▼ +−−−−+
DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014)	H¥4
DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014)	
DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010)	⊢▼ -1
CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997)	H-+-H
ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015)	·····
CMS ($\sqrt{s} = 7$ TeV, $W+ 2$ jets, 2014)	
ATLAS ($\sqrt{s} = 7$ TeV, $W+ 2$ jets, 2013)	
DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016)	HVH
LHCb ($\sqrt{s} = 7\&8 \text{ TeV}, \Upsilon(1S)D^{0,+}, 2015$)	H-V-H
DØ ($\sqrt{s} = 1.96$ TeV, $J/\psi + J/\psi$, 2014)	
LHCb ($\sqrt{s} = 7$ TeV, $J/\psi \Lambda_c^+$, 2012)	
LHCb ($\sqrt{s} = 7$ TeV, $J/\psi D_s^+$, 2012)	HVH
LHCb ($\sqrt{s} = 7$ TeV, J/ ψ D ⁺ , 2012)	
LHCb ($\sqrt{s} = 7$ TeV, J/ ψD^0 , 2012)	H-0H-1
L	
(0 0 10 10 20 25 30
	a [mb]
	o _{eff} [mb]

$\sigma_{\rm eff}^{\rm DPS}$ (arXiv:1608.01857)

Introduction Calcualtion Loop Induced Result of $\Upsilon + J/\psi$ Result of $\Upsilon + J/\psi + \phi$ Summary **Prompt** $J/\psi + \Upsilon$ @ D0

Prompt $J/\psi + \Upsilon(1S, 2S, 3S)$ @ D0 (arXiv:1511.02428)

$$\sigma_{D0}^{J/\psi+\Upsilon} = 27 \pm 9 \pm 7 \text{ fb}$$

Ignore the SPS contribution

$$\sigma_{DPS}^{J/\psi+\Upsilon} = \sigma_{D0}^{J/\psi+\Upsilon} = \frac{\sigma^{J/\psi}\sigma^{\Upsilon}}{\sigma_{eff}}$$

 $\sigma_{\rm eff}$

$$\sigma_{\rm eff} = 2.2 \pm 0.7 \pm 0.9 \ {\rm mb}$$

Quarkonium associated production and MPI

(6)

(7)

(8)

The distribution of the azimuthal angle between the $J/\psi + \Upsilon$

Color-Singlet contributions of $J/\psi + \Upsilon$

Color-Singlet contributions

Unlike J/ψ -pair or Υ -pair production, neither $\mathcal{O}(\alpha_{S}^{4})$ nor $\mathcal{O}(\alpha_{S}^{5})$ contributions survive in Color-Singlet Model (CSM).

The approximated Loop-Induced (LI) contribution

The approximated Loop-Induced (LI) contribution in CSM at $\mathcal{O}(\alpha_{s}^{6})$ was estimated in Ref. (arXiv:1503.00246) with in the specific limit $\hat{s} \gg |\hat{t}| \gg m_{\psi,\Upsilon}^2$, where \hat{s} and \hat{t} are the Mandelstam variables.

<u>Color-Oc</u>tet contributions of $J/\psi + \Upsilon$

Color-Octet contributions

The process is a golden observable to probe the so-called Color-Octet Mechanism (COM) (arXiv:1007.3095)

Color-Octet contributions at $\sqrt{s} = 115$ GeV

The Color Octet (CO) contribution were predicted for AFTER@LHC energies $\sqrt{s} = 115 \text{ GeV}$ (arXiv:1504.06531) with HELAC-Onia (arXiv:1212.5293, 1507.03435).

Hadroproduction of $\Upsilon + J/\psi$

SPS contributions were absence

However, the exact calculations of the complete SPS contributions were absence in the literature.

First complete study of $\Upsilon + J/\psi$

We present the first complete study of the simultaneous production of prompt ψ and Υ mesons by including all leading contributions, at order $\mathcal{O}(\alpha_S^6)$ or equivalent.

The frame of Calculation

Cross sections

Hadron and Parton level cross sections

$$\sigma(h_1 h_2 \to \mathcal{C} + \mathcal{B} + X) = \sum_{a,b} f_{a/h_1} \otimes f_{b/h_2}$$
$$\otimes \hat{\sigma}(ab \to \mathcal{C} + \mathcal{B} + X).$$
(9)

Parton level cross section

$$d\hat{\sigma}(ab \rightarrow \mathcal{C} + \mathcal{B} + X) = \sum_{n_1, n_2} \hat{\sigma}(ab \rightarrow c\bar{c}[n_1] + b\bar{b}[n_2] + X)$$
$$\langle O^{\mathcal{C}}(n_1) \rangle \langle O^{\mathcal{B}}(n_2) \rangle$$
(10)
Long distance matrix elements

Fock states Of J/ψ

$$\begin{array}{rcl} |J/\psi\rangle &=& \mathcal{O}(1)|c\bar{c}(^{3}S_{1}^{[1]})\rangle + \mathcal{O}(v_{c}^{2})|c\bar{c}(^{3}S_{1}^{[8]})gg\rangle \\ &+& \mathcal{O}(v_{c}^{2})|c\bar{c}(^{3}P_{J}^{[1,8]})g\rangle + \mathcal{O}(v_{c}^{2})|c\bar{c}(^{1}S_{0}^{[8]})g\rangle + \dots \end{array}$$

<i>v</i> ²			
v_b^2	\sim	$v_c^2 \sim 0.1 - 0.3$	
$lpha_{ extsf{S}}$	\sim	0.2	
$lpha_{ extsf{S}}$	\sim	$v_c^2 \sim v_b^2$	(11)

