Testing the Relativistic effects of the semileptonic Bc decays to charmonium in the Bethe-Salpeter method

Guo-Li Wang

Zi-Kan Geng, Tian-Hong Wang, Yue Jiang, Geng Li, Xiao-Ze Tan arXiv: 1809.02968

Department of Physics, Harbin Institute of Technology

Outline

- Motivation
- Bethe-Salper equation and Salpeter equation
- Relativistic wave functions and solutions
- Transition amplitude for Semileptonic Bc decays to charmonium
- Relativistic corrections Method I and Method II
- Numerical results
- summary

Motivation

Motivation

- After the discovery of Higgs, Standard Model needs precise study and test, relativistic study is important.
- Usually, we pay attention to the relativistic effects of light hadrons, ignore ones of heavy hadrons because of heavy mass, especially double-heavy mesons.
- We know little about the relativistic effects of heavy excited meson which has higher mass than the corresponding ground heavy meson.

Motivation

- After the year 2003, more and more heavy excited states are discovered. Non-relativistic and semi-relativistic models will give large errors.
- We will study the relativistic corrections of Bc semileptonic decays to charmonium by the instantaneous Bethe-Salpeter method.

Bethe-Salper equation and Salpeter equation

Bethe-Salpter and Salpeter equation

• Bethe-Salpeter Equation:

$$(\not p_1 - m_1)\chi_P(q)(\not p_2 + m_2) = \int \frac{d^4k}{(2\pi)^4} V(P, q, k)\chi_P(k)$$

• Total momentum P and relative momentum q:

$$p_1 = \alpha_1 P + q, \quad \alpha_1 = \frac{m_1}{m_1 + m_2}$$
$$p_2 = \alpha_2 P - q, \quad \alpha_2 = \frac{m_2}{m_1 + m_2}$$

$$\int \frac{d^4k d^4q}{(2\pi)^4} Tr\left\{\overline{\chi}(k)\frac{\partial}{\partial P_0} \left[S_1^{-1}(p_1)S_2^{-1}(p_2)\delta^4(k-q) + V(P,k,q)\right]\chi(q)\right\} = 2iP_0$$

- There is **difficulty** about the kernel, the time-inspired interaction?
- Salpeter suggested the instantaneous version
- The relative momentum q is divided into parallel and vertical parts to the momentum P:

$$\begin{split} q^{\mu}_{\parallel} &\equiv (P \cdot q/M^2) P^{\mu} , \quad q^{\mu}_{\perp} \equiv q^{\mu} - q^{\mu}_{\parallel} . \\ q^{\mu} &= q^{\mu}_{\parallel} + q^{\mu}_{\perp} , \end{split}$$

the momenta :

$$q_{\scriptscriptstyle P} = \frac{(P \cdot q)}{M} \;, \qquad q_{\scriptscriptstyle T} = \sqrt{q_{\scriptscriptstyle P}^2 - q^2} = \sqrt{-q_{\perp}^2} \;.$$

will become to the q_0 and $|\vec{q}|$ in center-mass-system of the meson

Salpeter Eequation

The reduced Bethe-Salpeter wave function:

$$\varphi_{P}(q_{\perp}^{\mu}) \equiv i \int \frac{dq_{P}}{2\pi} \chi(q_{\parallel}^{\mu}, q_{\perp}^{\mu}) ,$$

$$\eta(q_{\perp}^{\mu}) \equiv \int \frac{k_T^2 dk_T ds}{(2\pi)^2} V(k_{\perp}, q_{\perp}, s) \varphi_p(k_{\perp}^{\mu}) \; .$$

and the useful notations

$$\omega_i = \sqrt{m_i^2 + q_T^2} , \quad \Lambda_i^{\pm}(q_{\perp}) = \frac{1}{2\omega_i} \left[\frac{\not P}{M} \omega_i \pm J(i)(m_i + \not q_{\perp}) \right]$$
$$S_i(p_i) = \frac{\Lambda_{ip}^+(q_{\perp})}{J(i)q_p + \alpha_i M_H - \omega_{ip} + i\epsilon} + \frac{\Lambda_{ip}^-(q_{\perp})}{J(i)q_p + \alpha_i M_H + \omega_{ip} - i\epsilon}$$

so we define

$$\varphi_P^{\pm\pm}(q_\perp) \equiv \Lambda_1^{\pm}(q_\perp) \frac{\not\!\!P}{M} \varphi_P(q_\perp) \frac{\not\!\!P}{M} \Lambda_2^{\pm}(q_\perp)$$

then Salpeter wave function include four parts $\varphi_P(q_\perp) = \varphi_P^{++}(q_\perp) + \varphi_P^{+-}(q_\perp) + \varphi_P^{-+}(q_\perp) + \varphi_P^{--}(q_\perp)$ and the Salpter equation can be written as:

$$\varphi_P(q_\perp) = \frac{\Lambda_1^+(q_\perp)\eta_P(q_\perp)\Lambda_2^+(q_\perp)}{(M-\omega_1-\omega_2)} - \frac{\Lambda_1^-(q_\perp)\eta_P(q_\perp)\Lambda_2^-(q_\perp)}{(M+\omega_1+\omega_2)}$$

Salpeter equation (positive and negative energy wave function)

$$(M - \omega_1 - \omega_2)\varphi_P^{++}(q_\perp) = \Lambda_1^+(q_\perp)\eta_P(q_\perp)\Lambda_2^+(q_\perp) ,$$

$$(M + \omega_1 + \omega_2)\varphi_P^{--}(q_\perp) = -\Lambda_1^-(q_\perp)\eta_P(q_\perp)\Lambda_2^-(q_\perp) ,$$

$$\varphi_P^{+-}(q_\perp) = \varphi_P^{-+}(q_\perp) = 0 .$$

Normalization:

$$\int \frac{d^3 q_{\perp}}{(2\pi)^3} tr \left[\overline{\varphi}_P^{++} \frac{\mathcal{P}}{M} \varphi_P^{++} \frac{\mathcal{P}}{M} - \overline{\varphi}_P^{--} \frac{\mathcal{P}}{M} \varphi_P^{--} \frac{\mathcal{P}}{M} \right] = 2P_0$$

