Scattering Amplitudes and Feynman integrals

Feynman integrals

Yang Zhang (张扬) JGU Mainz, ETH Zurich and MPI Munich

IHEP May. 15, 2018

Outline

- 1. Scattering amplitudes, an formal overview
- 2. Feynman integral representation and reduction
- 3. Feynman integral evaluation

1. Scattering amplitudes

Quantum transit rate for particle scattering

calculable by perturbation theory in quantum field theory

comparable with the measured cross sections from experiments

How can scattering amplitude become a branch of theoretical physics ?

A. Surprisingly simple structures

Britto-Cachazo-Feng-Witten (BCFW) Kawai-Lewellen-Tye (KLT) Bern-Carassco-Johannson (BCJ)

B. Brave exploration of amplitudes in formal theories

amplitudes in N=4 super-Yang-Mills amplitudes in N=8 supergravity

C. Precision frontier of the LHC physics

multi-loop amplitudes in QCD and the standard model

Surprisingly simple structures in amplitudes

Britto-Cachazo-Feng-Witten (BCFW)

Nucl.Phys. B715 (2005) 499-522 Phys.Rev.Lett. 94 (2005) 181602

Traditionally scattering amplitudes are calculated by Feynman diagrams

Even for the tree amplitudes, internal off-shell parts exist.

It is not clear how a high-multiplicity tree amplitude can be constructed from low-multiplicity **on-shell** tree amplitudes.

(BCFW) A high-multiplicity tree amplitude can be constructed from low-multiplicity COMPLEX on-shell tree amplitudes.

Surprisingly simple structures in amplitudes

Kawai-Lewellen-Tye (KLT)

Nucl.Phys. B269 (1986) 1-23

(closed string tree amplitude) = (open string tree amplitude) × (open string tree amplitude)

$$A_{\text{closed}}^{(4)}(\text{tachyon}) = -\pi\kappa^{2} \sin(\pi k_{2} \cdot k_{3}) A_{\text{open}}^{(4)}(s, t | \overline{A}_{\text{open}}^{(4)}(t, u), \qquad (3.11)$$

For the four-point amplitude, this simply means (3.11) can be rewritten as
$$A_{\text{closed}}^{(4)} = -\pi\kappa^{2} \sin(\pi k_{1} \cdot k_{2}) A_{\text{open}}^{(4)}(s, t) \overline{A}_{\text{open}}^{(4)}(s, u). \qquad (3.29)$$

tree-level graviton amplitude is the "square" of gluon amplitude in Yang-Mills theory

 $\sin(\pi k_2 \cdot k_3) A_{\text{open}}(t, u) = \sin(\pi k_1 \cdot k_2) A_{\text{open}}(s, u)$

Color-stripped tree amplitudes in Yang-Mills theory are linearly related

Surprisingly simple structures in amplitudes

From KLT to BCJ

 $\alpha' \to 0,$

 $\bar{A}^{(4)}_{\text{open}}(s,u) \rightarrow -\frac{n_s}{s} + \frac{n_u}{u}, \quad \bar{A}^{(4)}_{\text{open}}(t,u) \rightarrow -\frac{n_u}{u} + \frac{n_t}{t}$

Therefore $n_s + n_t + n_u = 0$ (BCJ, tree-level 4-point).

Bern-Carrasco-Johansson

Physical Review D, 78, 2008, 085011

Tree-level $A_{\text{YM}} = \sum_{i} \frac{c_{i}n_{i}}{P_{i}}$ Loop-level $A_{\text{YM}}^{L\text{-loop}} = \int d^{D}l_{1} \dots d^{D}l_{L} \sum_{i} \frac{c_{i}n_{i}}{P_{i}}$ BCJ:

- 1. We can re-arrange the kinematic terms such that if $c_i + c_j + c_k = 0$, then $n_i + n_j + n_k = 0$ (BCJ numerators).
- 2. For BCJ numerators, the gravity amplitude is,

Tree-level
$$A_{\text{grav}} = \sum_{i} \frac{n_i n_i}{P_i}$$
 Loop-level $A_{\text{grav}}^{L\text{-loop}} = \int d^D l_1 \dots d^D l_L \sum_{i} \frac{n_i n_i}{P_i}$

Brave exploration of amplitudes in formal theories

N=4 super-Yang-Mills

Pro

- maximally supersymmetric gauge theory in 4D
- conformal symmetry
- dual conformal symmetry for the planar N=4 SYM (large N limit)
- Usually its loop integrand is much simpler than the corresponding pure Yang-Mills integrand
- Compass for loop amplitude computation

Con

• N=4 SYM is too far away from the world

N=4 super-Yang-Mills

N=8 supergravity

Is there a UV-finite quantum gravity theory in the framework of field theory? N=8 supergravity?

