

Revisiting the unitary constraints on dimension six operators in SMEFT

Ya Zhang (张亚) Peking University

> in collaboration with Jue Zhang and Qing-Hong Cao To be appeared at arXiv:1811.xxxxx

HFCPV-2018 2018.10.28

Already good analysis exist

YITP-SB-14-46

Unitarity Constraints on Dimension-Six Operators

Tyler Corbett^{*}

C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

O. J. P. Éboli[†] Instituto de Física, Universidade de São Paulo, São Paulo – SP, Brazil.

M. C. Gonzalez–Garcia[‡] Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 647 Diagonal, E-08028 Barcelona, Spain and C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

YITP-SB-17-19

Unitarity Constraints on Dimension-six Operators II: Including Fermionic Operators

Tyler Corbett^{*} ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria, Australia

O. J. P. Éboli[†] Instituto de Física, Universidade de São Paulo, São Paulo – SP, Brazil

M. C. Gonzalez–Garcia[‡] Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 647 Diagonal, E-08028 Barcelona, Spain and C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

Already good analysis exist

YITP-SB-14-46

Unitarity Constraints on Dimension-Six Operators

Tyler Corbett* C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

> O. J. P. Éboli[†] Instituto de Física, Universidade de São Paulo, São Paulo - SP, Brazil.

Unitarity Constraints on Dime

Tyler Corbett* ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria, Australia

O. J. P. Éboli[†] Instituto de Física, Universidade de São Paulo, São Paulo - SP, Brazil

M. C. Gonzalez–Garcia[‡] Institució Catalana de Recerca i Estudis Avançats (ICREA), Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 647 Diagonal, E-08028 Barcelona, Spain and C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA

Motivation

Motivation

Operator combination Unitary limitation (Possible) cancellation Specific NP structure? Long before Higgs discovery, unitary already told us very useful information about *new physics* scale m_H

 $\propto \mathcal{O}(E^4)$

 W^+

 W^{-}

 W^+

 W^{-}

 $\propto \mathcal{O}(E^4)$

 $\propto \mathcal{O}(E^2)$

H

 $\propto \mathcal{O}(E^2)$

$$a^{J} = A(\frac{E}{M_{W}})^{4} + B(\frac{E}{M_{W}})^{2} + C_{A}$$

Gauge principle $\Rightarrow A = 0$; Higgs Involved $\Rightarrow (B = 0) \& (C < \#)$

Non-trivial cancellation occurs to save unitarity

Long before Higgs discovery, unitary already told us very useful information about *new physics* scale m_H

 $\propto \mathcal{O}(E^4)$

 W^+

 W^{-}

 W^+

 W^{-}

 $\propto \mathcal{O}(E^4)$

 $\propto \mathcal{O}(E^2)$

H

 $\propto \mathcal{O}(E^2)$

$$a^{J} = A(\frac{E}{M_{W}})^{4} + B(\frac{E}{M_{W}})^{2} + C$$

Gauge principle $\Rightarrow A = 0$; Higgs Involved $\Rightarrow (B = 0) \& (C < \#)$

Unitarity constrain the mass of Higgs

Without any new states discovery on LHC (up to now), SMEFT is a suitable tools to describe NP

Without any new states discovery on LHC (up to now), SMEFT is a suitable tools to describe NP

 $E \sim \Lambda_{NP}$

UV complete theory, probably containing new particles

 $E \sim \langle v_{EM} \rangle \qquad \qquad \mathscr{S}_{\mathsf{SMEFT}} = \mathscr{S}_{\mathsf{SM}} + \sum_{n=1}^{\infty} \sum_{i} \frac{C_{i}}{\Lambda^{n}} O_{i} \quad \begin{array}{l} \mathsf{All SM particles presented,} \\ \mathsf{with } SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \text{ imposed} \end{array}$

 $E \sim m_b$ $\mathscr{L}_W = \mathscr{L}_{\text{QCD}} + \mathscr{L}_{\text{QED}} + \mathscr{L}_{4f} \quad \text{with } SU(3)_c \times U(1)_Q \text{ imposed}$ $+ \dots$

Only some SM particles presented,

Without any new states discovery on LHC (up to now), SMEFT is a suitable tools to describe NP

 $\mathscr{L}_{\mathsf{SMEFT}} = \mathscr{L}_{\mathsf{SM}} + \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{C_{i}}{\Lambda^{n}} O_{i}$

Phys.Rev. D91 (2015) 096007

Without any new states discovery on LHC (up to now), SMEFT is a suitable tools to describe NP

 $\mathscr{L}_{\mathsf{SMEFT}} = \mathscr{L}_{\mathsf{SM}} + \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{C_i}{\Lambda^n} O_i$

Question:

Is it still a valid tool for the anticipated c.m.s energy $\sqrt{s_{eff}} \sim 4 - 5$ TeV ?

If no unitary violation were found in the future, possible cancellation?

Operators constrained by unitary condition (Warsaw basis)

\mathcal{O}_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$\mathcal{O}_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$\mathcal{O}_{arphi D}$	$(arphi^{\dagger}D^{\mu}arphi)^{*}(arphi^{\dagger}D_{\mu}arphi)$
$\mathcal{O}_{arphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	$\mathcal{O}_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	$\mathcal{O}_{arphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu u} B^{\mu u}$
$\mathcal{O}_{arphi l}^{(1)}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi)(ar{l}_{p}\gamma^{\mu}l_{r}) ight)$	$\mathcal{O}_{arphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$\mathcal{O}_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$\mathcal{O}^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$\mathcal{O}^{(3)}_{arphi q}$	$ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r}) $	$\mathcal{O}_{arphi u}$	$(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}u_{r})$
$\mathcal{O}_{arphi d}$	$\left (arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{d}_p \gamma^\mu d_r) ight $	$\mathcal{O}_{arphi ud}$	$(\widetilde{arphi}^{\dagger}iD_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$		
\mathcal{O}_{eW}	$\left (\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu} \right $	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	O_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$
\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	\mathcal{O}_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$

Four fermion operator: they play with themselves, almost no combination occurs.

With universal flavor assumption

1008.4884 hep-ph/9612268

Operators constrained by unitary condition (HISZ basis)

Using EOM

$$2O_{W}^{HISZ} - \frac{1}{4}g^{2}O_{\varphi W} - \frac{1}{4}g_{1}gO_{\varphi WB} + \frac{3}{4}g^{2}O_{\varphi \Box} = -\frac{g^{2}}{4}\left[O_{\varphi l}^{(3)} + O_{\varphi q}^{(3)}\right]$$

$$2O_{B}^{HISZ} - \frac{1}{4}g_{1}^{2}O_{\varphi B} - \frac{1}{4}g_{1}gO_{\varphi WB} + g_{1}^{2}\left(O_{\varphi D} + \frac{1}{4}O_{\varphi \Box}\right) = -\frac{g_{1}^{2}}{2}\left[-\frac{1}{2}O_{\varphi l}^{(1)} + \frac{1}{6}O_{\varphi q}^{(1)} - O_{\varphi e} + \frac{2}{3}O_{\varphi u} - \frac{1}{3}O_{\varphi d}\right]$$

Trade $\{O_{\varphi l}^{(1)}, O_{\varphi l}^{(3)}\}$ for $\{O_W^{HISZ}, O_B^{HISZ}\}$

$$D_{W}^{HISZ} \equiv \left(D_{\mu}\phi\right)^{\dagger} \left(ig\frac{\tau^{i}}{2}W^{i;\mu\nu}\right)\left(D_{\nu}\phi\right)$$
$$O_{B}^{HISZ} \equiv \left(D_{\mu}\phi\right)^{\dagger} \left(i\frac{g_{1}}{2}B^{\mu\nu}\right)\left(D_{\nu}\phi\right)$$

With universal flavor assumption

1008.4884 hep-ph/9612268

Question:

Theoretically equivalent; How about phenomenology?