We solve the full Salpeter equation will the simple **Cornell potential**:

$$I(r) = V_s(r) + V_0 + \gamma_0 \otimes \gamma^0 V_v(r) = \lambda r + V_0 - \gamma_0 \otimes \gamma^0 \frac{4}{3} \frac{\alpha_s}{r}$$

To avoid infrared divergence

$$V_s(r) = \frac{\lambda}{\alpha} (1 - e^{-\alpha' r}) + V_0 ,$$

$$V_v(r) = -\frac{4}{3} \frac{\alpha_s}{r} e^{-\alpha r} .$$

In momentum space:

$$V_s(\vec{q}) = -(\frac{\lambda}{\alpha} + V_0)\delta^3(\vec{q}) + \frac{\lambda}{\pi^2} \frac{1}{(\vec{q}^2 + \alpha^2)^2} ,$$
$$V_v(\vec{q}) = -\frac{2}{3\pi^2} \frac{\alpha_s(\vec{q})}{(\vec{q}^2 + \alpha^2)} .$$

$$\alpha_s(\vec{q}) = \frac{12\pi}{27} \frac{1}{\log(a + \frac{\vec{q}^2}{\Lambda_{QCD}^2})} \ .$$

Relativistic Wave functions and solutions

Wave Fuctions

• The wave functions for **S wave** meson in a **non**ralativistic model are:

 $\varphi_{0^-}(\vec{q}) = M(1+\gamma_0)\gamma_5\phi(\vec{q}), \quad \varphi_{1^-}^\lambda(\vec{q}) = M(1+\gamma_0)\vec{\epsilon}^\lambda \cdot \vec{\gamma}\phi(\vec{q}),$

In our method the relativistic wave function for a pseudoscalar 0⁻(0⁻⁺) meson

$$\varphi_{{}^{1}S_{0}}(\vec{q}) = M \left[\gamma_{0}\varphi_{1}(\vec{q}) + \varphi_{2}(\vec{q}) + \frac{\not{\!\!\!/}_{\perp}}{M}\varphi_{3}(\vec{q}) + \frac{\gamma_{0}\not{\!\!\!/}_{\perp}}{M}\varphi_{4}(\vec{q}) \right] \gamma_{5}$$

Since we have $\varphi_{1S_0}^{+-}(\vec{q}) = \varphi_{1S_0}^{-+}(\vec{q}) = 0$ The four wave functions are not independent $\varphi_3(\vec{q}) = \frac{\varphi_2(\vec{q})M(-\omega_1 + \omega_2)}{m_2\omega_1 + m_1\omega_2}, \quad \varphi_4(\vec{q}) = -\frac{\varphi_1(\vec{q})M(\omega_1 + \omega_2)}{m_2\omega_1 + m_1\omega_2}.$ And the positive and negative wave function $\varphi_{1S_0}^{++}(\vec{q}) = \frac{M}{2} \left(\varphi_1(\vec{q}) + \varphi_2(\vec{q})\frac{m_1 + m_2}{\omega_1 + \omega_2} \right) \left[\frac{\omega_1 + \omega_2}{m_1 + m_2} + \gamma_0 - \frac{q_\perp(m_1 - m_2)}{m_2\omega_1 + m_1\omega_2} + \frac{q_\perp\gamma_0(\omega_1 + \omega_2)}{(m_2\omega_1 + m_1\omega_2)} \right] \gamma_5$ $\varphi_{1S_0}^{--}(\vec{q}) = \frac{M}{2} \left(\varphi_1(\vec{q}) - \varphi_2(\vec{q})\frac{m_1 + m_2}{\omega_1 + \omega_2} \right) \left[-\frac{\omega_1 + \omega_2}{m_1 + m_2} + \gamma_0 + \frac{q_\perp(m_1 - m_2)}{m_2\omega_1 + m_1\omega_2} + \frac{q_\perp\gamma_0(\omega_1 + \omega_2)}{(m_2\omega_1 + m_1\omega_2)} \right] \gamma_5.$

And the normalization

$$\int \frac{d\vec{q}}{(2\pi)^3} 4\varphi_1(\vec{q})\varphi_2(\vec{q})M^2 \left\{ \frac{\omega_1 + \omega_2}{m_1 + m_2} + \frac{m_1 + m_2}{\omega_1 + \omega_2} + \frac{2\vec{q}^2(\omega_1m_1 + \omega_2m_2)}{(\omega_1m_2 + \omega_2m_1)^2} \right\} = 2M$$

• For equal mass system 0^{-+} state:

$$\varphi_{P,0^{-+}}(q) = \left[\mathscr{P}f_1(q) + Mf_2(q) + \mathscr{Q}_{\perp} \frac{\mathscr{P}}{m_1} f_1(q) \right] \gamma_5$$
$$= \left[(1 + \frac{\mathscr{Q}_{\perp}}{m_1}) \mathscr{P}f_1(q) + Mf_2(q) \right] \gamma_5 .$$

• From the first two Salpeter equations, we obtained:

$$(M - 2\omega_1) \left[f_1(q) + f_2(q) \frac{m_1}{\omega_1} \right] = -\int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\omega_1^2} \\ \times \left\{ (V_s - V_v) \left[f_1(k) m_1^2 + f_2(k) m_1 \omega_1 \right] - (V_s + V_v) f_1(k) (\vec{q} \cdot \vec{k}) \right\} , \\ (M + 2\omega_1) \left[f_1(q) - f_2(q) \frac{m_1}{\omega_1} \right] = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\omega_1^2} \\ \times \left\{ (V_s - V_v) \left[f_1(k) m_1^2 - f_2(k) m_1 \omega_1 \right] - (V_s + V_v) f_1(k) (\vec{q} \cdot \vec{k}) \right\} ,$$

$$\int \frac{d^3q}{(2\pi)^3} 4f_1(q) f_2(q) M^2 \left\{ \frac{\omega_1}{m_1} + \frac{m_1}{\omega_1} + \frac{q^2}{\omega_1 m_1} \right\} = 2M$$