"UV-finiteness is not a philosophy question, but an amplitude question"

Loop-level
$$A_{\text{grav}}^{L\text{-loop}} = \int d^D l_1 \dots d^D l_L \sum_i \frac{n_i n_i}{P_i}$$
 BCJ

$$D_c = \frac{6}{L} + 4,$$
 $(2 \le L \le 4)$

1804.09311 Zvi Bern et al

5-loop N = 8 supergravity is UV divergent at D = 24/5 which corresponds to a counter term $D^8 R^4$ 7 loop D=4 UV divergent ?

Multi-loop amplitudes for the LHC physics

Cross section

Multi-loop amplitudes for the LHC physics

Integrand

2. Feynman integral representation and reduction

Feynman integral representation

$$I[\alpha_1,\ldots,\alpha_m] = \int \frac{d^D l_1}{i\pi^{D/2}} \ldots \int \frac{d^D l_L}{i\pi^{D/2}} \frac{1}{D_1^{\alpha_1} \ldots D_m^{\alpha_m}}$$

Feynman parametric representation

$$I[\alpha_1, \dots, \alpha_m] = \frac{(-1)^{|\alpha|} \Gamma(|\alpha| - \frac{DL}{2})}{\Gamma(\alpha_1) \dots \Gamma(\alpha_m)} \int_0^1 \prod_{i=1}^m dz_i \, \delta(1 - \sum_j z_j) z_1^{\alpha_1 - 1} \dots z_m^{\alpha_m - 1} \frac{F^{LD/2 - |\alpha|}}{U^{(L+1)D/2 - |\alpha|}}$$

parametric representation

Roman Lee 1405.5616

$$I[\alpha_1, \dots, \alpha_m] = \frac{(-1)^{|\alpha|} \Gamma(D/2)}{\Gamma((L+1)D/2 - |\alpha|) \Gamma(\alpha_1) \dots \Gamma(\alpha_m)} \int_0^\infty \prod_{i=1}^m dz_i \, z_1^{\alpha_1 - 1} \dots z_m^{\alpha_m - 1} G^{-D/2}$$

G = F + U

useful for eduction problems

Baikov representation

Phys.Lett. B385 (1996) 404-410

When k = LE + L(L + 1)/2, (E is the number of independent legs), the Baikov rep. is

$$\int \frac{d^{D}l_{1}}{i\pi^{D/2}} \dots \int \frac{d^{D}l_{L}}{i\pi^{D/2}} \frac{1}{D_{1}^{\alpha_{1}} \dots D_{k}^{\alpha_{k}}} \propto \prod_{1 \le i \le L+E, \max\{i, E+1\} \le j \le L+E} \left(\int dx_{ij}\right) \det(S)^{\frac{D-L-E-1}{2}} \frac{1}{D_{1}^{\alpha_{1}} \dots D_{k}^{\alpha_{k}}}$$
$$\propto \prod_{i=1}^{k} \left(\int dz_{i}\right) \det(S)^{\frac{D-L-E-1}{2}} \frac{1}{z_{1}^{\alpha_{1}} \dots z_{k}^{\alpha_{k}}} \qquad z_{i} \equiv D_{i}$$
where $\{v_{1}, \dots, v_{L+E}\} \equiv \{k_{1}, \dots, k_{E}, l_{1}, \dots, l_{L}\}$ and $x_{ii} \equiv v_{i} \cdot v_{i}$. *S* is a $(L+E) \times (L+E)$ Baikov representation

where $\{v_1, ..., v_{L+E}\} \equiv \{k_1, ..., k_E, l_1, ..., l_L\}$ and $x_{ij} \equiv v_i \cdot v_j$. *S* is a $(L+E) \times (L+E)$ matrix with $S_{ij} = x_{ij}$ (Gram matrix).

on

$$L = 2, E = 3, m = 7 \text{ and } k = 9. \{v_1, \dots, v_5\} \equiv \{k_1, k_2, k_4, l_1, l_2\}.$$