Unitary condition & SMEFT

For scattering matrix S,

$$1 = S^{\dagger}S = (1 + iT)^{\dagger}(1 + iT) \Rightarrow -i(T - T^{\dagger}) = T^{\dagger}T$$

Partial wave unitarity

$$\langle i | T | f \rangle \sim \sum_{J} (2J+1)d^{J}(\theta)a^{J} \Rightarrow |Re(a^{J})| \leq \frac{1}{2}$$

SM & SMEFT interference terms for $\langle v_{EM} \rangle \ll \sqrt{s} \leq \Lambda$:

$$a^J \propto s \frac{C_i}{\Lambda^2} + o(s^{1/2}) \Rightarrow |s \frac{C_i}{\Lambda^2}| \le f_i$$

Unitary condition

1. Calculate all relevant partial wave helicity amplitudes with condition

 $\langle v_{EM} \rangle \ll \sqrt{s} \le \Lambda$

- 2. Using couple channel method to strength the unitary constraint
- 3. Analytically or numerically solve the couple channel system, require

each eigenvalue smaller than some constants (e.g. 1/2 for $VV \rightarrow VV$

scattering) then marginalize the unitary bounds to individual operators.

Dealing with Identical Particles

$$\langle i | T | f \rangle = \langle A_{\lambda_1} B_{\lambda_2} | T | C_{\lambda_3} D_{\lambda_4} \rangle \sim I_{iden} \sum_J (2J+1) d^J_{\alpha\beta}(\theta) a^J_{\alpha\beta}$$

Where the identical-particle factor reads

$$I_{iden} = \sqrt{\delta_{A\lambda_1, B\lambda_2} + 1} \sqrt{\delta_{C\lambda_3, D\lambda_4} + 1}$$

Dealing with Identical Particles

$$\langle i | T | f \rangle = \langle A_{\lambda_1} B_{\lambda_2} | T | C_{\lambda_3} D_{\lambda_4} \rangle \sim I_{iden} \sum_{I} (2J+1) d^J_{\alpha\beta}(\theta) a^J_{\alpha\beta}$$

Where the identical-particle factor reads

$$I_{iden} = \sqrt{\delta_{A,B} + 1} \sqrt{\delta_{C,D} + 1}$$

It has nothing to do with helicity of particles

For those identical particles with different helicities, a factor $\sqrt{2}$ is missing.

 I_{iden} stems from two different sources:

one is to account for the phase space double counting for the case $\lambda_3 = \lambda_4$, the other is to account for the wrong normalization of the identical two particle states for the case $\lambda_3 \neq \lambda_4$

Verified also by e.g. 1610.08420

Unitary condition

1. Calculate all relevant partial wave helicity amplitudes with condition

 $\langle v_{EM} \rangle \ll \sqrt{s} \le \Lambda$

- 2. Using couple channel method to strength the unitary constraint
- 3. Analytically or numerically solve the couple channel system, require

each eigenvalue smaller than some constants (e.g. 1/2 for $VV \rightarrow VV$

scattering) then marginalize the unitary bounds to individual operators.

Couple Channel Analysis — $VV \rightarrow VV$ process

$$W^+W^- \to W^+W^-, W^+W^- \to ZZ, W^+W^- \to Z\gamma, W^+W^- \to Zh$$

 $W^+W^- \to \gamma\gamma, W^+W^- \to \gamma h, W^+W^- \to hh$

and classified by (Q,J) Combine these scattering processes

 $e \cdot g \cdot Q = 0$

 $(W^+W^- ZZ Z\gamma Zh \gamma\gamma \gamma h hh)$ $\begin{pmatrix} W^+W^-\\ Z Z\\ Z\gamma\\ Zh\\ \gamma\gamma\\ \gammah\\ hh \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} & \dots\\ A_{21} & \ddots & \ddots\\ & \ddots & \\ & \ddots & \\ & \ddots & \\ & A_{71} & \dots & A_{77} \end{pmatrix} \qquad A_{ij}: 9 \times 9 \text{ matrix (helicity partial wave amplitudes)}$

Benjamin W. Lee, et al. Phys.Rev. D16 (1977) 1519

Couple Channel Analysis — $f\bar{f} \rightarrow VV$ process $e^+e^- \rightarrow W^+W^-, e^+e^- \rightarrow ZZ, u\bar{u} \rightarrow W^+W^-, u\bar{u} \rightarrow ZZ, \dots$ and classified by (Q,J) Combine initial fermion pair $e \, . \, g \, . \, Q = 0$ $\frac{1}{\sqrt{2N_g}} \left| \sum_{i=1}^{N_g} \left(e^-_{-,i} e^+_{+,i} + \nu_{-,i} \bar{\nu}_{+i} \right) \right\rangle \to W_0^+ W_0^ \frac{1}{\sqrt{2N_g(1+N_c)}} \left| \sum_{i=1}^{N_g} \left(-e^-_{-,i}e^+_{+,i} + \nu_{-,i}\bar{\nu}_{+i} + \sum_{a=1}^{N_c} \left(-d^a_{-,i}\bar{d}^a_{+,i} + u^a_{-,i}\bar{u}^a_{+,i} \right) \right) \right\rangle \to W^+_+ W^-_+$ N_g : generations

U. Baur and D. Zeppenfeld, Phys. Lett. B201, 383 (1988)

Couple Channel Analysis — $f\bar{f} \rightarrow VV$ process

 $e^+e^- \rightarrow W^+W^-, e^+e^- \rightarrow ZZ, u\bar{u} \rightarrow W^+W^-, u\bar{u} \rightarrow ZZ, \dots$

 $e \cdot g \cdot Q = 0$

Combination of VV states; Singular Value Decomposition

A factor of \sqrt{m} is missing, with m being the number of different final states

Helicity amplitudes: combination of operators

1.Field & parameter redefinition

e.g.
$$O_{\varphi W}$$
: $(\varphi^{\dagger}\varphi)W^{I}_{\mu\nu}W^{I\mu\nu} \Rightarrow \frac{v^{2}}{2}W^{I}_{\mu\nu}W^{I\mu\nu}$
 $\Rightarrow W^{I}_{\mu} \rightarrow (1 + v^{2}O_{\varphi W})W^{I,r}_{\mu}, g \rightarrow (1 - v^{2}O_{\varphi W})g^{r}$

2.Gauge symmetry protection (inferred)