• Wave function for ${}^{3}P_{0} \quad 0^{+}(0^{++})$ scalar meson $\varphi_{0^{+}}(q_{\perp}) = f_{1}(q_{\perp}) \not q + f_{2}(q_{\perp}) \frac{\not P \not q_{\perp}}{M} + f_{3}(q_{\perp})M + f_{4}(q_{\perp}) \not P$

where only two of them are independent

$$f_3(q_{\perp}) = \frac{f_1(q_{\perp})q_{\perp}^2(m_1 + m_2)}{M(\omega_1\omega_2 + m_1m_2 + q_{\perp}^2)}, \quad f_4(q_{\perp}) = \frac{f_2(q_{\perp})q_{\perp}^2(\omega_1 - \omega_2)}{M(m_1\omega_2 + m_2\omega_1)}$$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{16f_1 f_2 \omega_1 \omega_2 \vec{q}^2}{m_1 \omega_2 + m_2 \omega_1} = 2M.$$

• Wave function for ${}^{3}P_{1}$ 1⁺(1⁺⁺) meson

• where only two of them are independent

$$f_3(q_\perp) = \frac{f_1(q_\perp)M(m_1\omega_2 - m_2\omega_1)}{q_\perp^2(\omega_1 + \omega_2)}, \quad f_4(q_\perp) = \frac{f_2(q_\perp)M(-\omega_1\omega_2 + m_1m_2 + q_\perp^2)}{q_\perp^2(m_1 + m_2)}$$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{32f_1 f_2 \omega_1 \omega_2 (\omega_1 \omega_2 - m_1 m_2 + \vec{q}^2)}{3(m_1 + m_2)(\omega_1 + \omega_2)} = 2M$$

• Wave function for
$${}^{1}P_{1} \ 1^{+}(1^{+-})$$
 meson
 $\varphi_{1+}(q_{\perp}) = q_{\perp} \cdot \epsilon_{\perp}^{\lambda} \left[f_{1}(q_{\perp}) + f_{2}(q_{\perp}) \frac{\mathcal{P}}{M} + f_{3}(q_{\perp}) \frac{\not{q}_{\perp}}{M} + f_{4}(q_{\perp}) \frac{\mathcal{P}}{M^{2}} \right] \gamma_{5}$

and
$$f_3(q_\perp) = -\frac{f_1(q_\perp)M(m_1 - m_2)}{(\omega_1\omega_2 + m_1m_2 - q_\perp^2)}, \quad f_4(q_\perp) = -\frac{f_2(q_\perp)M(\omega_1 + \omega_2)}{(m_1\omega_2 + m_2\omega_1)}$$

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{16f_1 f_2 \omega_1 \omega_2 \vec{q}^2}{3(m_1 \omega_2 + m_2 \omega_1)} = 2M.$$

Wave function for ${}^{3}S_{1}$ 1⁻(1⁻⁻) vector meson

$$\begin{split} \varphi_{1^{-}}^{\lambda}(q_{\perp}) &= q_{\perp} \cdot \epsilon_{\perp}^{\lambda} \left[f_{1}(q_{\perp}) + \frac{\mathcal{P}}{M} f_{2}(q_{\perp}) + \frac{\not{\!\!\!/}_{\perp}}{M} f_{3}(q_{\perp}) + \frac{\mathcal{P}}{M^{2}} f_{4}(q_{\perp}) \right] + M \not{\!\!\!\!/}_{\perp}^{\lambda} f_{5}(q_{\perp}) \\ &+ \not{\!\!\!\!/}_{\perp}^{\lambda} \mathcal{P} f_{6}(q_{\perp}) + (\not{\!\!\!\!/}_{\perp} \not{\!\!\!\!/}_{\perp}^{\lambda} - q_{\perp} \cdot \epsilon_{\perp}^{\lambda}) f_{7}(q_{\perp}) + \frac{1}{M} (\mathcal{P} \not{\!\!\!\!/}_{\perp}^{\lambda} \not{\!\!\!/}_{\perp} - \mathcal{P} q_{\perp} \cdot \epsilon_{\perp}^{\lambda}) f_{8}(q_{\perp}), \end{split}$$

There are only four independent wave functions

$$f_{1}(q_{\perp}) = \frac{\left[q_{\perp}^{2} f_{3}(q_{\perp}) + M^{2} f_{5}(q_{\perp})\right] (m_{1}m_{2} - \omega_{1}\omega_{2} + q_{\perp}^{2})}{M(m_{1} + m_{2})q_{\perp}^{2}}, \quad f_{7}(q_{\perp}) = \frac{f_{5}(q_{\perp})M(-m_{1}m_{2} + \omega_{1}\omega_{2} + q_{\perp}^{2})}{(m_{1} - m_{2})q_{\perp}^{2}},$$
$$f_{2}(q_{\perp}) = \frac{\left[-q_{\perp}^{2} f_{4}(q_{\perp}) + M^{2} f_{6}(q_{\perp})\right] (m_{1}\omega_{2} - m_{2}\omega_{1})}{M(\omega_{1} + \omega_{2})q_{\perp}^{2}}, \quad f_{8}(q_{\perp}) = \frac{f_{6}(q_{\perp})M(m_{1}\omega_{2} - m_{2}\omega_{1})}{(\omega_{1} - \omega_{2})q_{\perp}^{2}}.$$

normalization

$$\int \frac{d\vec{q}}{(2\pi)^3} \frac{16\omega_1\omega_2}{3} \left\{ 3f_5 f_6 \frac{M^2}{m_1\omega_2 + m_2\omega_1} + \frac{\omega_1\omega_2 - m_1m_2 + \vec{q}^2}{(m_1 + m_2)(\omega_1 + \omega_2)} \left[f_4 f_5 - f_3 \left(f_4 \frac{\vec{q}^2}{M^2} + f_6 \right) \right] \right\} = 2M.$$

Mass spectra

• Parameters:

a = e = 2.7183, $\alpha = 0.06 \text{ GeV}$, $\lambda = 0.21 \text{ GeV}^2$, and $m_c = 1.62 \text{ GeV}$, $m_b = 4.96 \text{ GeV}$.