Introduction Calcualtion Loop Induced Result of $\Upsilon + J/\psi$ Result of $\Upsilon + J/\psi + \phi$ Summary Amplitude

$$\mathcal{M}(A + B \to H_{c\bar{c}}(^{2S+1}L_J)(2p_1) + D)$$

$$= \sum_{L_z S_z} \sum_{s_1 s_2} \sum_{jk} \int d^3 \vec{q} \Phi_{c\bar{c}}(\vec{q}) \langle s_1; s_2 \mid SS_z \rangle \langle 3j; \bar{3}k \mid 1 \rangle$$

$$\times \mathcal{M} \left[A + B \to c_j^{s_1}(p_1 + q) + \bar{c}_k^{s_2}(p_1 - q) + D \right], \quad (12)$$

where $\langle 3j; \bar{3}k | 1 \rangle = \delta_{jk} / \sqrt{N_c}$, $\langle s_1; s_2 | SS_z \rangle$ is the color CG coefficient for $c\bar{c}$ pairs projecting out appropriate bound states, and $\langle s_1; s_2 | SS_z \rangle$ is the spin CG coefficient. $\mathcal{M}[A + B \rightarrow c + \bar{c} + D]$ is the quark level scattering amplitude.

Introduction	Calcualtion	Loop Induced	Result of $\Upsilon + J/\psi$	Result of $\Upsilon + J/\psi + \phi$	Summary
QED					

J^{PC} Of J/ψ or Υ are 1⁻⁻ QED contributions may be important too. α

$$\begin{array}{cccc}
\alpha & \sim & \mathbf{0.008} \\
\alpha_{\mathrm{S}} & \sim & \sqrt{\alpha}
\end{array} \tag{13}$$

Quarkonium associated production and MPI

Introduction	Calcualtion	Loop Induced	Result of $\Upsilon + J/\psi$	Result of $\Upsilon + J/\psi + \phi$	Summary
$\mathcal{O}(\alpha_{\rm S}^{\rm 6})$					
(-3)					

Color Singlet

The $\mathcal{O}(\alpha_S^4)$ and $\mathcal{O}(\alpha_S^5)$ contributions to $\Upsilon + \psi$ direct production in CSM vanish because of P-parity and C-parity conservation.

Color Octet

$$\mathcal{O}(\alpha_{S}^{4} v_{c}^{i} v_{b}^{j}) \leq \mathcal{O}(\alpha_{S}^{6})$$
 with $i + j \geq 4$

EW

$$\mathcal{O}(\alpha_{S}^{2}\alpha^{2}) \leq \mathcal{O}(\alpha_{S}^{6})$$
 with $i + j \geq 4$

Feeddown for $\chi_{c,b}$

$$\mathcal{O}(\alpha_{S}^{4} v_{c}^{i} v_{b}^{j}) \leq \mathcal{O}(\alpha_{S}^{6})$$
 with $i + j \geq 4$

Introduction	Calcualtion	Loop Induced	Result of $\Upsilon + J/\psi$	Result of $\Upsilon + J/\psi + \phi$	Summary

Order of SPS

Label	HELAC-ONIA 2.0 syntax	First order
DR	g g > cc~(3S11) bb~(3S11) g g	${\cal O}(lpha_S^6)$
LI	addon 8	${\cal O}(lpha_S^6)$
EW	p p > cc~(3S11) bb~(3S11)	$\mathcal{O}(\alpha_S^2 \alpha^2)$
INTER	addon 8	${\cal O}(lpha_S^4 lpha)$
COM	g g > jpsi y(1s)	$\mathcal{O}(\alpha_S^4 v_c^i v_b^j), i+j \geq 4$

Feynman Diagram of SPS

NRQCD

FD

Quarkonium associated production and MPI

Loop Induced Contributions

Quarkonium associated production and MPI

The program of Amplitude

Exit

Create Amplitude AA 2 Psi Upsilon

Load FeynCalc, FeynArts and Tarcer

ColorSinglet COddTop COddIns JpsiProject

reduction Associated FAD Separate FeynCalc Function

Generate Feynman diagrams

Input of Calculation AA 2 Psi Upsilon

loop AMP and Export

The program of load FeynArts

Create Amplitude AA 2 Psi Upsilon

```
Load FeynCalc, FeynArts and Tarcer
```

documentation center, check out the wiki or write to the mailing list.

See also the supplied examples. If you use FeynCalc in your research, please cite

• V. Shtabovenko, R. Mertig and F. Orellana,

Comput. Phys. Commun., 207C, 432-444, 2016, arXiv:1601.01167

• R. Mertig, M. Böhm, and A. Denner, Comput. Phys. Commun., 64, 345–359, 1991.

FeynArts 3.1 patched for use with FeynCalc, for documentation use the manual or visit www.feynarts.de.

The program of create amplitude

Generate Feynman diagrams

```
process = {V[1], V[1]} -> {F[3, {2}], -F[3, {2}], F[4, {3}], -F[4, {3}]}
{V(1), V(1)} + {F(3, {2}), -F(3, {2}), F(4, {3})}
zeroList = {};
tops = CreateTopologies[1, 2 -> 4,
ExcludeTopologies -> {Tadpoles, SelFnergies, Triangles}];
tops = DiagramSelect[tops, ColorSinglet[3, 4], ColorSinglet[5, 6],
CoddTop[3, 4], CoddTop[5, 6];
ins = InsertFields[tops, process, InsertionLevel -> (Particles),
GenericModel -> "Lorentz", Model -> "SMQCO",
ExcludeFarticles -> {[51], S[2], S[3], V[1] 2 | 3 | 4], U[1], U[2], U[3], F[1], U[4]},
ExcludeFieldPointts -> {[FieldPoint[V[5], V[5], V[5]],
FieldPoint[V[5], V[5], V[5]];
ins = DiagramSelect[ins, CoddIns[5, 6]];
```