$$S = \begin{pmatrix} 0 & \frac{s}{2} & \frac{t}{2} & x_{11} & x_{21} \\ \frac{s}{2} & 0 & \frac{1}{2}(-s-t) & x_{12} & x_{22} \\ \frac{t}{2} & \frac{1}{2}(-s-t) & 0 & x_{13} & x_{23} \\ x_{11} & x_{12} & x_{13} & x_{44} & x_{45} \\ x_{21} & x_{22} & x_{23} & x_{45} & x_{55} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \frac{s}{2} & \frac{t}{2} & \frac{z_{1}}{2} - \frac{z_{2}}{2} & \frac{z_{0}}{2} - \frac{z_{0}}{2} \\ \frac{s}{2} & 0 & \frac{1}{2}(-s-t) & \frac{1}{2}(s-z_{3}) + \frac{z_{2}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} \\ \frac{t}{2} & \frac{1}{2}(-s-t) & 0 & \frac{z_{8}}{2} - \frac{z_{1}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{1}{2}(z_{4}-s) - \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{z_{9}}{2} & \frac{z_{6}}{2} - \frac{z_{5}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{z_{9}}{2} & \frac{z_{9}}{2} - \frac{z_{6}}{2} + \frac{z_{7}}{2} \\ \frac{z_{9}}{2} - \frac{z_{6}}{2} & \frac{z_{9}}{2} & \frac{z_{9}}{2} & \frac{z_{9}}{2} - \frac{z_{9}}{2} \\ \frac{z_{9}}{2} - \frac{z_{9}}{2} & \frac{z_{9}}{2} & \frac{z_{9}}{2} - \frac{z_{9}}{2} \\ \frac{z_{9}}{2} - \frac{z_{9}}{2} & \frac{z_{9}}{2} & \frac{z_{9}}{2} \\ \frac{z_{9}}{2} - \frac{z_{9}}{2} & \frac{z_{9}}{2} \\ \frac{z_{9}}{2} & \frac{z_{9}}{2} \\ \frac{z_{9}}{2} & \frac{z_{9}}{$$

Feynman integral reduction

Integration-by-parts identities

$$0 = \int \frac{d^D \ell_1}{\mathrm{i}\pi^{D/2}} \dots \frac{d^D \ell_L}{\mathrm{i}\pi^{D/2}} \sum_{j=1}^L \frac{\partial}{\partial \ell_j^{\mu}} \frac{v_j^{\mu}}{D_1^{\nu_1} \dots D_m^{\nu_m}}$$

- By IBPs, for any Feynman diagram + sub diagrams, the number of master integrals is finite (Smirnov)
- IBP reduces the integrals to a basis of master integrals
- IBP reduction is difficult with multi-loop multi-scale diagrams (bottleneck)

Air Anastasiou, LazopoulosFIRE SmirnovKira Maierhoefer, Usovitsch, and UwerReduze von Manteuffel and C. Studerus

IBPs in Baikov representation

$$R = \mathbb{Q}(\text{parameters})[z_1, \dots z_k]$$

$$\int \frac{d^D l_1}{i\pi^{D/2}} \dots \int \frac{d^D l_L}{i\pi^{D/2}} \frac{1}{D_1^{\alpha_1} \dots D_m^{\alpha_m} D_{m+1}^{\alpha_{m+1}} \dots D_k^{\alpha_k}}, \quad \begin{cases} \alpha_i \le 1, & 1 \le i \le m \\ \alpha_i \le 0, & m < i \le k \end{cases}$$

Just consider IBPs
$$0 = \left(\prod_{i=1}^{k} \int dz_i\right) \sum_{j=1}^{k} \frac{\partial}{\partial z_j} \left(a_j(z) \det(S)^{\frac{D-L-E-1}{2}} \frac{1}{z_1 \dots z_m}\right)$$
Polynomials!

Further require $F \equiv \det(S)$ "Affine varieties and Lie algebras of vector fields" Hauser, Müller 1993

1. no shifted exponent:
$$\sum_{j=1}^{k} a_j(z) \frac{\partial F}{\partial z_j} + \beta(z)F = 0$$
 These $(a_1(z), \dots, a_k(z))$ form a module $M_1 \subset \mathbb{R}^k$.

2. no doubled propagator(z) $\in \langle z_i \rangle$, $1 \leq i \leq m$ These $(a_1(z), \dots, a_k(z))$ form a module $M_2 \subset \mathbb{R}^k$.

Both M_1 and M_2 are pretty simple ...

 $M_1 \cap M_2$ Intersection of two modules

Computation of the first module M_1

In principle, the syzygy can be computed by Schreyer's theorem but the computation is heavy ...

• syzygy for the
$$\{\frac{\partial F}{\partial z_1}, \dots, \frac{\partial F}{\partial z_k}, F\}$$

• $\operatorname{Ann}(F^{s})$, annihilator of F^{s} in Weyl algebra.

