

李刚

CEP

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Outline

Introduction Precision **VCEPC+SppC CEPC detector and software CEPC** physics analysis Summary

粒子物理前沿研究

如何寻找新物理--精确测量也可以

为什么需要CEPC

The properties of Higgs boson Higgs Precision test of SM What are dark matter and dark energy? Supersymmetric particles Why is there more matter then antimatter Symmetry breaking

高能环形正负电子对撞机方案

- ・建设一个100 公里周长的 环形正负电子对撞机(CEPC), 高精度研究Higgs (Z)粒子,并寻找新物理
- ・CEPC的升级可能:在同一隧道中建设 pp/AA对撞机,也可以建设ep/eA 对 撞机,或其它可能性

加速器参数设计

	Higgs	W	Z	
Number of IPs		2	1	1
Energy (GeV)	120	80	45.5]
Circumference (km)		100]
SR loss/turn (GeV)	1.73	0.34	0.036]
Half crossing angle (mrad)		16.5		
Piwinski angle	2.58	7.74	23.8	
N_{e} /bunch (10 ¹⁰)	15	15	8.0	
Bunch number (bunch spacing)	242 (0.68us)	1220 (0.27us)	12000 (25ns+10%gap)	$3T \rightarrow 2T$
Beam current (mA)	17.4	87.9	461	
SR power /beam (MW)	30	30	16.5	
Bending radius (km)		10.6		0 2/0 001
Momentum compaction (10-5)		1.11		0.2/0.001
$\beta_{\mu} x/y (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	
Emittance x/y (nm)	1.21/0.0031	0.54/0.0016	0.17/0.004	$\rightarrow 0.17/0.0015$
Transverse σ_{IP} (um)	20.9/0.068	13.9/0.049	5.9/0.078	
$\xi_{\rm v}/\xi_{\rm v}/{\rm IP}$	0.031/0.109	0.013/0.12	0.0041/0.056	
$V_{RF}(\text{GV})$	2.17	0.47	0.1]
f_{RF} (MHz) (harmonic)		650 (216816)]
Nature bunch length σ_r (mm)	2.72	2.98	2.42]
Bunch length σ_{z} (mm)	3.26	6.53	8.5	1
HOM power/cavity (kw)	0.54 (2cell)	0.87(2cell)	1.94(2cell)	1
Energy spread (%)	0.1	0.066	0.038	1
Energy acceptance requirement (%)	1.35			
Energy acceptance by RF (%)	2.06	1.47	1.7]
Photon number due to beamstrahlung	0.29	0.44	0.55	1
Lifetime _simulation (min)	100			
Lifetime (hour)	0.67 (40 min)	2	4	20
F (hour glass)	0.89	0.94	0.99	
$L_{max}/\text{IP} (10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.93	11.5	16.6	

CEPC: 1M Higgs events、10B+ Z boson

精确测量几乎所有 Higgs 性质,精度提高一个量级 标准模型关键参数的测量精度有望超过一个量级 Flavor physics at Z pole + 双光子对撞

PFA: particle flow algorithm

高能量、高亮度、高粒度 —— PFA detector+大数据+机器学习——物理结果

CEPC detector

- A detector reconstruct all the physics objects (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision
- In the second second
- **Matrix** High Precision Tracking system: $\delta(1/Pt) \sim 2*10^{-5}(GeV^{-1})$
- \mathbf{V} PFA oriented Calorimeter System (~o(10⁸) channels): ID, Jet energy resolution, etc

Vertex & Silicon Tracking system

VTX: Inner most layer Radius: ~16 mm, Spatial resolution: 3~5 μm
 Massive usage of silicon pixel/strips in the tracking system & VTX: ensures good accuracy in Impact parameter & momentum measurement

PFA Oriented Calorimeter

Development of micro electronics: ultra-high granularity! #channels, 10⁴-10⁵ (CMS) → 10⁸ channels (J_C calorimeters) Imaging calorimeter in 8-D (or even 5-D) in a high DAQ rate... Role of calorimeter Measure the incident energy

sufficient energy

DRUID, RunNum = 0, EventNum = 23

20 GeV Klong reconstructed @ ILD Calo

_____10cm

From Hits to Final State Particles 0, 15

CEPC software Generators **Simulation** Reconstruction **Calibration** Analysis

高精度的挑战之一是:高效、精准地记录、重建每种关键物理对象

SCRAC

Arbor: shower ~ tree

Goal:

Ultimate: 1-1 correspondence Realistic: recon. Physics Objects at high efficiency. & high precision Performance: Photon & Separation Lepton Composed objects JET/MET Higgs analysis at e+e-

重建的第二步: 量能器重建+connect

Z→2 muon, H→2 b

Z→2 jet, H→2 tau

ZH→4 jets

Z→2 muon H→WW*→eevv

第三步: jet (tau) Jet-clustering Jet-substructure Jet-flavor-tagging, gluon ID

Reconstruction Flow

鉴别的硬件基础: < 5微米的顶点测量精度

	Total	nvtx==0	nvtx=1&& Nvtxall==1	nvtx==1&& nvtxall==2	Nvtx>=2
В	395567	83099	156094	76239	80135
С	396692	223238	169400	3392	662
uds	393310	382522	10511	171	106