Calcualtion

Loop Induced

Result of $\Upsilon + J/\psi$

Result of $\Upsilon + J/\psi + \phi$

Summary

The program of diagram selection

 $subGraphGroup[1] = \{1, 2, 3, 4\};$ $subGraphGroup[2] = \{5, 6, 17, 18\};$ $subGraphGroup[3] = \{7, 8, 9, 10\};$ $subGraphGroup[4] = \{11, 12, 23, 24\};$ $subGraphGroup[5] = \{13, 14, 15, 16\};$ $subGraphGroup[6] = \{19, 20, 21, 22\};$ $subGraphGroup[7] = \{25, 26, 29, 30\};$ $subGraphGroup[8] = \{27, 28, 31, 32\};$ subGraphGroup[9] = {33, 34}; subGraphGroup[10] = {35, 36};

selectedDiagram = Table[subGraphGroup[ii][[1]], {ii, 1, 10}]

The program of Feynman diagram

insExtract = DiagramExtract[ins, selectedDiagram]; Paint[insExtract, ColumnsXRows -> {3, 4}]

Shape: Starting Java and the topology editor. This may take a moment.

 $\gamma \gamma \rightarrow c c b b$

Feynman diagram

Quarkonium associated production and MPI

The program of create amplitude

amps = FCFAConvert[CreateFeynAmp[ins], IncomingMomenta -> {k1, k2, k3}, OutgoingMomenta -> {p1, p1, p4, p4, p5}, LoopMomenta -> {q}, DropSumOver -> True, ChangeDimension → 4, UndoChiralSplittings → True, SMP → False] /. FCGV[xx_] → ToExpression[xx] //. SMP[xx_] → gStrong;

```
 \begin{array}{l} \mbox{amps // FCE // StandardForm} \\ \left\{ \frac{1}{16 \pi^4} \ i \ \mbox{spinor} \left[ \ \mbox{Momentum} \left[ p1 \right], \ \mbox{MC}, 1 \right], \left( -\frac{2}{3} \ i \ \mbox{EL} GA \left[ \mbox{Lor1} \right] \right), \left( \mbox{MC} + 6S \left[ \ \mbox{Lor2} - p1 - 2 \ \mbox{p4} \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{GA} \left[ \ \mbox{Lor3} \right] \ \mbox{SuntF} \left[ \left\{ \ \mbox{Glu8} \right\}, \ \mbox{Col3}, \ \mbox{Col3} \right] \right), \left( \mbox{MC} + 6S \left[ \ \mbox{Lor2} - p1 - 2 \ \mbox{p4} \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{GA} \left[ \ \mbox{Lor3} \right] \ \mbox{SuntF} \left[ \left\{ \ \mbox{Glu7} \right\}, \ \mbox{Col3}, \ \mbox{Col3} \right] \right), \left( \mbox{MC} + 6S \left[ \ \mbox{Lor4} - p1 - 2 \ \mbox{p4} \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{GA} \left[ \ \mbox{Lor3} \right] \ \mbox{MB} + 6S \left[ \ \mbox{Lor4} + p1 \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{GA} \left[ \ \mbox{Lor4} \right] \ \mbox{SuntF} \left[ \left\{ \mbox{Glu7} \right\}, \ \mbox{Col3} \right), \left( \mbox{MB} + 6S \left[ \ \mbox{Lor4} + q \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{GA} \left[ \ \mbox{Lor4} \right] \ \mbox{SuntF} \left\{ \ \mbox{Glu7} \right\}, \ \mbox{Col3} \ \mbox{Col3} \right), \left( \mbox{MB} + 6S \left[ \ \mbox{Lor4} + q \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{GA} \left[ \ \mbox{Lor4} \right] \ \mbox{SuntF} \left\{ \ \mbox{Glu7} \right\}, \ \mbox{Col3} \ \mbox{Col3} \right), \left( \mbox{MB} + 6S \left[ \ \mbox{Lor4} + q \right] \right), \\ \left( -i \ \mbox{gstrong} \mbox{GA} \left[ \ \mbox{Lor4} \right] \ \mbox{SuntF} \left\{ \ \mbox{Glu7} \right\}, \ \mbox{Col3} \ \mbox{Col3} \ \mbox{Lor4} \ \mbox{MB} + 6S \left[ \ \mbox{Lor4} + q \right] \right), \\ \left( -i \ \mbox{gstrong} \mbox{Ga} \left[ \ \mbox{Lor4} \ \mbox{SuntF} \left\{ \ \mbox{Glu7} \ \mbox{Col3} \ \mbox{Col3} \ \mbox{Lor4} \ \mbox{MB} + 6S \left[ \ \mbox{Lor4} \ \mbox{MB} + 8S \right] \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{MB} + 1S \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{MB} + 1S \right), \mbox{MB} + 1S \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{Ga} \ \mbox{Ga} + 1S \right), \\ \left( -i \ \mbox{gstrong} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{gstrong} \ \mbox{Ga} \ \mbox{gstrong} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga} \ \mbox{Ga}
```

Loop induced contributions of $J/\psi + \Upsilon$

Tree contributions is 0

Unlike J/ψ -pair or Υ -pair production, neither $\mathcal{O}(\alpha_S^4)$ nor $\mathcal{O}(\alpha_S^5)$ contributions survive in Color-Singlet Model (CSM).

The Loop-Induced (LI) contributions are UV and IR finite

- The amplitude can be calculated in D = 4 directly.
- The gluon mass is introduced to test IR divergence.
- The momentum and polarization vector can be written in D = 4 directly.
 - **)** ...