1. Field & parameter redefinition

e.g.
$$O_{\varphi W}$$
: $(\varphi^{\dagger}\varphi)W^{I}_{\mu\nu}W^{I\mu\nu} \Rightarrow \frac{v^{2}}{2}W^{I}_{\mu\nu}W^{I\mu\nu}$
 $\Rightarrow W^{I}_{\mu} \rightarrow (1 + v^{2}O_{\varphi W})W^{I,r}_{\mu}, g \rightarrow (1 - v^{2}O_{\varphi W})g^{r}$

2.Gauge symmetry protection (inferred)

Wrong example: w/o redefinition (and using original propagators & vertices):

$$\mathscr{M}(W^+W^- \to W^+W^-): \frac{s^2}{\Lambda^2} \frac{O_{\varphi W}(12\cos(\theta) + \cos(2\theta) - 5)}{4\mathsf{m}\mathsf{w}^2}$$

1. Field & parameter redefinition

(a)

Z

(d)

W z {

W (g)

e.g.
$$\mathcal{O}_{\varphi W}$$
: $(\varphi^{\dagger}\varphi)W^{I}_{\mu\nu}W^{I\mu\nu} \Rightarrow \frac{v^{2}}{2}W^{I}_{\mu\nu}W^{I\mu\nu}$
 $\Rightarrow W^{I}_{\mu} \rightarrow (1 + v^{2}\mathcal{O}_{\varphi W})W^{I,r}_{\mu}, g \rightarrow (1 - v^{2}\mathcal{O}_{\varphi W})g^{r}$

2.Gauge symmetry protection (inferred)

Wrong example: w/o redefinition (and using original propagators & vertices):

$$\mathcal{M}(W^{+}W^{-} \to W^{+}W^{-}): \frac{s^{2}}{\Lambda^{2}} \frac{\mathcal{O}_{\varphi W}(12\cos(\theta) + \cos(2\theta) - 5)}{4mw^{2}}$$
New terms in SM results, induced by redefinition ($\mathcal{O}(s^{2})$):
$$\begin{bmatrix} g^{2}s^{2}(12\cos(\theta) + \cos(2\theta) - 5) \\ - \frac{g^{2}g^{2}s^{2}\cos(\theta)}{4mw^{4}(g^{2} + g^{2})} \\ - \frac{g^{4}s^{2}\cos(\theta)}{4mw^{4}(g^{2} + g^{2})} \\ \frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}{8mw^{4}(g^{2} + g^{2})} \\ \frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}{8mw^{4}(g^{2} + g^{2})} \\ \frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}{8mw^{4}(g^{2} + g^{2})} \\ (added up) \Downarrow \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} (1 + 4v^{2}\mathcal{O}_{\varphi W} + 2\frac{g}{g_{1}}\frac{g^{2}}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[-\frac{g^{4}g^{2}s^{2}\cos(\theta)}{4mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[-\frac{g^{4}s^{2}\cos(\theta)}{4mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[\frac{g^{2}g^{2}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}}{8mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[\frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}}{8mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[\frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}}{8mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[\frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}}{8mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[\frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}}{8mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}) \left[\frac{g^{4}s^{2}\sin^{2}(\frac{\theta}{2})(\cos(\theta) + 3)}}{8mw^{4}(g^{2} + g^{2})} \right] \\ (1 + 4v^{2}\mathcal{O}_{\varphi W} - 2\frac{g_{1}g}{g_{1}^{2} + g^{2}}v^{2}\mathcal{O}_{\varphi WB}} \right]$$

1.Field & parameter redefinition2.Gauge symmetry protection (inferred)

Take $\epsilon_{abc} W^a_{\mu\nu} W^b_{\nu\rho} W^c_{\rho\mu}$ as an example:

Naive counting:

$$O_W \Rightarrow c_{32} = -c_{31} = c_{41} = c_{42} = c_{43}$$

What if C_i are arbitrary?

1.Field & parameter redefinition2.Gauge symmetry protection (inferred)

Take
$$\epsilon_{abc}W^a_{\mu\nu}W^b_{\nu\rho}W^c_{\rho\mu}$$
 as an example:
 $O_W \Rightarrow c_{32} = -c_{31} = c_{41} = c_{42} = c_{43}$
What if C_i are arbitrary?
 $\frac{igC_W f_{abc}}{\Lambda^2} (c_{31}T_{31} + c_{32}T_{32})$
 A^a_{α}
 p^a
 A^a_{α}
 A^a_{α}

For $W^+W^- \rightarrow W^+W^-$, the helicity amplitudes read as

$$\mathcal{M}_{(++,++),(++,+0),(++,+-)} = (\#) \, s^3 + (\#) \, s^{5/2} + (\#) \, s^2 + (\#) \, s^{3/2} + (\#) \, s + \dots$$
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 &$$

1.Field & parameter redefinition2.Gauge symmetry protection (inferred)

 $\begin{array}{l} \text{Take } \epsilon_{abc} W^a_{\mu\nu} W^b_{\nu\rho} W^c_{\rho\mu} \text{ as an example:} \qquad A^a_{\alpha} \qquad \qquad A^a_{\alpha$

For $W^+W^- \rightarrow W^+W^-$, the helicity amplitudes read as

$$\mathcal{M}_{(++,++),(++,+0),(++,+-)} = (\#) s^{3} - (\#) s^{5/2} + (\#) s^{2} + (\#) s^{3/2} + (\#) s + \dots$$

Gauge structure restored! Spurious high energy terms disappear! Hard to get analytical bounds for all operators

Numerical method

MultiNest program ⇒ numerically get the unitary bounds for

each operators (with other operators non-vanishing)

However, very unlikely to make random test points sit just onto the boundary

 \Rightarrow very inefficient

We have to turn on 20 operators **simultaneously**

Hard to get analytical bounds for all operators

Numerical method

MultiNest program ⇒ numerically get the unitary bounds for

each operators (with other operators non-vanishing)

However, very unlikely to make random test points sit just onto the boundary

\Rightarrow very inefficient

Eigen values $\sim \frac{\delta}{\Lambda^2} f(c_i)$, with $f(c_i)$ being homogeneous linear functions

 \Rightarrow rescale all operators to make the test point just sit onto the unitary boundary.