If *F* is a determinant matrix whose elements are free variables, this kind of syzygy module is simple.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 Roman Lee's idea
No computation is needed

syzygy generators (Laplace expansion)

 $\sum_{j=1}^{\kappa} a_j(z) \frac{\partial F}{\partial z_j} + \beta(z)F = 0$

 $\sum_{j} a_{k,j} \frac{\partial(\det A)}{\partial a_{i,j}} - \delta_{k,i} \cdot \det A = 0 \text{ provides all syzygy generators}$ The Gram matrix in Baikov rep. is symmetric and not all entries are free variables "weighted" Laplace expansion

Example, massless double box

 $M_1 \cap M_2$ (even without cut) is found in ~4 seconds, with Singular 4.1.0,

intersect(M1,M2,"std")

nonplanar hexagon-box (3,6,7) cut 10 different cuts needed (8 triple cuts, 2 quadr

 $\mathbb{Q}(s_{12}, s_{13}, s_{14}, s_{23}, s_{24})[z_1, z_2, z_4, z_5, z_8, z_9, z_{10}, z_{11}]$: 5 parameters, 11-3=8 variables $z_3 \rightarrow 0, z_6 \rightarrow 0, z_7 \rightarrow 0$

Numerically (and over finite field) the intersection can be found in sever Analytically the intersection seems very difficult

A trick for computational algebraic geometry

Janko Boehm, Hans Schoeneman, University of Kaisers

Analytic Mandelstam variables (parameters) slow down the computation,

Treat parameters as variables, and compute in a particular monomial ordering

Module intersection for (1,4,6,7)

 $\mathbb{Q}(s_{12}, s_{13}, s_{14}, s_{23}, s_{24})[z_2, z_3, z_5, z_8, z_9, z_{10}, z_{11}]$ with

 $z_2 > z_3 > z_5 > z_8 > z_9 > z_{10} > z_{11}$

 $\mathbb{Q}[z_2, z_3, z_5, z_8, z_9, z_{10}, z_{11}, s_{12}, s_{13}, s_{14}, s_{23}, s_{24}] \text{ with } \\ [z_2, z_3, z_5, z_8, z_9, z_{10}, z_{11}] > [s_{12}, s_{13}, s_{14}, s_{23}, s_{24}]$

[variables] > [parameters]

this trick makes all polynomials homogeneous

? (does not finish)

4 seconds with Singu

All module intersections for 10 necessary cuts found analyt

Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections

Janko Böhm,^a Alessandro Georgoudis,^b Kasper J. Larsen,^c Hans Schönemann,^a Yang Zhang^{d,e,f}

- ^dPRISMA Cluster of Excellence, Johannes Gutenberg University, 55128 Mainz, Germany
- ^eInstitute for Theoretical Physics, ETH Zürich, CH 8093 Zürich, Switzerland
- ^f Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA E-mail: boehm@mathematik.uni-kl.de,

```
Alessandro.Georgoudis@physics.uu.se, Kasper.Larsen@soton.ac.uk, hannes@mathematik.uni-kl.de, zhang@uni-mainz.de
```

ABSTRACT: We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.

^aDepartment of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany

^bDepartment of Physics and Astronomy, Uppsala University, SE-75108 Uppsala, Sweden

^cSchool of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

3. Feynman Integral evaluation

Differential equation (DE)

I: a list of *N* master integrals in dimensional regularization (DimReg)

 $\frac{\neg}{\partial x_i}I = M_i(\epsilon)I$

Kotikov 1991 Bern, Dixon and Kosower 1994 Gehrmann and Remiddi 2000

 x_i 's are kinematic variables

Matrices can be generated by IBPs

Gauge Transformation $I \mapsto TI, \quad M_i \mapsto TM_iT^{-1} + (\partial_iT)T^{-1}$

 M_i 's form the connection of the N-dim vector bundle

Integrability $\partial_i M_j - \partial_j M_i + [M_i, M_j] = 0$

The connection has zero curvature

$$dI = \omega I, \quad \omega \equiv \sum_{i} M_{i} dx_{i}$$

flat meromorphic connection

A smart basis choice, Henn, Phys.Rev.Lett. 110 (2013) 251601

Canonical basis I

- In general, only first several orders in ϵ are needed.
- Some integrals are known to have constant leading singularities or *dlog*.
- In differential geometry, zero curvature ⇒ constant metric after a change of coordinates. Here for flat connection ...