Calcualtion

Loop Induced

Result of $\Upsilon + J/\psi$

 $\Upsilon + J/\psi$ Result of $\Upsilon + J/\psi + \phi$

Summary

Momentum for IR and UV finite amplitude

Momentum of $g(k_1)g(k_2) \rightarrow J/\psi(p_1) + \Upsilon(p_2)$

$$k_{1} = \left\{\frac{\sqrt{s}}{2}, 0, 0, \frac{\sqrt{s}}{2}\right\}$$

$$k_{2} = \left\{\frac{\sqrt{s}}{2}, 0, 0, -\frac{\sqrt{s}}{2}\right\}$$

$$p_{1} = \left\{E_{1}, 0, p \times \sin\theta, p \times \cos\theta\right\}$$

$$p_{2} = \left\{E_{2}, 0, -p \times \sin\theta, -p \times \cos\theta\right\}$$
(14)

Amplitude Calculation

Create Amplitude AA 2 Psi Upsilon

Input of Calculation AA 2 Psi Upsilon

- Load FeynCalc, amps
- amps QED
- amps

OneLoop4QQDijkl OneLoop3QQDijk OneLoop2QQDij OneLoop1QQDi

fadNOqTerm[9] fadqqqTerm[9] fadNOqTerm[10] fadqqqTerm[10] shiftNoQQFAD[9] shiftNoQQFAD[10]

Momentum and polarization vector of $g(k_1)g(k_2)$

Momentum of $g(k_1)g(k_2)$

$$k_{1} = \{\frac{\sqrt{s}}{2}, 0, 0, \frac{\sqrt{s}}{2}\}$$

$$k_{2} = \{\frac{\sqrt{s}}{2}, 0, 0, -\frac{\sqrt{s}}{2}\}$$
(15)

Polarization of $g(k_1)g(k_2)$

$$\epsilon_1(k_1) = \epsilon_2(k_2) = \{0, 1, 0, 0\}$$

$$\epsilon_2(k_1) = \epsilon_1(k_2) = \{0, 0, 1, 0\}$$
(16)

Momentum and polarization of $J/\psi(p_1) + \Upsilon(p_2)$

Momentum of $J/\psi(p_1) + \Upsilon(p_2)$

$$p_{1} = \{E_{1}, 0, p \times \sin\theta, p \times \cos\theta\}$$

$$p_{2} = \{E_{2}, 0, -p \times \sin\theta, -p \times \cos\theta\}$$
(17)

Polarization of $J/\psi(p_1) + \Upsilon(p_2)$

$$\epsilon_{L}(p_{1}) = 1/m_{J}\{p, 0, E_{1}\sin\theta, E_{1}\cos\theta\}$$

$$\epsilon_{L}(p_{2}) = 1/m_{\Upsilon}\{p, 0, -E_{2}\sin\theta, -E_{2}\cos\theta\}$$

$$\epsilon_{T1}(p_{1}) = \epsilon_{T1}(p_{2}) = \{0, 1, 0, 0\}$$

$$\epsilon_{T2}(p_{1}) = \epsilon_{T2}(p_{2}) = \{0, 0, -\cos\theta, \sin\theta\}$$
(18)

Vector define

```
mom[k1] = \{ss / 2, 0, 0, ss / 2\};
mom[k2] = \{ss/2, 0, 0, -ss/2\};
mom[p1] = {ec, pc3 * Sin[th], 0, pc3 * Cos[th]};
mom[p3] = {eb, -pc3 * Sin[th], 0, -pc3 * Cos[th]};
mom[g1pp[1]] = \{0, 1, 0, 0\};
mom[g1pp[2]] = \{0, 0, 1, 0\};
mom[g2pp[1]] = \{0, 1, 0, 0\};
mom[g2pp[2]] = mom[g1pp[2]];
mom[Jpp[3]] = {pc3, ec * Sin[th], 0, ec * Cos[th]} / MC;
mom[Jpp[1]] = {0, -Cos[th], 0, Sin[th]};
mom[Jpp[2]] = mom[g1pp[2]];
mom[Upp[3]] = {-pc3, eb * Sin[th], 0, eb * Cos[th]} / MB;
mom[Upp[1]] = {0, -Cos[th], 0, Sin[th]};
mom[Upp[2]] = mom[g1pp[2]];
```


 Cololor factor can be calculated diagram by diagram. It can be considered as a global factor.

- Cololor factor can be calculated diagram by diagram. It can be considered as a global factor.
- Spin projector operator can be used directly.

- Cololor factor can be calculated diagram by diagram. It can be considered as a global factor.
- Spin projector operator can be used directly.
- The scalar product of k₁, k₂, p₁, p₂ and polarization vector can be expressed by s, m_J, m_Υ, E₁, p, θ.

- Cololor factor can be calculated diagram by diagram. It can be considered as a global factor.
- Spin projector operator can be used directly.
- The scalar product of k₁, k₂, p₁, p₂ and polarization vector can be expressed by s, m_J, m_Y, E₁, p, θ.
- Loop integrate.

- Cololor factor can be calculated diagram by diagram. It can be considered as a global factor.
- Spin projector operator can be used directly.
- The scalar product of k₁, k₂, p₁, p₂ and polarization vector can be expressed by s, m_J, m_Y, E₁, p, θ.
- Loop integrate.
- Amplitude can be expressed by $s, m_J, m_{\Upsilon}, E_1, p, \theta$.