Main results

Numerical results on unitary bounds

Operator Name	One-at-a-time Bounds	Couple Channel Bound on Wilson coefficients C_i		
Operator Manie	on Wilson coefficients C_i	Numerical results (Warsaw)	Numerical results (HISZ)	
\mathcal{O}_W	6.27	$6.27 \left(\frac{4\pi}{3g}\right)$	$6.27 \left(\frac{4\pi}{3g}\right)$	
$\mathcal{O}_{arphi \Box}$	16.76	16.76	55.22	
$\mathcal{O}_{\varphi D}$	50.27	67.02	99.74	
$\mathcal{O}_{arphi W}$	10.26	10.26	17.95	
${\cal O}_{arphi B}$	17.77	17.77	18.35	
$\mathcal{O}_{arphi WB}$	25.13	25.13	58.18	
$\mathcal{O}_W^{\mathrm{HISZ}}$	80.80	/	$137.96(\frac{8\sqrt{6}\pi}{q^2})$	
$\mathcal{O}_B^{\mathrm{HISZ}}$	378.87	/	$978.23(\frac{16\sqrt{6}\pi}{g_1^2})$	
\mathcal{O}_{eW}	12.57	$12.57(4\pi)$	$12.57(4\pi)$	
\mathcal{O}_{eB}	21.77	$21.77(4\sqrt{3}\pi)$	$21.767(4\sqrt{3}\pi)$	
\mathcal{O}_{uW}	7.26	$7.26(\frac{4\pi}{\sqrt{3}})$	$7.26(\frac{4\pi}{\sqrt{3}})$	
${\cal O}_{uB}$	12.57	$12.57(4\pi)$	$12.57(4\pi)$	
\mathcal{O}_{dW}	7.26	$7.26(\frac{4\pi}{\sqrt{3}})$	$7.26(\frac{4\pi}{\sqrt{3}})$	
\mathcal{O}_{dB}	12.57	$12.57(4\pi)$	$12.57(4\pi)$	
$\mathcal{O}^{(1)}_{arphi l}$	15.39	$15.39(2\sqrt{6}\pi)$	0 ^a	
$\mathcal{O}^{(3)}_{arphi l}$	15.39	$15.39(2\sqrt{6}\pi)$	0 ^b	
$\mathcal{O}_{arphi e}$	21.77	$21.76(4\sqrt{3}\pi)$	$37.70(12\pi)$	
$\mathcal{O}_{arphi q}^{(1)}$	8.89	$8.88(2\sqrt{2}\pi)$	$10.26(4\sqrt{\frac{2}{3}}\pi)$	
${\cal O}^{(3)}_{arphi q}$	8.89	$8.88(2\sqrt{2}\pi)$	$8.88(2\sqrt{2}\pi)$	
$\mathcal{O}_{arphi u}$	12.57	$12.56(4\pi)$	$24.06(4\sqrt{\frac{11}{3}}\pi)$	
$\mathcal{O}_{arphi d}$	12.57	$12.56(4\pi)$	$16.22(4\sqrt{\frac{5}{3}}\pi)$	
$\mathcal{O}_{arphi ud}$	17.77	$17.77(4\sqrt{2}\pi)$	$17.77(4\sqrt{2}\pi)$	

 $|s\frac{C_i}{\Lambda^2}| \le f_i$

^{a,b} flavor universality is assumed

parentheses: partial analytical results.

w/ v.s. w/o couple-channel analysis In two operator basis

The Warsaw basis seems more "independent" than HISZ basis

Question:

Theoretically equivalent; How about phenomenology?

Combine with global fit results

Unitary bounds:
$$|s \frac{C_i}{\Lambda^2}| \le f_i$$

Global fit:
$$\left|\frac{C_i}{\Lambda^2}\right| \le g_i$$

If C_i takes global fit boundary value: $\sqrt{s} \le \frac{f_i}{g_i}$

Combine with global fit results — HISZ basis

Operator Names	\sqrt{s}_{max} (TeV)	Operator Names	\sqrt{s}_{max} (TeV)	Operator Names	\sqrt{s}_{max} (TeV)
\mathcal{O}_W	5.7	$\mathcal{O}_{arphi \Box}$	1.4	$\mathcal{O}_{arphi D}$	14.6
$\mathcal{O}_{arphi W}$	3.7	$\mathcal{O}_{arphi B}$	6.6	$\mathcal{O}_{arphi WB}$	13.2
$\mathcal{O}_W^{ ext{HISZ}}$	2.6	$\mathcal{O}_B^{\mathrm{HISZ}}$	5.9	\mathcal{O}_{eW}	/
\mathcal{O}_{eB}	/	\mathcal{O}_{uW}	2.4	\mathcal{O}_{uB}	/
\mathcal{O}_{dW}	/	\mathcal{O}_{dB}	/	$\mathcal{O}_{arphi l}^{(1)}$	/
$\mathcal{O}^{(3)}_{arphi l}$	/	$\mathcal{O}_{arphi e}$	17.7	$\mathcal{O}^{(1)}_{arphi q}$	7.1
$\mathcal{O}^{(3)}_{arphi q}$	5.3	$\mathcal{O}_{arphi u}$	7.7	$\mathcal{O}_{arphi d}$	2.9
$\mathcal{O}_{arphi ud}$	29.2				Same and the second

Possible unitary violation on LHC (with anticipated \sqrt{s}_{eff} go up to 4-5 TeV)

$$\begin{array}{l} O_{\varphi\square}, \ \sqrt{s}_{max} = 1.46 \ {\rm TeV} \quad {\rm old} \ {\rm results} \ 2.1 \ {\rm TeV} \\ O_{\varphi W}, \ \sqrt{s}_{max} = 3.7 \ {\rm TeV} \quad {\rm old} \ {\rm results} \ 5.2 \ {\rm TeV} \\ O_{W}^{HISZ}, \ \sqrt{s}_{max} = 2.64 \ {\rm TeV} \quad {\rm old} \ {\rm results} \ 4.7 \ {\rm TeV} \\ O_{uW}, \ \sqrt{s}_{max} = 2.4 \ {\rm TeV} \quad {\rm old} \ {\rm results} \ 2.7 \ {\rm TeV} \\ O_{\varphi d}, \ \sqrt{s}_{max} = 2.9 \ {\rm TeV} \quad {\rm old} \ {\rm results} \ 3.5 \ {\rm TeV} \end{array}$$

EWPD constrains from 1705.09294

Combine with global fit results — HISZ basis

Operator Names	\sqrt{s}_{max} (TeV)	Operator Names	\sqrt{s}_{max} (TeV)	Operator Names	\sqrt{s}_{max} (TeV)
\mathcal{O}_W	5.7	$\mathcal{O}_{arphi \Box}$	1.4	$\mathcal{O}_{arphi D}$	14.6
$\mathcal{O}_{\varphi W}$	3.7	$\mathcal{O}_{arphi B}$	6.6	$\mathcal{O}_{arphi WB}$	13.2
$\mathcal{O}_W^{ ext{HISZ}}$	2.6	$\mathcal{O}_B^{\mathrm{HISZ}}$	5.9	\mathcal{O}_{eW}	/
\mathcal{O}_{eB}	/	\mathcal{O}_{uW}	2.4	\mathcal{O}_{uB}	/
\mathcal{O}_{dW}	/	\mathcal{O}_{dB}	/	$\mathcal{O}_{arphi l}^{(1)}$	/
$\mathcal{O}^{(3)}_{arphi l}$	/	$\mathcal{O}_{arphi e}$	17.7	$\mathcal{O}^{(1)}_{arphi q}$	7.1
$\mathcal{O}^{(3)}_{arphi q}$	5.3	$\mathcal{O}_{arphi u}$	7.7	$\mathcal{O}_{arphi d}$	2.9
$\mathcal{O}_{arphi ud}$	29.2				State State

Possible unitary violation on LHC (with anticipated \sqrt{s}_{eff} go up to 4-5 TeV)