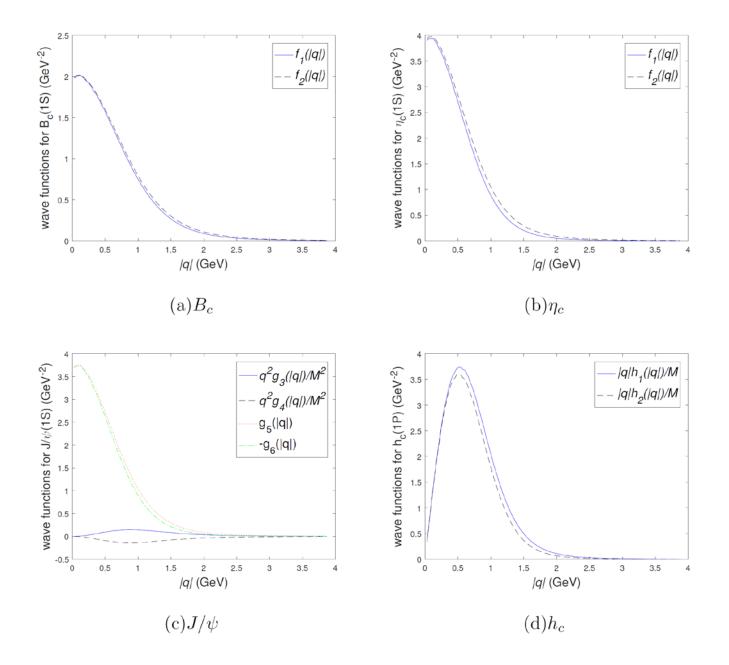
for charmonium $N_f = 3, \ \Lambda_{QCD} = 0.27 \ \text{GeV}$ $\alpha_s(m_c) = 0.38$ for bottomonium $N_f = 4, \ \Lambda_{QCD} = 0.20 \ \text{GeV}$ $\alpha_s(m_b) = 0.23$

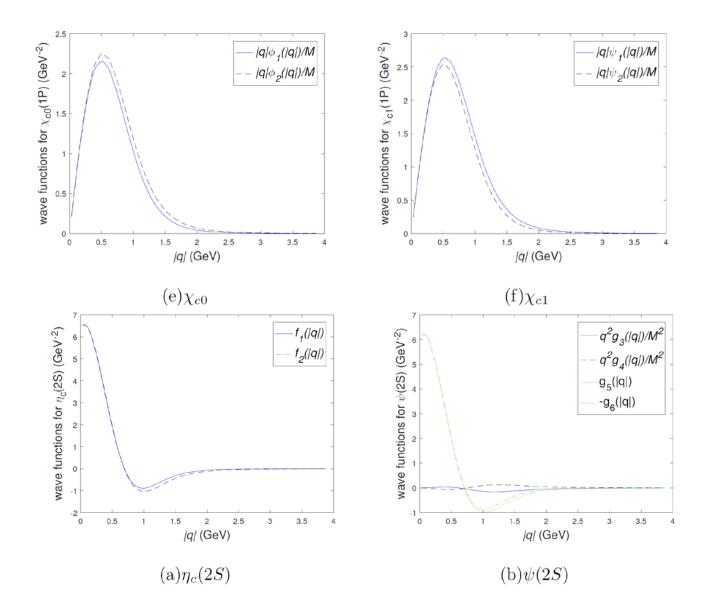
	$c\bar{c}$	$b\bar{b}$
$\mathbf{n}J^{PC} = \mathbf{n} \ 0^{-+}({}^{1}S_{0})$	-0.314	-0.240
$\mathbf{n}J^{PC} = \mathbf{n} \ 1^{}({}^{3}S_{1})$	-0.176	-0.166
$\mathbf{n}J^{PC} = \mathbf{n} \ 0^{++}({}^{3}P_{0})$	-0.282	-0.174
$\mathbf{n}J^{PC} = \mathbf{n} \ 1^{++} ({}^{3}P_{1})$	-0.162	-0.141
$\mathbf{n}J^{PC} = \mathbf{n} \ 2^{++}({}^{3}P_{2})$	-0.110	-0.121
$\mathbf{n}J^{PC} = \mathbf{n} \ 1^{+-}(^{1}P_{1})$	-0.144	-0.135

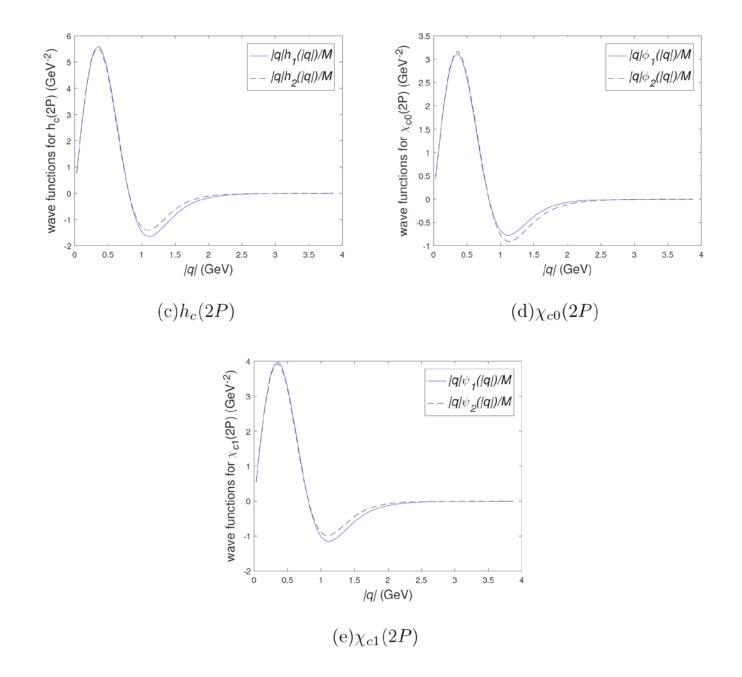
$\mathbf{n} \ J^{PC}(^{(2S+1)}L_J)$	$\operatorname{Th}(c\overline{c})$	$\operatorname{Ex}(c\bar{c})$	${ m Th}(bar{b})$	$\operatorname{Ex}(b\bar{b})$
1 $0^{-+}({}^{1}S_{0})$	2980.3(input)	2980.3	9390.2(input)	9388.9
2 $0^{-+}({}^{1}S_{0})$	3576.4	3637	9950.0	
3 $0^{-+}(^{1}S_{0})$	3948.8		10311.4	
1 $1^{}({}^{3}S_{1})$	3096.9(input)	3096.916	9460.5(input)	9460.30
2 $1^{}({}^{3}S_{1})$	3688.1	3686.09	10023.1	10023.26
3 $1^{}({}^{3}D_{1})$	3778.9	3772.92	10129.5	
4 $1^{}({}^{3}S_{1})$	4056.8	4039	10368.9	10355.2
5 $1^{}({}^{3}D_{1})$	4110.7	4153	10434.7	
6 $1^{}({}^{3}S_{1})$	4329.4	4421	10635.8	10579.4
7 $1^{}({}^{3}S_{1})$	4545.9		10852.1	10865