Amplitude

- Cololor factor can be calculated diagram by diagram. It can be considered as a global factor.
- Spin projector operator can be used directly.
- The scalar product of k₁, k₂, p₁, p₂ and polarization vector can be expressed by s, m_J, m_Y, E₁, p, θ.
- Loop integrate.
- Amplitude can be expressed by s, m_J , m_{Υ} , E_1 , p, θ .
- Simplify the amplitude

fadNOqTerm[9] fadqqqTerm[9] fadNOqTerm[10] fadqqqTerm[10] shiftNoQQFAD[9] shiftNoQQFAD[10]

$$\begin{aligned} & fadNOqTerm[9] = \frac{1}{2 (MB2 - MC2)} \\ & \left(\frac{1}{-2 MC2 - \frac{t}{2}} FAD[\{p1 + q, MC\}, \{-p3 + q, MB\}, k2 - 2 p3 + q, \{k2 - p1 - 2 p3 + q, MC\}] + \\ & \frac{1}{2 MB^2 + \frac{t}{2}} FAD[\{p1 + q, MC\}, \{-p3 + q, MB\}, \{k2 - p3 + q, MB\}, k2 - 2 p3 + q] + \\ & \frac{1}{-2 MC2 - \frac{t}{2}} FAD[\{p1 + q, MC\}, \{k2 - p3 + q, MB\}, k2 - 2 p3 + q, \{k2 - p1 - 2 p3 + q, MC\}] + \\ & \frac{1}{2 MB^2 + \frac{t}{2}} FAD[\{-p3 + q, MB\}, \{k2 - p3 + q, MB\}, k2 - 2 p3 + q, \{k2 - p1 - 2 p3 + q, MC\}] \end{aligned}$$

Quarkonium associated production and MPI

Simplify Input

Input of Calculation AA 2 Psi Upsilon

loop AMP and Export

mc2mb2Rep simplifyForm

$$\begin{split} \text{mc2mb2Rep} &= \left\{ eb + ec \to \frac{ss}{2}, \ \text{MB}^2 \to \text{MB2}, \ \text{MB}^4 \to \text{MB2}^2, \ \text{MC}^2 \to \text{MC2}, \ \text{MC}^4 \to \text{MC2}^2, \\ eb ec + pc3^2 \to \frac{1}{8} \left(-t - u \right), \ 4 \ \text{MB}^2 + 4 \ \text{MC}^2 - s \to t + u, \ 4 \ \text{MB2} + 4 \ \text{MC2} - s \to t + u, \\ ss^2 \to s, \ 4 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - 2 \ t \to -t + u, \ 4 \ \text{MB2} + 4 \ \text{MC2} - s - 2 \ t \to -t + u, \\ 4 \ \text{MC}^2 - s - t \to -4 \ \text{MB}^2 + u, \ 4 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to u, \ 8 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to u, \ 8 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to u, \\ 16 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to 12 \ \text{MB}^2 + u, \ 4 \ \text{MC}^2 - s - t \to u, \ 8 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to u, \\ 8 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to 4 \ \text{MB}^2 + u, \ 16 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to 12 \ \text{MB}^2 + u, \\ 4 \ \text{MB}^2 + 8 \ \text{MC}^2 - s - u \to 4 \ \text{MC}^2 + t, \ 4 \ \text{MB}^2 + 8 \ \text{MC}^2 - s - t \to 12 \ \text{MB}^2 + u, \\ 4 \ \text{MB}^2 + 8 \ \text{MC}^2 - s - u \to 4 \ \text{MC}^2 + t, \ 4 \ \text{MB}^2 - s - t - u \to 4 \ \text{MC}^2 + t, \\ 8 \ \text{MB}^2 - s - t - u \to 4 \ \text{MB}^2 + 4 \ \text{MC}^2 \right), \ 8 \ \text{MC}^2 - s - t - u \to 4 \ \text{MB}^2 + 4 \ \text{MC}^2 , \\ 8 \ \text{MC}^2 - s - t - u \to -4 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - t \to \frac{s}{4}, \\ \hline 8 \ \text{MC}^2 - s - t - u \to -4 \ \text{MB}^2 + 4 \ \text{MC}^2 - s - \frac{s}{4}, \\ \hline \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{4}, \\ \hline \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{4}, \\ \hline \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{4}, \\ \hline \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{4}, \\ \hline \ \frac{t}{4} \ \frac{t}{2} \ \frac{t}{2} \ \frac{t}{4}, \\ \ \ \frac{t}{4} \ \frac{t}{4}, \\ \ \ \frac{t}{4} \$$

Polarization Simplify

```
mc2mb2Rep simplifyForm
```

Diagram 1 - 8

For[ii	Diag = 1,	≤8,	++,			
ampTR	[iiDiag] =	ampNUMShift[ii[iag]/.	→ Tr // 0	:	
Ρ	["Le	[",]=",	[iiDiag]//	Le];	
ampRE	D[iiDiag]	= ampTR[iiDiag]	/.			
{P	[L	[eJ], M	[p1]] → (0,P [L	[e],M	[p3]] → 0,
Р	[L	[L],M	[k1]]	→ 0,		
Р	[L	[L],M	[k2]]	→ 0,		
Р	[L	[L],M	[k1]]	→ 0,		
Р	[L	[L],M	[k2]]	→ 0,		
Р	[L	[L],M	[p3]]	→-P [L	[L],M	[p1]],
Р	[L	[L],M	[p3]]	→		
-	PIL	ſĽ 1,	M [p1]	11);		

Loop Calculation

P [" [",] is finished"];

```
Introduction Calcualtion Loop Induced Result of \Upsilon + J/\psi Result of \Upsilon + J/\psi + \phi Summary
```