Take care of these operators on LHC future analysis in SMEFT framework

$$\begin{array}{l} \mathcal{D}_{\varphi\square}, \\ \mathcal{D}_{\varphi\square}, \\ \mathcal{O}_{gW}, \\ \mathcal{D}_{\varphi W}, \\ \mathcal{N}_{max} = 3.7 \ \text{TeV} \ \text{old results } 5.2 \ \text{TeV} \\ \mathcal{N}_{max} = 3.7 \ \text{TeV} \ \text{old results } 5.2 \ \text{TeV} \\ \mathcal{N}_{W}, \\ \mathcal{N}_{s} \\ \mathcal{N}_{max} = 2.64 \ \text{TeV} \ \text{old results } 4.7 \ \text{TeV} \\ \mathcal{N}_{uW}, \\ \mathcal{N}_{s} \\ \mathcal{N}_{max} = 2.4 \ \text{TeV} \ \text{old results } 2.7 \ \text{TeV} \\ \mathcal{N}_{gd}, \\ \mathcal{N}_{s} \\ \mathcal{N}_{max} = 2.9 \ \text{TeV} \ \text{old results } 3.5 \ \text{TeV} \\ \end{array}$$

Combine with global fit results — Warsaw basis

13 operators in common

	Unitary Bound	Global Fit within	Global Fit In Our		
Operator Name	$\left \frac{\mathcal{O}_{is}}{\Lambda^2} \right < C$	95% CL, $\frac{\mathcal{O}_i \langle v \rangle^2}{\Lambda^2} \sim C''$	Convention $\frac{\mathcal{O}_i}{\sqrt{2}} \sim C'$	The upper bound on $\sqrt{s(\text{TeV})}$	
\mathcal{O}_W	6.270	-0.05 ± 0.06	-0.826 ± 0.991	1.86	
$\mathcal{O}_{arphi \Box}$	16.76	0.50 ± 0.27	8.26 ± 4.46	1.15	
$\mathcal{O}_{\varphi D}$	67.02	-0.001 ± 0.014	-0.0165 ± 0.231	16.46	
$\mathcal{O}_{arphi W}$	10.26	-0.002 ± 0.014	-0.0330 ± 0.231	6.23	
$\mathcal{O}_{arphi B}$	17.77	0.003 ± 0.005	0.0496 ± 0.0826	11.59	
$\mathcal{O}_{\varphi WB}$	25.13	0.006 ± 0.007	0.0991 ± 0.116	10.81	
$\mathcal{O}^{(1)}_{arphi l}$	15.39	0.002 ± 0.003	0.0330 ± 0.0496	13.65	
$\mathcal{O}^{(3)}_{arphi l}$	15.39	-0.015 ± 0.011	-0.248 ± 0.182	5.98	
$\mathcal{O}_{arphi e}$	21.76	0.002 ± 0.007	0.0330 ± 0.116	12.08	
$\mathcal{O}^{(1)}_{arphi q}$	8.88	-0.002 ± 0.003	-0.0330 ± 0.0496	10.37	
${\cal O}^{(3)}_{arphi q}$	8.88	-0.017 ± 0.013	-0.281 ± 0.215	4.23	
$\mathcal{O}_{arphi u}$	12.56	0.000 ± 0.011	0.000 ± 0.182	8.31	
$\mathcal{O}_{arphi d}$	12.56	-0.036 ± 0.017	0.595 ± 0.281	3.79	

Possible unitary violation on LHC (with anticipated \sqrt{s}_{eff} go up to 4-5 TeV)

 $O_W, \ \sqrt{s}_{max} = 1.86 \text{ TeV} \qquad O_{\varphi q}^{(3)}, \ \sqrt{s}_{max} = 4.23 \text{ TeV} \qquad \text{Global fits from} \\ O_{\varphi \Box}, \ \sqrt{s}_{max} = 1.15 \text{ TeV} \qquad O_{\varphi d}, \ \sqrt{s}_{max} = 3.79 \text{ TeV} \qquad 1803.03252 \end{aligned}$

With LHC Run2 data used

Without any new states discovery on LHC (up to now), SMEFT is a suitable tools to describe NP

 $\mathscr{L}_{\mathsf{SMEFT}} = \mathscr{L}_{\mathsf{SM}} + \sum_{i=1}^{\infty} \sum_{i=1}^{n} \frac{C_i}{\Lambda^n} O_i$

Question:

Is it still a valid tool for the anticipated c.m.s energy $\sqrt{s_{eff}} \sim 4 - 5$ TeV ?

If no unitary violation were found in the future, possible cancellation?

Ongoing...

Summary

- Unitary constraints on 20 dim-6 operators in SMEFT is re-obtained
 - With identical particle issues corrected
 - Couple-channel analysis for $f\bar{f} \rightarrow VV$ are presented
 - The results are reached for 20 operators simultaneously
 - The Wilson coefficients are constrained tighter now
- The Warsaw basis is less sensitive to operator combinations comparing with HISZ basis
- Global fit results are tight, thus still safe to use SMEFT in LHC scenario for most operators
- Operator combinations may be our new blind direction in boosted region

Outlooks

• The tail of distribution is sensible to high dimensional operators, helpful to

discriminate combinations \Rightarrow phenomenology study (ongoing);

- The low energy experiments constrain flavor-dependent operators very tight, needed to taken into account with RGE
- The CPV operators may also be constrained by unitary condition

Thanks for your attention !

Backups0

Where to find? —Tail effects

Operators contribute to observables in combinations, e.g.

Observable	$\delta O/O_{ m SM}$
$W_L^+ W_L^-$	$\left[(c_W + c_{HW} - c_{2W})T_f^3 + (c_B + c_{HB} - c_{2B})Y_f t_w^2 \right] \frac{E^2}{\Lambda^2}, \ c_f \frac{E^2}{\Lambda^2} $
$W_T^+ W_T^-$	$c_{3W}\frac{m_W^2}{\Lambda^2} + c_{3W}^2\frac{E^4}{\Lambda^4}, \ c_{TWW}\frac{E^4}{\Lambda^4}$
$W_L^{\pm} Z_L$	$\left(c_W + c_{HW} - c_{2W} + 4c_L^{(3)q}\right) \frac{E^2}{\Lambda^2}$
$W_T^{\pm} Z_T(\gamma)$	$c_{3W} \frac{m_W^2}{\Lambda^2} + c_{3W}^2 \frac{E^4}{\Lambda^4}, \ c_{TWB} \frac{E^4}{\Lambda^4}$
$W_L^{\pm}h$	$\left(c_W + c_{HW} - c_{2W} + 4c_L^{(3)q}\right) \frac{E^2}{\Lambda^2}$
Zh	$\left[(c_W + c_{HW} - c_{2W})T_f^3 - (c_B + c_{HB} - c_{2B})Y_f t_w^2 \right] \frac{E^2}{\Lambda^2}, \ c_f \frac{E^2}{\Lambda^2} $
$Z_T Z_T$	$(c_{TWW} + t_w^4 c_{TBB} - 2T_f^3 t_w^2 c_{TWB}) \frac{E^4}{\Lambda^4}$
$\gamma\gamma$	$(c_{TWW} + c_{TBB} + 2T_f^3 c_{TWB})\frac{E^4}{\Lambda^4}$
\hat{S}	$(c_W + c_B) \frac{m_W^2}{\Lambda^2}$
$h \to Z\gamma$	$(c_{HW} - c_{HB}) \frac{(4\pi v)^2}{\Lambda^2}$
$h \to W^+ W^-$	$(c_W + c_{HW}) \frac{m_W^2}{\Lambda^2}$