$\mathbf{n} \ J^{PC}(^{2S+1)}L_J$	$\operatorname{Th}(c\overline{c})$	$\operatorname{Ex}(c\bar{c})$	$\mathrm{Th}(b\bar{b})$	$\operatorname{Ex}(b\overline{b})$
1 $0^{++}({}^{3}P_{0})$	3414.7(input)	3414.75	9859.0	9859.44
2 $0^{++}({}^{3}P_{0})$	3836.8		10240.6	10232.5
3 $0^{++}({}^{3}P_{0})$	4140.1		10524.7	
1 $1^{++}({}^{3}P_{1})$	3510.3(input)	3510.66	9892.2	9892.78
2 $1^{++}({}^{3}P_{1})$	3928.7		10272.7	10255.46
3 $1^{++}({}^{3}P_{1})$	4228.8		10556.2	

$\mathbf{n} \ J^{PC}(^{2S+1)}L_J$	$\mathrm{Th}(c\bar{c})$	$\operatorname{Ex}(c\bar{c})$	$\mathrm{Th}(b\bar{b})$	$\operatorname{Ex}(b\bar{b})$
1 $2^{++}({}^{3}P_{2})$	3556.1(input)	3556.20	9914.4	9912.21
2 $2^{++}({}^{3}P_{2})$	3972.4		10293.6	10268.65
3 $2^{++}({}^{3}F_{2})$	4037.9		10374.4	
4 $2^{++}({}^{3}P_{2})$	4271.0		10561.5	
1 $1^{+-}({}^{1}P_{1})$	3526.0(input)	3525.93	9900.2	
2 $1^{+-}({}^{1}P_{1})$	3943.0		10280.4	
3 $1^{+-}({}^{1}P_{1})$	4242.4		10562.0	







Transition amplitude for Semileptonic Bc decays to charmonium

Transition amplitude for Semileptonic Bc decays to charmonium

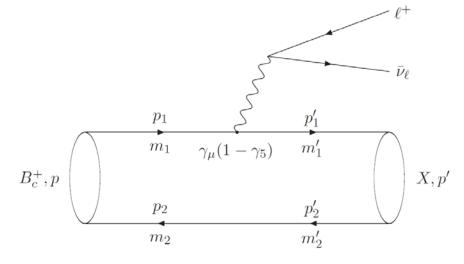


FIG. 1: Feynman diagram corresponding to the semileptonic decays $B_c^+ \to X + \ell^+ + \bar{\nu}_{\ell}$.

$$T = \frac{G_F}{\sqrt{2}} V_{ij} \bar{u}_{\nu_\ell} \gamma^\mu (1 - \gamma_5) v_\ell \langle X(p', \epsilon) | J_\mu | B_c^+(p) \rangle,$$

Hadronic transition matrix element

$$\begin{split} \chi_{c}(h_{c})(P_{f})|J^{\mu}|B_{c}(P)\rangle \\ &= \mathrm{i} \int \frac{\mathrm{d}^{4}q\mathrm{d}^{4}q'}{(2\pi)^{4}}\mathrm{Tr}[\overline{\chi}_{\chi_{c}(h_{c})}(P',q')(\not p_{1}-m_{1})\chi_{B_{c}}(P,q)V_{cb}\gamma^{\mu}(1-\gamma_{5})\delta(p_{1}-p'_{1})] \\ &= \mathrm{i} \int \frac{\mathrm{d}^{4}q}{(2\pi)^{4}}\mathrm{Tr}\left[\overline{\chi}_{\chi_{c}(h_{c})}(P',q')(\alpha_{1}\not P+\not q-m_{1})\chi_{B_{c}}(P,q)V_{cb}\gamma^{\mu}(1-\gamma_{5})\right], \\ &= \int \frac{\mathrm{d}^{3}q_{\perp}}{(2\pi)^{3}}\mathrm{Tr}\left\{\left[\bar{\varphi}'^{++}(q'_{\perp})\frac{\not P}{M}\varphi^{++}(q_{\perp})+\bar{\varphi}'^{++}(q'_{\perp})\frac{\not P}{M}\psi^{+-}(q_{\perp})\right. \\ &\left.-\bar{\psi}'^{-+}(q'_{\perp})\frac{\not P}{M}\varphi^{++}(q_{\perp})-\bar{\psi}'^{+-}(q'_{\perp})\frac{\not P}{M}\varphi^{--}(q_{\perp})+\bar{\varphi}'^{--}(q'_{\perp})\frac{\not P}{M}\psi^{-+}(q_{\perp})\right. \\ &\left.-\bar{\varphi}'^{--}(q'_{\perp})\frac{\not P}{M}\varphi^{--}(q_{\perp})\right]\gamma^{\mu}(1-\gamma_{5})\right\}, \\ &\langle\chi_{c}(h_{c})(P_{f})|J^{\mu}|B_{c}(P)\rangle = \int \frac{\mathrm{d}^{3}q_{\perp}}{(2\pi)^{3}}\mathrm{Tr}\left\{\bar{\varphi}'^{++}(q'_{\perp})\frac{\not P}{M}\varphi^{++}(q_{\perp})\gamma^{\mu}(1-\gamma_{5})\right\}. \end{split}$$