Helicity insert

```
For [h = 1, h \le 3, h ++,
  For hU = 1, hU \leq 3, hU + +,
                 [iiDiag, hg1, hg2, h ] = loop [iiDiag] /.
     heAmp
                            [Lor1] → Momentum[g1pp[hg1]], Lorent [Lor2] ->
           {Lorent
              Momentum[g2pp[hg2]], Lorent [e ] -> Momentum[Jpp[h ]],
            Lorent
                             [eU] -> Momentum[Upp[hU]] } //. mc2mb2Rep //. simpli
     heAmp[iiDiag, hg1, hg2, h ] =
                     [[iiDiag]] * (heAmp [iiDiag, hg1, hg2, h ] +
      DE
                 loopq4RanksAddMG[iiDiag, hg1, hg2, h ] /. {ss \rightarrow s,
                -2 MB^{2} - 2 MC^{2} + \frac{s}{4} + \frac{t}{2} + \frac{u}{2} \rightarrow -\frac{s}{4}, -2 MB^{2} - 3 MC^{2} + \frac{s}{2} + t + \frac{u}{2} \rightarrow \frac{1}{2} (-2 MC^{2} + t),
                -4 \text{ MB}^2 - 4 \text{ MC}^2 + \text{s} + \text{t} + \text{u} \rightarrow 0 \Big\} \Big) /. \text{ PaVe}[xxx____, \text{ PaVeAutoOrder} \rightarrow \text{True},
              PaVeAutoReduce → True] -> PaVe[xxx] //. mc2mb2Rep //. simpli
                                                                                                   1;
 ];
```

```
Introduction Calcualtion Loop Induced Result of \Upsilon + J/\psi Result of \Upsilon + J/\psi + \phi Summary
```

Helicity insert

```
For [h = 1, h \le 3, h ++,
  For hU = 1, hU \leq 3, hU + +,
                 [iiDiag, hg1, hg2, h ] = loop [iiDiag] /.
     heAmp
                            [Lor1] → Momentum[g1pp[hg1]], Lorent [Lor2] ->
           {Lorent
              Momentum[g2pp[hg2]], Lorent [e ] -> Momentum[Jpp[h ]],
            Lorent
                             [eU] -> Momentum[Upp[hU]] } //. mc2mb2Rep //. simpli
     heAmp[iiDiag, hg1, hg2, h ] =
                     [[iiDiag]] * (heAmp [iiDiag, hg1, hg2, h ] +
      DE
                 loopq4RanksAddMG[iiDiag, hg1, hg2, h ] /. {ss \rightarrow s,
                -2 MB^{2} - 2 MC^{2} + \frac{s}{4} + \frac{t}{2} + \frac{u}{2} \rightarrow -\frac{s}{4}, -2 MB^{2} - 3 MC^{2} + \frac{s}{2} + t + \frac{u}{2} \rightarrow \frac{1}{2} (-2 MC^{2} + t),
                -4 \text{ MB}^2 - 4 \text{ MC}^2 + \text{s} + \text{t} + \text{u} \rightarrow 0 \Big\} \Big) /. \text{ PaVe}[xxx____, \text{ PaVeAutoOrder} \rightarrow \text{True},
              PaVeAutoReduce → True] -> PaVe[xxx] //. mc2mb2Rep //. simpli
                                                                                                   1;
 ];
```

Amplitude Export

List of PaVe

$$A = (List of PaVe).(List of Coefficients)$$
 (19)

Export

```
am = Table[he [i ] // Variab
{i }, {hg1, 1, 2}, {hg2, 1, 2}, {h1, 1, 3}, {hU, 1, 3}] // Variab
SF = Union[Cases[am __PaVe], Cases[am __D0i],
Cases[am __C0i], Cases[am __B0i], Cases[am __A0],
Cases[am __B0], Cases[am __C0], Cases[am __D0]];
otherSF =
DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[DeleteCases[Del
```

PaVe Export

```
Export["SFLoopToolsVar.txt", {SFPaVeVar //. {PaVe[aa1_, {bpp___}, {cm1_, cm2_, cm3_]} →
C {String ["cc", ToString[aa1]] // ToExpression, bpp, cm1, cm2, cm3],
PaVe[aa1_, aa2_, {bpp___}, {cm1_, cm2_, cm3_]] :>
C {String ["cc", ToString[aa1], ToString[aa2]] // ToExpression,
bpp, cm1, cm2, cm3], PaVe[aa1_, {bpp___}, {cm1_, cm2_, cm3_, cm4_}] :>
D {String ["dd", ToString[aa1]] // ToExpression, bpp, cm1, cm2, cm3, cm4],
PaVe[aa1_, aa2_, {bpp___}, {cm1_, cm2_, cm3_, cm4_}] :>
D {String ["dd", ToString[aa1], ToString[aa2]] // ToExpression, bpp, cm1,
cm2, cm3, cm4], PaVe[aa1_, aa2_, aa3_, (bpp___), {cm1_, cm2_, cm3_, cm4_}] :>
D {String ["dd", ToString[aa1], ToString[aa2]] // ToExpression, bpp, cm1,
cm2, cm3, cm4_, PaVe[aa1_, aa2_, aa3_, (bpp____), {cm1_, cm2_, cm3_, cm4_}] :>
D {String ["dd", ToString[aa1], ToString[aa2], ToString[aa3]] //
ToExpression, bpp, cm1, cm2, cm3, cm4_}] :>
D {String ["dd", ToString[aa1], ToString[aa2], ToString[aa3],
ToString[aa4]] // ToExpression, bpp, cm1, cm2, cm3_, cm4_}];>
```

```
Introduction Calcualtion Loop Induced Result of \Upsilon + J/\psi Result of \Upsilon + J/\psi + \phi Summary Coefficients Export
```

```
ToString[hg2], ",", ToString[hJ], ",", ToString[hU], "].txt"], {Table[
coef[iiSFPaVe, hg1, hg2, hJ, hU], {iiSFPaVe, 1, Length[SFPaVeVar]}]}, "List"];
```