Where to find? —Tail effects

Where to find? —Tail effects

Backups1

Identical particle issues

*ref: Part. Phys. Nucl. Phys. Cosmol. 15, pp.76 (2011)

Symmetrized two particle states* for identical particle pair:

 $\left|\theta\phi;C_{\lambda_{3}}(k_{3})D_{\lambda_{4}}(k_{4})\right\rangle \Rightarrow \left(\frac{1}{\sqrt{2}}\right)^{1+\delta_{\lambda_{3}\lambda_{4}}} \left[\left|\theta\phi;C_{\lambda_{3}}(k_{3})D_{\lambda_{4}}(k_{4})\right\rangle + (-1)^{\lambda_{3}-\lambda_{4}}\left|(\pi-\theta)\phi;C_{\lambda_{3}}(k_{3}')D_{\lambda_{4}}(k_{4}')\right\rangle\right](C=D)$

Thus the symmetrized helicity amplitudes are $(A \neq B, C = D)$

$$\left(\frac{1}{\sqrt{2}}\right)^{1+\delta_{\lambda_{3}\lambda_{4}}} \left[1+(-1)^{2s}P_{C\leftrightarrow D}\right] f_{cd,ab}(\theta,\phi) = \left(\frac{1}{\sqrt{2}}\right)^{1+\delta_{\lambda_{3}\lambda_{4}}} \left[f_{cd,ab}(\theta,\phi)+(-1)^{-\lambda}f_{dc,ab}(\pi-\theta,\phi)\right]$$

$$Where _{(2\pi)^{4}\delta(k_{1}+k_{2}-k_{3}-k_{4})f_{cd,ab}(\theta,\phi) \equiv \frac{2\pi}{|p_{C}|} (2\pi)^{4}\delta(k_{1}+k_{2}-k_{3}-k_{4})\langle\theta\phi;cd|T|00;ab\rangle$$

$$= \frac{2\pi}{|p_{C}|} \langle V_{C,\lambda_{3}}(k_{3})V_{D,\lambda_{4}}(k_{4})|T|V_{A,\lambda_{1}}(k_{1})V_{B,\lambda_{2}}(k_{2})\rangle$$

$$(\lambda_{1}=a,\lambda_{2}=b\ldots)$$

and following equation is used

$$P_{C\leftrightarrow D}f_{cd,ab}(\theta,\phi) = (-1)^{-2s-\lambda} e^{-2i\phi\lambda'} f_{dc,ab}(\pi-\theta,\phi)$$

s: spin of particle C

$$\lambda = c - d, \lambda' = a - b$$

Identical particle issues

Thus the symmetrized helicity amplitudes are $(A \neq B, C = D)$

$$\left(\frac{1}{\sqrt{2}}\right)^{1+\delta_{\lambda_{3}\lambda_{4}}}\left[1+(-1)^{2s}P_{C\leftrightarrow D}\right]f_{cd,ab}(\theta,\phi) = \left(\frac{1}{\sqrt{2}}\right)^{1+\delta_{\lambda_{3}\lambda_{4}}}\left[f_{cd,ab}(\theta,\phi)+(-1)^{-\lambda}f_{dc,ab}(\pi-\theta,\phi)\right]$$

Then

$$\int |M|^2 \mathrm{d}\Omega \supset \int \mathrm{d}\Omega \left| \left(\frac{1}{\sqrt{2}} \right)^{1+\delta_{\lambda_3\lambda_4}} \left[f_{cd,ab}(\theta,\phi) + (-1)^{-\lambda} f_{dc,ab}(\pi-\theta,\phi) \right] \right|^2 \sim \int \mathrm{d}\Omega \left(\frac{1}{2} \right)^{1+\delta_{\lambda_3\lambda_4}} \left| \langle \theta\phi; cd | T | 00; ab \rangle + (-1)^{b-a} \langle (\pi-\theta)\phi; dc | T | 00; ab \rangle \right|^2 \\ = \int \mathrm{d}\Omega \left(\frac{1}{2} \right)^{1+\delta_{\lambda_3\lambda_4}} \left| \left(\langle \theta\phi; cd | + (-1)^{b-a} \langle (\pi-\theta)\phi; dc | \right) T | 00; ab \rangle \right|^2$$

Note that $\langle \theta \phi; cd |$ and $\langle (\phi - \theta) \phi; dc |$ do not interference if $\lambda_3 \neq \lambda_4$

We have to discuss separately

1.c = d, i.e. $\lambda_3 = \lambda_4$

 $\frac{1}{2} \int |M|^2 \mathrm{d}\Omega \supset \frac{1}{8} \int \mathrm{d}\Omega \left[|\langle \theta\phi; cd| T | 00; ab \rangle|^2 + |(-1)^{b-a} \langle (\pi - \theta)\phi; dc| T | 00; ab \rangle |^2 \right. \\ \left. + 2\mathrm{Re}((-1)^{b-a} \langle \theta\phi; cd| T | 00; ab \rangle^* \langle (\pi - \theta)\phi; dc| T | 00; ab \rangle) \right] \\ = \frac{1}{2} \int \mathrm{d}\Omega |\langle \theta\phi; cd| T | 00; ab \rangle|^2 \sim \frac{1}{2} \int \mathrm{d}\Omega |f_{cd,ab}(\theta, \phi)|^2.$

2. $c \neq d$, i.e. $\lambda_3 \neq \lambda_4$

$$\int |M|^2 \mathrm{d}\Omega \supset \frac{1}{2} \int \mathrm{d}\Omega \left[|\langle \theta\phi; cd | T | 00; ab \rangle|^2 + |(-1)^{b-a} \langle (\pi - \theta)\phi; dc | T | 00; ab \rangle|^2 \right]$$
$$= \frac{1}{2} \int \mathrm{d}\Omega \left[|\langle \theta\phi; cd | T | 00; ab \rangle|^2 + |\langle \theta\phi; dc | T | 00; ab \rangle|^2 \right].$$
$$= \frac{1}{2} \int \mathrm{d}\Omega \left[|f_{cd,ab}(\theta, \phi)|^2 + |f_{dc,ab}(\theta, \phi)|^2 \right].$$

Identical particle issues

1.*c* = *d*, i.e.
$$\lambda_3 = \lambda_4$$

$$\frac{1}{2} \int d\Omega |f_{cd,ab}(\theta, \phi)|^2$$

2.
$$c \neq d$$
, i.e. $\lambda_3 \neq \lambda_4$
$$\frac{1}{2} \int d\Omega \left[|f_{cd,ab}(\theta, \phi)| + |f_{dc,ab}(\theta, \phi)| \right]$$