Transition amplitude and form factors

• If final state is pseudoscalar η_c or scalar χ_{c0}

$$\langle P | \overline{c} \gamma^{\mu} (1 - \gamma^5) b | B_c^+ \rangle$$

$$= \int \frac{\mathrm{d}\vec{q}}{(2\pi)^3} \mathrm{Tr} \left[\frac{\not P}{M} \overline{\varphi}_{P_f}^{++} (\vec{q} + \alpha_2 \vec{P}_f) \gamma^{\mu} (1 - \gamma^5) \varphi_P^{++} (\vec{q}) \right]$$

$$= S_+ (P + P_f)^{\mu} + S_- (P - P_f)^{\mu},$$

• If final state is vector, J/ψ , h_c or χ_{c1}

$$\langle V | \overline{c} \gamma^{\mu} (1 - \gamma^{5}) b | B_{c}^{+} \rangle$$

$$= \int \frac{\mathrm{d}\vec{q}}{(2\pi)^{3}} \mathrm{Tr} \left[\frac{\not P}{M} \overline{\varphi}_{P_{f}}^{++} (\vec{q} + \alpha_{2} \vec{P}_{f}) \gamma^{\mu} (1 - \gamma^{5}) \varphi_{P}^{++} (\vec{q}) \right]$$

$$= (t_{1}P^{\mu} + t_{2}P_{f}^{\mu}) \frac{\epsilon \cdot P}{M} + t_{3}(M + M_{f}) \epsilon^{\mu} + \frac{2t_{4}}{M + M_{f}} \mathrm{i} \varepsilon^{\mu\nu\sigma\delta} \epsilon_{\nu} P_{\sigma} P_{f\delta},$$

Relativistic corrections Method I and Method II

Expansion Method I

• Relativistic wave function of pseudoscalar

where
$$A_1 = \frac{M}{2} \left[\frac{\omega_1 + \omega_2}{m_1 + m_2} f_1 + f_2 \right], \qquad A_3 = -\frac{M(\omega_1 - \omega_2)}{m_1 \omega_2 + m_2 \omega_1} A_1,$$

 $A_2 = \frac{M}{2} \left[f_1 + \frac{m_1 + m_2}{\omega_1 + \omega_2} f_2 \right], \qquad A_4 = -\frac{M(m_1 + m_2)}{m_1 \omega_2 + m_2 \omega_1} A_1,$

and
$$\omega_i = \sqrt{m_i^2 - q_\perp^2} = \sqrt{m_i^2 + \vec{q}^2} \ (i = 1, 2)$$

- Expansion on $|\vec{q}|/M$ or $|\vec{q}|/m_i$ i = 1, 2, when q is small, these quantities are small, when q is large, these contribution will be suppressed by wave functions.
- \vec{q} relate to relative velocity between quarks $\vec{q} = \frac{m_1 m_2}{m_1 + m_2} \vec{v}$

Expansion Method II

• Expansion according to the wave functions

$$\varphi_{0^{-}}^{++}(q_{\perp}) = \varphi_{0}^{++}(q_{\perp}) + \varphi_{1}^{++}(q_{\perp}),$$

where

$$\varphi_0^{++}(q_\perp) = \left[A_1(q_\perp) + \frac{\not\!\!\!P}{M}A_2(q_\perp)\right]\gamma^5$$
$$\varphi_1^{++}(q_\perp) = \left[\frac{\not\!\!\!q_\perp}{M}A_3(q_\perp) + \frac{\not\!\!\!P\not\!\!\!q_\perp}{M^2}A_4(q_\perp)\right]\gamma^5$$

• Without expansion about ω_i on q, if $\omega_i = m_i + \vec{q}^2/2m_i$

and
$$f_1 = f_2$$
, then $\varphi_0^{++}(q_\perp) = M f_1 \left[\left(1 + \frac{\vec{q}^2}{4m_1m_2} \right) + \frac{\not P}{M} \left(1 - \frac{\vec{q}^2}{4m_1m_2} \right) \right] \gamma^5$

then the difference is leave to the q^2

Expansion Method II

So we have $\langle \eta_{c} | \bar{c} \gamma^{\mu} (1 - \gamma^{5}) b | B_{c}^{+} \rangle = T_{0} + T_{1} + T_{2}$ $= \int \frac{d\vec{q}}{(2\pi)^3} \operatorname{Tr} \left| \frac{\mathscr{P}}{M} \overline{\varphi}_{P_f}^{++}(\vec{q}') \gamma^{\mu} (1-\gamma^5) \varphi_P^{++}(\vec{q}) \right|$ $= \int \frac{d\vec{q}}{(2\pi)^3} \operatorname{Tr} \left[\frac{\not P}{M} (\overline{\varphi}_0^{'++} + \overline{\varphi}_1^{'++}) \gamma^{\mu} (1 - \gamma^5) (\varphi_0^{++} + \varphi_1^{++}) \right]$ $= \int \frac{d\vec{q}}{(2\pi)^3} \operatorname{Tr}\left[\frac{\mathscr{P}}{M}(\overline{\varphi}_0^{'++})\gamma^{\mu}(1-\gamma^5)(\varphi_0^{++})\right] \Leftrightarrow the \ leading \ order \ (LO)$ + $\int \frac{d\vec{q}}{(2\pi)^3} \operatorname{Tr} \left[\frac{\not P}{M} (\overline{\varphi}_1^{'++}) \gamma^{\mu} (1-\gamma^5) (\varphi_0^{++}) + \frac{\not P}{M} (\overline{\varphi}_0^{'++}) \gamma^{\mu} (1-\gamma^5) (\varphi_1^{++}) \right]$

 \Leftrightarrow the first order of relativistic correction (1stRC)

 \Leftrightarrow the second order of relativistic correction (2ndRC)