Numerical Result of $\Upsilon + J/\psi$

Quarkonium associated production and MPI
Direct SPS cross sections @ D0 in fb

		J/ψ	$\psi(2S)$
DR	$\Upsilon(1S)$	$3.58^{+233\%}_{-66.4\%} \pm 4.4\%$	$2.34^{+233\%}_{-66.4\%}\pm 4.4\%$
	$\Upsilon(2S)$	$1.78^{+233\%}_{-66.4\%} \pm 4.4\%$	$1.17^{+233\%}_{-66.4\%} \pm 4.4\%$
	$\Upsilon(3S)$	$1.36^{+233\%}_{-66.4\%} \pm 4.4\%$	$0.894^{+233\%}_{-66.4\%}\pm4.4\%$
LI	$\Upsilon(1S)$	$56.2^{+264\%}_{-70.2\%} \pm 4.7\%$	$36.8^{+264\%}_{-70.2\%} \pm 4.7\%$
	$\Upsilon(2S)$	$28.0^{+264\%}_{-70.2\%} \pm 4.7\%$	$18.4^{+264\%}_{-70.2\%} \pm 4.7\%$
	$\Upsilon(3S)$	$21.4^{+264\%}_{-70.2\%} \pm 4.7\%$	$14.0^{+264\%}_{-70.2\%} \pm 4.7\%$
EW	$\Upsilon(1S)$	$15.8^{+75.4\%}_{-46.4\%} \pm 4.6\%$	$10.4^{+75.4\%}_{-46.4\%} \pm 4.6\%$
	$\Upsilon(2S)$	$7.90^{+75.4\%}_{-46.4\%} \pm 4.6\%$	$5.18^{+75.4\%}_{-46.4\%} \pm 4.6\%$
	$\Upsilon(3S)$	$6.04^{+75.4\%}_{-46.4\%}\pm4.6\%$	$3.96^{+75.4\%}_{-46.4\%} \pm 4.6\%$
INTER	$\Upsilon(1S)$	$-16.6^{+162\%}_{-62.0\%}\pm4.8\%$	$-10.9^{+162\%}_{-62.0\%}\pm4.8\%$
	$\Upsilon(2S)$	$-8.29^{+162\%}_{-62.0\%} \pm 4.8\%$	$-5.43^{+162\%}_{-62.0\%} \pm 4.8\%$
	$\Upsilon(3S)$	$-6.34^{+162\%}_{-62.0\%}\pm4.8\%$	$-4.15^{+162\%}_{-62.0\%}\pm4.8\%$
COM	$\Upsilon(1S)$	$409^{+138\%}_{-56.7\%} \pm 4.4\%$	$174^{+138\%}_{-56.8\%} \pm 4.4\%$
	$\Upsilon(2S)$	$135^{+139\%}_{-57.0\%} \pm 4.4\%$	$57.6^{+139\%}_{-57.1\%} \pm 4.4\%$
	$\Upsilon(3S)$	$197^{+137\%}_{-56.6\%} \pm 4.4\%$	$84.1^{+138\%}_{-56.7\%} \pm 4.4\%$

SPS cross sections @ D0 & LHCb

Experiment	CSM				COM			
	DR	LI	EW	INTER	Set I	Set II	Set III	Set IV
D0: $27 \pm 42.2\%$	$0.0146^{+233\%}_{-66.6\%}$	$0.229^{+264\%}_{-70.4\%}$	$0.065^{+75.5\%}_{-46.6\%}$	$-0.068^{+162\%}_{-62.2\%}$	$2.96^{+135\%}_{-56.2\%}$	$1.41^{+160\%}_{-77.6\%}$	$1.80^{+143\%}_{-58.0\%}$	$0.418^{+144\%}_{-58.3\%}$
LHCb	$0.255^{+391\%}_{-79.7\%}$	$6.05^{+436\%}_{-82.2\%}$	$1.71^{+135\%}_{-65.2\%}$	$-3.23^{+262\%}_{-75.9\%}$	$38.8^{+238\%}_{-73.0\%}$	$21.2^{+243\%}_{-73.6\%}$	$28.1^{+243\%}_{-73.8\%}$	$6.57^{+243\%}_{-73.9\%}$

TABLE III: Cross sections $\sigma(pp(\bar{p}) \rightarrow J/\psi\Upsilon) \times Br(J/\psi \rightarrow \mu^+\mu^-)Br(\Upsilon \rightarrow \mu^+\mu^-)$ (in units of fb) of prompt J/ψ and $\Upsilon(1S, 2S, 3S)$ simultaneous production at the Tevatron in the D0 fiducial region [10] and at $\sqrt{s} = 13$ TeV LHC in the LHCb acceptance $2 < y_{J/\psi,\Upsilon} < 4.5$, where we have also included feeddown contributions from higher-excited quarkonia decay.

dphi @ D0

dy @ D0

dM @ D0

dPt @ D0

dptY @ D0

dptpsi @ D0

dphi @ LHCB

dy @ LHCB

Quarkonium associated production and MPI

dM @ LHCB

dptY @ LHCB

SPS cross section of Υ , J/ψ , ϕ at LHCb

• We can get the inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb, it 0.2(15) μ b for $\Upsilon(J/\psi)$, and the cross sections is 0.6 mb for $p_T(\phi) > 2$ GeV.

SPS cross section of $\Upsilon,~J/\psi,~\phi$ at LHCb

- We can get the inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb, it 0.2(15) μ b for $\Upsilon(J/\psi)$, and the cross sections is 0.6 mb for $p_T(\phi) > 2$ GeV.
- With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma[\Upsilon]\sigma[J/\psi]} \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

SPS cross section of Υ , J/ψ , ϕ at LHCb

- We can get the inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb, it 0.2(15) μ b for $\Upsilon(J/\psi)$, and the cross sections is 0.6 mb for $p_T(\phi) > 2$ GeV.
- 2 With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma[\Upsilon]\sigma[J/\psi]} \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