While in our convention,

i.e. the symmetry factor I_{iden} should have nothing to do with helicities:

$$\begin{split} \left(\frac{1}{2}\right)^{\delta_{CD}} \int |M|^2 \supset \left(\frac{1}{2}\right)^{\delta_{CD}} \int \mathrm{d}\Omega \left[\sum_{cd} |f_{cd,ab}(\theta,\phi)|^2\right] \\ &= \delta_{CD} \delta_{cd} \frac{1}{2} \int \mathrm{d}\Omega |f_{cd,ab}(\theta,\phi)|^2 + \delta_{CD} (1-\delta_{cd}) \frac{1}{2} \int \mathrm{d}\Omega \left[|f_{cd,ab}(\theta,\phi)|^2 + |f_{dc,ab}(\theta,\phi)|^2\right] \\ &+ (1-\delta_{CD}) \int \mathrm{d}\Omega \left[|f_{cd,ab}(\theta,\phi)|^2 + |f_{dc,ab}(\theta,\phi)|^2\right]. \end{split}$$

Backups2

Using EOM to transform from one basis to another

EOM:
$$\sum_{i} a_{i} \mathcal{O}_{i} = \mathbf{0}$$

$$0 = \langle in | \sum_{i} a_{i} \mathcal{O}_{i} | fi \rangle = \sum_{i} a_{i} \langle in | \mathcal{O}_{i} | fi \rangle = \sum_{i} a_{i} m_{i}$$

For a seriese of operators
$$\sum_i C_i \mathscr{O}_i$$

$$\langle in | \sum_{i} C_i \mathcal{O}_i | fi \rangle = \sum_{i} C_i m_i$$
 with $\sum_{i} a_i m_i = 0$

Thus we can use $\sum_{i} a_i m_i = 0$ to transform from one basis to another

Backups3

wwza	-00+	$-\frac{g(2(\cos(\theta)+1)C_{\varphi WB}+3(\cos(\theta)-3)C_Wg_1)}{4\sqrt{g^2+g_1^2}}$
wwzh	00	$\frac{3}{2}gC_W\cos(\theta)$
wwzh	0000	$\frac{1}{2}C_{arphi D}\cos(heta)$
wwaa	00	$-\frac{2\left(C_{\varphi B}\overline{g}^{2}+C_{\varphi WB}g_{1}g+C_{\varphi W}g_{1}^{2}\right)}{g^{2}+g_{1}^{2}}$
ZZZZ	00	$-\frac{2\left(C_{\varphi W}g^2+C_{\varphi WB}g_1g+C_{\varphi B}g_1^2\right)}{g^2+g_1^2}$
ZZZZ	-0 + 0	$\frac{(\cos(\theta)-1)\left(C_{\varphi W}g^2+C_{\varphi WB}g_1g+C_{\varphi B}g_1^2\right)}{g^2+g_1^2}$
zzza	00	$\frac{C_{\varphi WB}g^2 + 2(C_{\varphi B} - C_{\varphi W})g_1g - C_{\varphi WB}g_1^2}{g^2 + g_1^2}$
zzza	-00+	$\frac{(\cos(\theta)+1)\left(-C_{\varphi WB}g^2+2(C_{\varphi W}-C_{\varphi B})g_1g+C_{\varphi WB}g_1^2\right)}{2\left(g^2+g_1^2\right)}$
zzaa	00	$-rac{2ig(C_{arphi B}g^2-C_{arphi WB}g_1g+C_{arphi W}g_1^2ig)}{g^2+g_1^2}$
zaza	0 - 0 +	$\frac{(\cos(\theta)-1)\left(C_{\varphi B}g^2 - C_{\varphi WB}g_1g + C_{\varphi W}g_1^2\right)}{g^2 + g_1^2}$

$$-\frac{g^{2}g_{1}\cos^{2}\left(\frac{\theta}{2}\right)}{8\sqrt{g^{2}+g_{1}^{2}}}\left(C_{B}^{HISZ}+C_{W}^{HISZ}\right)$$

$$0$$

$$-\frac{1}{4}C_{B}^{HISZ}\cos(\theta)g_{1}^{2}$$

$$-\frac{g^{2}g_{1}^{2}}{2(g^{2}+g_{1}^{2})}\left(C_{B}^{HISZ}+C_{W}^{HISZ}\right)$$

$$-\frac{(C_{W}^{HISZ}+C_{B}^{HISZ})g^{2}}{4}$$

$$\frac{1}{8}(\cos(\theta)-1)\left(C_{W}^{HISZ}g^{2}+C_{B}^{HISZ}g_{1}^{2}\right)$$

$$\frac{1}{8}gg_{1}\left(C_{B}^{HISZ}-C_{W}^{HISZ}\right)$$

$$\frac{1}{8}gg_{1}\cos^{2}\left(\frac{\theta}{2}\right)\left(C_{W}^{HISZ}-C_{B}^{HISZ}\right)$$

$$0$$

$$0$$

1001

Process	Helicity	Warsaw basis	
enwz	-+	$-\frac{3g^2C_W\sin(\theta)}{\sqrt{2}\sqrt{g^2+g_1^2}}$	
enwz	-+00	$\sqrt{2}\sin(\theta)C^{(3)}_{arphi l}$	
enwz	+ + + 0	$\sqrt{2}\sin(\theta)C_{eW}$	
enwz	+ + 0 +	$\frac{\sqrt{2}\sin(\theta)(g_1C_{eB}-gC_{eW})}{\sqrt{g^2+g_1^2}}$	
enwa	+ + 0 +	$-\frac{\sqrt{2}\sin(\theta)(gC_{eB}+g_{1}C_{eW})}{\sqrt{g^{2}+g_{1}^{2}}}$	
duwz	0	$3\sqrt{2}\sin(\theta)C_{uW}$	
duwz	0-	$-\frac{3\sqrt{2}\sin(\theta)(g_{1}C_{uB}+gC_{uW})}{\sqrt{g^{2}+g_{1}^{2}}}$	
duwz	-+00	$3\sqrt{2}\sin(\theta)C^{(3)}_{\varphi q}$	$3\sqrt{2}$
duwz	+ + + 0	$3\sqrt{2}\sin(\theta)C_{dW}$	
duwz	+ + 0 +	$\frac{3\sqrt{2}\sin(\theta)(g_1C_{dB}-gC_{dW})}{\sqrt{g^2+g_1^2}}$	
duwz	+ - 00	$-\frac{3C_{\varphi ud}\sin(\theta)}{\sqrt{2}}$	
duwa	0-	$\frac{3\sqrt{2}\sin(\theta)(gC_{uB}-g_1C_{uW})}{\sqrt{g^2+g_1^2}}$	
duwa	+ + 0 +	$-\frac{3\sqrt{2}\sin(\theta)(gC_{dB}+g_{1}C_{dW})}{\sqrt{g^{2}+g_{1}^{2}}}$	
eeww	-+00	$\sin(\theta)(C_{\varphi l}^{(1)} + C_{\varphi l}^{(3)})$	$\frac{1}{8}$ s
eeww	+ - 00	$\sin(\theta)C_{\varphi e}$	$\frac{1}{4}$
eezz	0	$\frac{\sin(\theta)(g_1C_{eB}+gC_{eW})}{\sqrt{a^2+a^2}}$	
eeza	0-	$\frac{\sin(\theta)(g_1 C_{eW} - g C_{eB})}{\sqrt{g^2 + g_1^2}}$	