Expansion Method II

• Then

$$T|^{2} = (T_{0} + T_{1} + T_{2})(T_{0}^{*} + T_{1}^{*} + T_{2}^{*})$$

$$= |T_{0}|^{2} \Leftrightarrow LO$$

$$+ T_{0}T_{1}^{*} + T_{0}^{*}T_{1} \Leftrightarrow 1stRC$$

$$+ |T_{1}|^{2} + (T_{0}T_{2}^{*} + T_{0}^{*}T_{2}) \Leftrightarrow 2ndRC$$

$$+ T_{1}T_{2}^{*} + T_{1}^{*}T_{2} \Leftrightarrow 3rdRC$$

$$+ |T_{2}|^{2} \Leftrightarrow 4thRC.$$

Numerical results

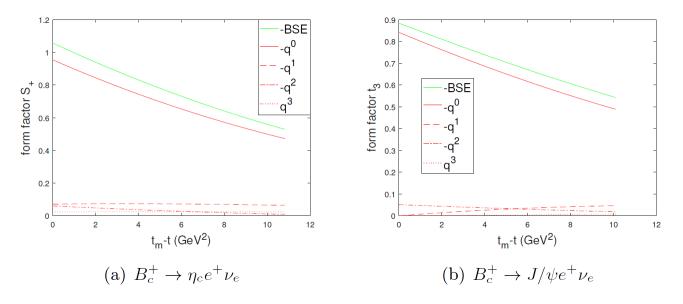
Numerical results

• Parameters

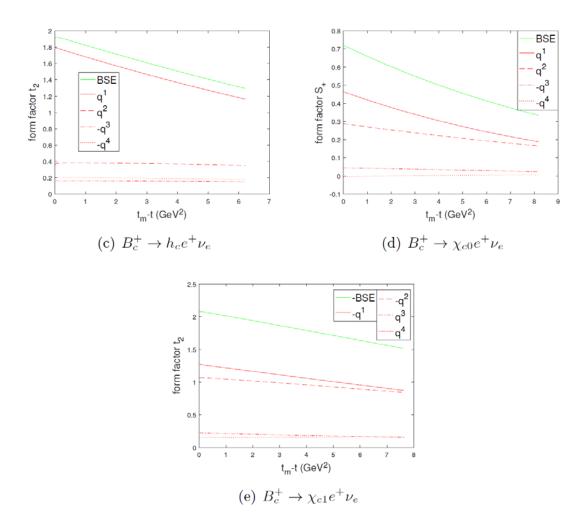
 $m_b = 4.96 \text{ GeV}, m_c = 1.62 \text{ GeV}, V_{cb} = 40.5 \times 10^{-3},$

 $M_{h_c(2P)} = 3.887 \text{ GeV}, \ M_{\chi_{c0}(2P)} = 3.862 \text{ GeV}, \ M_{\chi_{c1}(2P)} = 3.872 \text{ GeV}.$

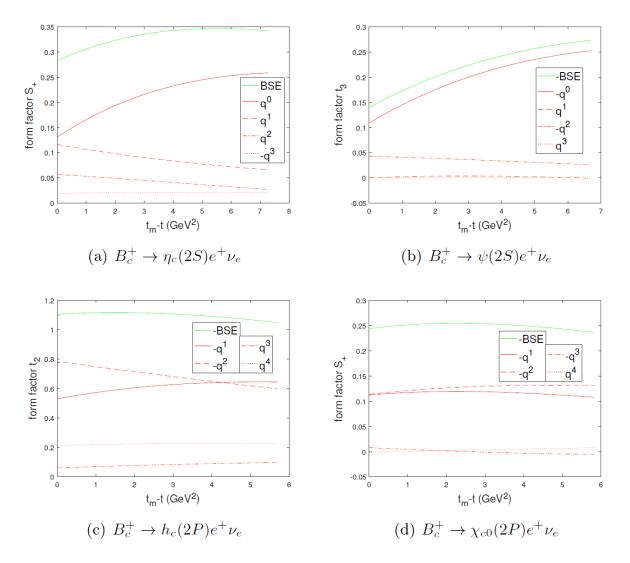
• Form factors



Form factors



Form factors



Branching ratios in Method I

Mode	$ec{q}^{0}$	$ec{q}^{1}$	$ec{q}^{2}$	$ec{q}^{3}$	$ec{q}^{4}$	$ec{q}^{5}$	$ec{q}^{6}$
η_c	47.4	11.0	4.10	-3.49	-0.390	-0.135	0.0811
J/ψ	157	20.2	18.8	0.517	0.150	-0.00270	0.0203
$\eta_c(2S)$	3.66	2.29	1.43	-0.294	-0.122	-0.0951	0.0284
$\psi(2S)$	6.88	1.87	2.74	0.362	0.185	0.0247	0.00849
$\eta_c(3S)$	0.408	0.339	0.293	-0.0100	-0.0133	-0.0287	0.00675
$\psi(3S)$	0.652	0.241	0.510	0.108	0.0809	0.0138	0.00282
Mode	$ec{q}$ 2	$ec{q}^{~3}$	$ec{q}^{\;4}$	$ec{q}$ 5	$ec{q}$ 6	$ec{q}$ 7	$ec{q}^{8}$
h_c	15.4	11.0	4.20	-0.420	-0.142	0.00354	0.0100
χ_{c0}	5.13	7.90	1.85	-1.12	-0.0765	0.0224	0.00224
χ_{c1}	7.82	1.50	2.30	0.218	-0.480	-0.0189	0.0278
$h_c(2P)$	1.75	1.86	1.11	-0.0110	-0.0810	-0.0168	0.00575
$\chi_{c0}(2P)$	0.508	1.16	0.635	-0.0776	-0.0531	0.00158	0.00121
$\chi_{c1}(2P)$	0.666	0.104	0.444	0.0265	-0.157	-0.00197	0.0159
$h_c(3P)$	0.173	0.249	0.207	0.0205	-0.0136	-0.00470	0.00103
$\chi_{c0}(3P)$	0.0731	0.220	0.170	-0.00436	-0.0183	-0.000377	0.000541
$\chi_{c1}(3P)$	0.0580	0.00784	0.0758	0.00580	-0.0379	-0.000542	0.00539

Table 1. The branch ratios of $B_c^+ \to (c\bar{c}) + e^+ + \nu_e$ in Method I according to the power \vec{q}^n (in 10^{-4}).