3 SPS
$$\Upsilon + J/\psi + \phi$$
: $\mathcal{O}(\alpha_s^9)$, very small.

SPS cross section of Υ , J/ψ , ϕ at LHCb

- We can get the inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb, it 0.2(15) μ b for $\Upsilon(J/\psi)$, and the cross sections is 0.6 mb for $p_T(\phi) > 2$ GeV.
- 2 With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma[\Upsilon]\sigma[J/\psi]} \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).
- SPS $\Upsilon + J/\psi + \phi$: $\mathcal{O}(\alpha_s^9)$, very small.
- DPS $\Upsilon + J/\psi + \phi$: about $3 \times \sigma^{SPS} [\Upsilon + J/\psi] \frac{\sigma[\phi]}{\sigma_{eff}^{DPS}} \sim 1.4 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{DPS} \sim 10 \text{ mb}.$

SPS cross section of Υ , J/ψ , ϕ at LHCb

- We can get the inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb, it 0.2(15) μ b for $\Upsilon(J/\psi)$, and the cross sections is 0.6 mb for $p_T(\phi) > 2$ GeV.
- With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma[\Upsilon]\sigma[J/\psi]} \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

3 SPS
$$\Upsilon + J/\psi + \phi$$
: $\mathcal{O}(\alpha_s^9)$, very small.

• DPS $\Upsilon + J/\psi + \phi$: about $3 \times \sigma^{SPS} [\Upsilon + J/\psi] \frac{\sigma[\phi]}{\sigma_{eff}^{DPS}} \sim 1.4 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{DPS} \sim 10 \text{ mb}.$

3 TPS
$$\Upsilon + J/\psi + \phi$$
: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 28 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{TPS} \sim 8 \text{ mb}.$

Estimate the number of events

●
$$Br[\Upsilon(J/\psi) \to \mu^+\mu^-] = 0.024(0.06)$$
 and
 $Br[\phi \to K^+K^-] = 0.5.$

Estimate the number of events

●
$$Br[\Upsilon(J/\psi) \rightarrow \mu^+\mu^-] = 0.024(0.06)$$
 and $Br[\phi \rightarrow K^+K^-] = 0.5.$

Integrated luminosity of LHCb is about 4 fb⁻¹ at $\sqrt{s} = 13$ TeV.

Estimate the number of events

■
$$Br[\Upsilon(J/\psi) \to \mu^+\mu^-] = 0.024(0.06)$$
 and $Br[\phi \to K^+K^-] = 0.5$.

Integrated luminosity of LHCb is about 4 fb⁻¹ at $\sqrt{s} = 13$ TeV.

Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2 \text{ GeV}$ is about 80.

Estimate the number of events

■
$$Br[\Upsilon(J/\psi) \to \mu^+\mu^-] = 0.024(0.06)$$
 and $Br[\phi \to K^+K^-] = 0.5$.

- Integrated luminosity of LHCb is about 4 fb⁻¹ at $\sqrt{s} = 13$ TeV.
- Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2 \text{ GeV}$ is about 80.
- We can introduce cut to suppress SPS and DPS contributions.

$\Upsilon, J/\psi, \phi$ at CMS/Atlas

 We can get the inclusive cross sections of Υ, J/ψ, φ at √s = 13 TeV at CMS/Atlas, it 0.4, 30, 1200 μb for ρ_T(φ) > 2 GeV.

- We can get the inclusive cross sections of Υ, J/ψ, φ at √s = 13 TeV at CMS/Atlas, it 0.4, 30, 1200 μb for ρ_T(φ) > 2 GeV.
- SPS and DPS are very small.

- We can get the inclusive cross sections of Υ, J/ψ, φ at √s = 13 TeV at CMS/Atlas, it 0.4, 30, 1200 μb for p_T(φ) > 2 GeV.
- SPS and DPS are very small.

Solution TPS
$$\Upsilon + J/\psi + \phi$$
: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 200 \text{ pb for}$
 $p_T(\phi) > 2 \text{ GeV and } \sigma_{eff}^{TPS} \sim 8 \text{ mb.}$

- We can get the inclusive cross sections of Υ, J/ψ, φ at √s = 13 TeV at CMS/Atlas, it 0.4, 30, 1200 μb for p_T(φ) > 2 GeV.
- SPS and DPS are very small.
- Solution TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 200 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{TPS} \sim 8 \text{ mb}.$
- Integrated luminosity of LHCb is about 40 fb⁻¹ at $\sqrt{s} = 13$ TeV.

- We can get the inclusive cross sections of Υ, J/ψ, φ at √s = 13 TeV at CMS/Atlas, it 0.4, 30, 1200 μb for p_T(φ) > 2 GeV.
- SPS and DPS are very small.
- Solution TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 200 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{TPS} \sim 8 \text{ mb.}$
- Integrated luminosity of LHCb is about 40 fb⁻¹ at $\sqrt{s} = 13$ TeV.
- Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 6000.

- We can get the inclusive cross sections of Υ, J/ψ, φ at √s = 13 TeV at CMS/Atlas, it 0.4, 30, 1200 μb for p_T(φ) > 2 GeV.
- SPS and DPS are very small.
- Solution TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 200 \text{ pb for}$ $p_T(\phi) > 2 \text{ GeV and } \sigma_{eff}^{TPS} \sim 8 \text{ mb.}$
- Integrated luminosity of LHCb is about 40 fb⁻¹ at $\sqrt{s} = 13$ TeV.
- S Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 6000.
- We can introduce cut to suppress SPS and DPS contributions.

Introduction	Calcualtion	Loop Induced	Result of $\Upsilon + J/\psi$	Result of $\Upsilon + J/\psi + \phi$	Summary
Summary	У				

We have performed the first complete analysis of simultaneous production of prompt ψ and Υ mesons including all leading SPS contributions.

Our work shows that it is in fact most probably dominated by DPS contributions for D0 data.

Finally, we show that $\Upsilon + J/\psi + \phi$ at LHC is dominated by TPS. It may be studied by experimenters.