$\tilde{I} = T(\epsilon)I,$	$\frac{\partial}{\partial x_i}\tilde{I} = \epsilon A_i\tilde{I}$
-----------------------------	--

Henn 2013

$$\partial_i A_j = \partial_j A_i, \quad [A_i, A_j] = 0, \quad \omega = dA$$

connection trivialized

Boundary condition given by kinematic limit/ traditional Feynman parameterization

Feynman integrals become iterated integral $\tilde{I}(x) = P \exp\left(\epsilon \int_{\mathcal{C}} dA\right) \tilde{I}(x_0)$

> path ordered integral, expressible as Chen's (陳國才) iterated integrals

Canonical basis II $\tilde{I}(x) = P \exp\left(\epsilon \int_{\mathcal{C}} dA\right) \tilde{I}(x_0)$ Henn 2013

When *dA* has the d-logarithm form,

$$A = \sum_{k} C_k \log \alpha_k(x) \longrightarrow alphabets,$$

indicate the special
functions in amplitudes

it is clear that $\tilde{I}(x)$ has uniform transcendentality.

 $\mathcal{T}(\log) = 1, \mathcal{T}(\pi) = 1, \mathcal{T}(\zeta_n) = n, \mathcal{T}(\mathrm{Li}_n) = n, \dots, \mathcal{T}(f_1 f_2) = \mathcal{T}(f_1) + \mathcal{T}(f_2)$

- makes the DE solving simple
- the canonical basis integrals have simple expression (UT)
- also makes numeric integration much easier

Find canonical basis

- Leading singularity/ d-log integrand form (Henn 2013)
- Feynman parametrization (Henn 2013, 2014)
- Eigenvalue analysis for residue matrix and balance transformation One-variable case (Lee 2014)
- Packages: Fuchsia (Gituliar, Magerya), epsilon (Prausa)

Elliptic case, transformation using modular form (Adam, Weinzierl 2017)

dbox example

Henn 2013

HPLs

$$f_{1} = -\epsilon^{2} (-s)^{2\epsilon} t I_{0,2,0,0,0,0,0,1,2},$$

$$f_{2} = \epsilon^{2} (-s)^{1+2\epsilon} I_{0,0,2,0,1,0,0,0,2},$$

$$f_{3} = \epsilon^{3} (-s)^{1+2\epsilon} I_{0,1,0,0,1,0,1,0,2},$$

$$f_{4} = -\epsilon^{2} (-s)^{2+2\epsilon} I_{2,0,1,0,2,0,1,0,0},$$

$$f_{5} = \epsilon^{3} (-s)^{1+2\epsilon} t I_{1,1,1,0,0,0,0,1,2},$$

$$f_{6} = -\epsilon^{4} (-s)^{2\epsilon} (s+t) I_{0,1,1,0,1,0,0,1,1},$$

$$f_{7} = -\epsilon^{4} (-s)^{2+2\epsilon} t I_{1,1,1,0,1,0,1,1,1},$$

$$f_{8} = -\epsilon^{4} (-s)^{2+2\epsilon} I_{1,1,1,0,1,-1,1,1,1},$$

Simple known integrals ... Integrate out the bubble ...

Feynman parametrization d-log form

$$f_{1} = -\epsilon^{2} (-s)^{2\epsilon} t I_{0,2,0,0,0,0,0,1,2},$$

$$f_{2} = \epsilon^{2} (-s)^{1+2\epsilon} I_{0,0,2,0,1,0,0,0,2},$$

$$f_{3} = \epsilon^{3} (-s)^{1+2\epsilon} I_{0,1,0,0,1,0,1,0,2},$$

$$f_{4} = -\epsilon^{2} (-s)^{2+2\epsilon} I_{2,0,1,0,2,0,1,0,0},$$

$$f_{5} = \epsilon^{3} (-s)^{1+2\epsilon} t I_{1,1,1,0,0,0,0,1,2},$$

$$f_{6} = -\epsilon^{4} (-s)^{2\epsilon} (s+t) I_{0,1,1,0,1,0,0,1,1},$$

$$f_{7} = -\epsilon^{4} (-s)^{2+2\epsilon} t I_{1,1,1,0,1,0,1,1,1},$$

$$f_{8} = -\epsilon^{4} (-s)^{2+2\epsilon} I_{1,1,1,0,1,-1,1,1,1}.$$
and

$$\partial_x f = \epsilon \left[\frac{a}{x} + \frac{b}{1+x} \right] f, \qquad b =$$

Henn 2013

,

Roman Lee's algorithm

JHEP 1504 (2015) 108

works very well for ODEs

Other modern differential equation techniques

SDE

Papadopoulos, JHEP 1604 (2016) 078

DE from vacuum

$$I(D; \{\nu_{\alpha}\}; \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D} \ell_{i}}{\mathrm{i}\pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(\mathcal{D}_{\alpha} + \mathrm{i}\eta)^{\nu_{\alpha}}},$$

Xiao Liu, Yan-Qing Ma and Chen-Yu Wang Phys.Lett. B779 (2018) 353-357