Branching ratios in Method II

Mode	LO	1st	2nd	3rd	4th	$\operatorname{Total}(BS)$
η_c	44.1	8.24	7.32	0.650	0.279	60.7
J/ψ	158	18.2	15.2	1.94	0.219	193
$\eta_c(2S)$	3.24	1.81	1.71	0.420	0.166	7.34
$\psi(2S)$	6.96	1.66	2.00	0.353	0.108	11.1
$\eta_c(3S)$	0.355	0.272	0.311	0.101	0.0475	1.09
$\psi(3S)$	0.651	0.201	0.365	0.0834	0.0388	1.34
h_c	14.7	10.2	5.21	0.688	0.0822	30.9
χ_{c0}	5.20	7.88	2.03	-0.736	0.0453	14.4
χ_{c1}	7.75	1.35	2.31	0.307	0.0292	11.8
$h_c(2P)$	1.61	1.67	1.27	0.288	0.0448	4.88
$\chi_{c0}(2P)$	0.523	1.16	0.664	0.0211	0.000490	2.37
$\chi_{c1}(2P)$	0.650	0.0804	0.406	0.0353	0.00421	1.18
$h_c(3P)$	0.159	0.228	0.222	0.0614	0.0111	0.682
$\chi_{c0}(3P)$	0.0760	0.221	0.175	0.0208	0.000717	0.493
$\chi_{c1}(3P)$	0.0562	0.00589	0.0615	0.00427	0.000765	0.129

Mode	\vec{q}^{0}	sum	BS	NR	$\frac{\text{BS}-\text{sum}}{\text{BS}}$
η_c	47.4	58.6	60.7	56.7	3.4%
J/ψ	157	197	193	188	-1.8%
$\eta_c(2S)$	3.66	6.90	7.34	4.48	6.0%
$\psi(2S)$	6.88	12.1	11.1	8.40	-8.8%
$\eta_c(3S)$	0.408	0.995	1.09	0.509	8.7%
$\psi(3S)$	0.652	1.61	1.34	0.806	-20%
Mode	\vec{q}^2	sum	BS	NR	$\frac{BS-sum}{BS}$
h_c	15.4	30.0	30.9	18.8	2.9%
χ_{c0}	5.13	13.7	14.4	6.28	4.8%
χ_{c1}	7.82	11.4	11.8	9.60	2.8%
$h_c(2P)$	1.75	4.62	4.88	2.18	5.3%
$\chi_{c0}(2P)$	0.508	2.17	2.37	0.633	8.4%
$\chi_{c1}(2P)$	0.666	1.10	1.18	0.853	7.2%
$h_c(3P)$	0.173	0.633	0.682	0.220	7.1%
$\chi_{c0}(3P)$	0.0731	0.440	0.493	0.0923	11%
$\chi_{c1}(3P)$	0.0580	0.114	0.129	0.0735	11%

Table 3. Comparisons of the branch ratios of $B_c^+ \to (c\bar{c}) + e^+ + \nu_e$ obtained by different ways, where $\vec{q}^{\ 0}$ means the leading order result; sum means the sum of all of expansion orders; **BS** means the result by BS method without expansion, and **NR** means the result by the non-relativistic wave function and the leading order expansion of the amplitude (in 10^{-4} except the last column).

Relativistic effects

Method	η_c	J/ψ	$\eta_c(2S)$	$\psi(2S)$	$\eta_c(3S)$	$\psi(3S)$
Ι	21.9	18.8	50.2	38.0	62.5	51.3
II	27.3	18.5	55.8	37.2	67.3	51.5

Table 4. The relativistic effects of $B_c^+ \to (c\bar{c})e^+\nu_e$: $\frac{BS-LO}{BS}$ from two methods (in %).

Method	h_c	χ_{c0}	χ_{c1}	$h_c(2P)$	$\chi_{c0}(2P)$	$\chi_{c1}(2P)$	$h_c(3P)$	$\chi_{c0}(3P)$	$\chi_{c1}(3P)$
Ι	50.2	64.4	33.7	64.1	78.5	43.3	74.6	85.2	54.9
II	52.5	63.9	34.0	67.0	77.9	44.7	76.7	84.6	56.3

Table 5. The relativistic effects of $B_c^+ \to (c\bar{c})e^+\nu_e$: $\frac{BS-LO}{BS}$ from two methods (in %).

Bc to tau

Method	η_c	J/ψ	$\eta_c(2S)$	$\psi(2S)$	$\eta_c(3S)$	$\psi(3S)$
Ι	18.4	15.8	53.8	39.1	65.6	52.6
II	21.3	15.7	56.7	39.7	66.6	55.3

Table 9. The relativistic effects of $B_c^+ \to (c\bar{c})\tau^+\nu_{\tau}$: $\frac{BS-LO}{BS}$ from two methods (in %).

Method	h_c	χ_{c0}	χ_{c1}	$h_c(2P)$	$\chi_{c0}(2P)$	$\chi_{c1}(2P)$	$h_c(3P)$	$\chi_{c0}(3P)$	$\chi_{c1}(3P)$
Ι	58.3	76.0	37.2	78.0	90.0	56.2	92.1	95.9	79.8
II	59.0	75.8	37.6	78.8	89.8	56.8	92.1	95.7	80.3

Table 10. The relativistic effects of $B_c^+ \to (c\bar{c})\tau^+\nu_\tau$: $\frac{BS-LO}{BS}$ from two methods (in %).

Summary

- Relativistic corrections (RC) in the semileptonic Bc decays to charmonium are large.
- RC of 1S are about 19~22%
- RC of 2S are about 38~50%
- RC of 3S are about 51~62%
- RC of 1P are about 34~64%
- RC of 2P are about 43~79%
- RC of 3P are about 55~85%
- Relativistic corrections are very important for excited heavy mesons.

Thank you!