- nvtx=0 trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr5sigma jprobz5sigma d0bprob d0cprob d0qprob z0bprob z0cprob z0qprob nmuon nelectron trkmass(17)
- nvtx=1&& trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprobz
- nvtxall=1 vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1
 vtxmasspc vtxprob d0bprob d0cprob d0qprob z0bprob z0cprob z0qprob
 trkmass nelectron nmuon(25)
- nvtx=1&& trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprobz
- nvtxall=2 vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1
 vtxmasspc vtxprob 1vtxprob vtxlen12all_jete vtxmassall (19)
- Nvtx>=2 trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprobz vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1 vtxmasspc vtxprob vtxlen2_jete vtxsig2_jete vtxdirang2_jete vtxmom2_jete vtxmass2 vtxmult2 vtxlen12_jete vtxsig12_jete vtxdirang12_jete vtxmom_jete vtxmass vtxmult 1vtxprob(29)

鉴别效率和误判

CEPC physics Higgs W Z&flavor Top

Model-independent measurement of $\sigma(ZH)$

M. McCullough, 1312.3322

Higgs width measurement

- $g^2(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total} * Br(H \rightarrow XX)$
- Branching ratios: determined simply by
 - σ (ZH) and σ (ZH)*Br(H→XX)
- Γ_{total}: determined from:
 - From $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)^*Br(H \rightarrow ZZ)$ (~g⁴(HZZ)/Γ_{total})
 - From $\sigma(ZH)^*Br(H\rightarrow bb)$, $\sigma(vvH)^*Br(H\rightarrow bb)$, $\sigma(ZH)^*Br(H\rightarrow WW)$, $\sigma(ZH)$
 - Would be good to have some data at E > 250 GeV
- Therefore: at CEPC Higgs program (240-250 GeV operation), Γ_{total} become the bottle neck of the coupling fit once Br(H→XX) is measured more precisely: Br(H→tautau, WW, bb,cc, gg)

Higgs width measurement

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)$ *Br(H->bb): relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements

Event rate & Branching ratio measurements

Table 3.12 Estimated precisions of Higgs boson property measurements at the CEPC. All the numbers refer to relative precision except for M_H and BR($H \rightarrow inv$) for which ΔM_H and 95% CL upper limit are quoted respectively.

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(u u H) imes { m BR}(H o bb)$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) imes \mathrm{BR}$	BR
H ightarrow bb		0.28%	0.57%
$H \rightarrow cc$		2.2%	2.3%
H ightarrow gg		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \rightarrow WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H \rightarrow \gamma \gamma$		9.0%	9.0%
$H ightarrow \mu \mu$		17%	17%
$H \to \mathrm{inv}$		—	0.28%

W mass scan

Theoretical uncertainty still missing

With the configurations :

 $L = 3.2 \ ab^{-1}, \epsilon P = 0.72, \sigma_{sys}^{corr} = 2 \times 10^{-4}$ $\Delta E = 0.5 \ MeV, E_{BS} = 1.6 \times 10^{-3}, \Delta E_{BS} = 0.01$

If we taking data at:

- A. One points: $\Delta m_W \sim 0.9$ MeV (162.5 GeV)
- B. Two points: $\Delta m_W \sim 1.0$ MeV, $\Delta \Gamma_W \sim 2.9$ MeV ($E_1 = 157.5, E_2 = 162.5$ GeV, $F_1 = 0.3$)
- C. Three points: $\Delta m_W \sim 1.0$ MeV, $\Delta \Gamma_W \sim 2.8$ MeV ($E_1 = 157.5, E_2 = 162.5, E_3 = 161.5$ GeV, $F_1 = 0.3, F_2 = 0.9$)

The initial state radiation in e⁺e⁻ collider

The ISR correction factor

1. The experimental observed cross section:

$$\sigma^{\text{obs}}(s) = \int_{0}^{x_{\text{m}}} F(x,s) \sigma^{\text{dre}}(s(1-x)) \, \mathrm{d}x \qquad (1)$$
$$= \int_{0}^{x_{\text{m}}} F(x,s) \frac{\sigma^{\text{B}}(s(1-x))}{|1 - \Pi(s(1-x))|^2} \, \mathrm{d}x, \qquad (2)$$

2. The ISR correction factor is defined:

$$1 + \delta(s) = \sigma^{\rm dre}(s) / \sigma^{\rm obs}(s)$$

3. The factorized born cross section:

$$\sigma^{\rm B}(s) = (1 + \delta(s)) \frac{\sigma^{\rm obs}(s)}{1/|1 - \Pi(s)|^2}$$

The line shape of $\sigma(e^+e^- \rightarrow Z H)$

Model dependent fit

- 1. The parameters in the formula are Z mass, Z width, higgs mass and the weak mixing angle θ_w
- The four parameters are float in the fit to propagate the uncertainties of the observed cross section.
- 3. Fit result shows that by collecting data sets list on the right table, the uncertainty of $1+\sigma$ is 0.5%

Scan data above ZH threshold					
\sqrt{s} (GeV)	220	230	250		
L (fb ⁻¹)	50	50	500		

Measure the line shape is an issue

- Line shape from data necessary
- Scan from threshold
- It needs a lots of data-taking

Direct measurement

Summary

- CEPC is a very challenge project for theory, experiment, and politics
- Higgs simulation in good shape
- EW has only a few simulation studies
- Flavor physics missing at present
- Precision calculations are more than appreciated