HISZ basis
$3g^2C_W\sin(\theta)$
$-\overline{\sqrt{2}\sqrt{g^2+g_1^2}}$
$g^2 C_W^{HISZ} \sin(\theta)$
$-\frac{1}{4\sqrt{2}}$
$\sqrt{2}\sin(\theta)C_{eW}$
$\sqrt{2}\sin(\theta)(g_1C_{eB}-gC_{eW})$
$\sqrt{g^2+g_1^2}$
$\sqrt{2}\sin(\theta)(gC_{eB}+g_1C_{eW})$
$-\frac{1}{\sqrt{g^2+g_1^2}}$
$3\sqrt{2}\sin(\theta)C_{uW}$
$\frac{3\sqrt{2}\sin(\theta)(g_1C_{uB}+gC_{uW})}{2}$
$\sqrt{g^2+g_1^2}$
$\sqrt{2}\sin(\theta)C_{Qg}^{(3)} - \frac{3g^2C_W^{HISZ}\sin(\theta)}{2}$
$\sqrt{2} \sin(0) \cos(4\sqrt{2})$
$3\sqrt{2}\sin(\theta)C_{dW}$
$\frac{3\sqrt{2}\sin(\theta)(g_1C_{dB} - gC_{dW})}{2}$
$\sqrt{g^2 + g_1^2}$
$-\frac{3C_{\varphi ud}\sin(\theta)}{2}$
$\sqrt{2}$
$\frac{3\sqrt{2}\sin(\theta)(gC_{uB}-g_1C_{uW})}{\sqrt{2+2}}$
$\sqrt{g^2+g_1^2}$
$-\frac{3\sqrt{2}\sin(\theta)(gC_{dB}+g_1C_{dW})}{\sqrt{a^2+a^2}}$
$\sqrt{g^2+g_1}$
$\sin(\theta)(C_W^{H15Z}g^2 + C_B^{H15Z}g_1^2)$
$\frac{1}{4}C_B^{HISZ}\sin(\theta)g_1^2 + \sin(\theta)C_{\omega e}$
$\frac{\sin(\theta)(g_1C_{eB}+gC_{eW})}{\sin(\theta)(g_1C_{eB}+gC_{eW})}$
$\sqrt{g^2+g_1^2}$
$\frac{\sin(\theta)(g_1C_{eW} - gC_{eB})}{2}$
$\sqrt{g^2+g_1^2}$

Backups4

Tensor Structure

$$\begin{split} \mathcal{T}_{31} &= p_{\gamma}^{a} p_{\alpha}^{b} p_{\beta}^{c} - p_{\beta}^{a} p_{\gamma}^{b} p_{\alpha}^{c}, \\ \mathcal{T}_{32} &= g_{\alpha\beta} \left[p_{\gamma}^{a} (p^{b} \cdot p^{c}) - p_{\gamma}^{b} (p^{a} \cdot p^{c}) \right] - g_{\alpha\gamma} \left[p_{\beta}^{a} (p^{b} \cdot p^{c}) - p_{\beta}^{c} (p^{a} \cdot p^{b}) \right] \\ &+ g_{\beta\gamma} \left[p_{\alpha}^{b} (p^{a} \cdot p^{c}) - p_{\alpha}^{c} (p^{a} \cdot p^{b}) \right], \\ \mathcal{T}_{41} &= g_{\alpha\delta} \left[p_{\beta}^{a} p_{\gamma}^{b} + p_{\beta}^{c} p_{\gamma}^{d} \right] - g_{\alpha\gamma} \left[p_{\beta}^{a} p_{\delta}^{b} + p_{\delta}^{c} p_{\beta}^{d} \right] + g_{\beta\gamma} \left[p_{\delta}^{a} p_{\alpha}^{b} + p_{\delta}^{c} p_{\alpha}^{d} \right] - g_{\beta\delta} \left[p_{\gamma}^{a} p_{\alpha}^{b} - p_{\alpha}^{c} p_{\gamma}^{d} \right], \\ \mathcal{T}_{42} &= g_{\alpha\beta} \left[p_{\gamma}^{a} p_{\delta}^{b} - p_{\delta}^{a} p_{\gamma}^{b} \right] + g_{\gamma\delta} \left[p_{\alpha}^{c} p_{\beta}^{d} - p_{\beta}^{c} p_{\alpha}^{d} \right], \\ \mathcal{T}_{43} &= \left(g_{\alpha\gamma} g_{\beta\delta} - g_{\alpha\delta} g_{\beta\gamma} \right) \left(p^{a} \cdot p^{b} + p^{c} \cdot p^{d} \right), \end{split}$$

$$\begin{split} \mathcal{M}^{\text{int}}|_{s^3} &\propto (x^3 + 3x)(f_{ade}f_{bce} - f_{ace}f_{bde})(c_{31} + c_{32} - 2c_{41} + c_{42} + c_{43}) \\ &+ (x^2 - 3)(f_{ade}f_{bce} + f_{ace}f_{bde})(c_{31} + c_{32} - 2c_{41} + c_{42} + c_{43}), \\ \mathcal{M}^{\text{int}}|_{s^2} &\propto 2x^3(f_{ade}f_{bce} - f_{ace}f_{bde})(c_{31} + c_{32} - 2c_{41} + c_{42} + c_{43}) \\ &+ x^2(f_{ade}f_{bce} + f_{ace}f_{bde})(7c_{31} + 7c_{32} - 8c_{41} + 8c_{43}) \\ &+ 2x(f_{ade}f_{bce} - f_{ace}f_{bde})(2c_{31} + 2c_{32} - 10c_{41} + 5c_{42} + 5c_{43}) \\ &- (f_{ade}f_{bce} + f_{ace}f_{bde})(7c_{31} + 7c_{32} - 16c_{41} + 12c_{42} + 4c_{43}), \end{split}$$

$$\begin{split} \mathcal{M}^{\text{int}}|_{s^{5/2}} &\propto x^2 (f_{ade} f_{bce} - f_{ace} f_{bde}) (c_{31} + c_{32} - 2c_{41} + c_{42} + c_{43}) \\ &+ x (f_{ade} f_{bce} + f_{ace} f_{bde}) (c_{41} - c_{42}) \\ &+ 3 (f_{ade} f_{bce} - f_{ace} f_{bde}) (c_{31} + c_{32} - c_{41} + c_{43}), \\ \mathcal{M}^{\text{int}}|_{s^{3/2}} &\propto 2x^2 (f_{ade} f_{bce} - f_{ace} f_{bde}) (c_{31} + c_{32} - 2c_{41} + c_{42} + c_{43}) \\ &+ x (f_{ade} f_{bce} + f_{ace} f_{bde}) (5c_{31} + 4c_{32} - 4c_{41} + c_{42} + 4c_{43}) \\ &+ (f_{ade} f_{bce} - f_{ace} f_{bde}) (13c_{31} + 10c_{32} - 8c_{41} + c_{42} + 10c_{43}). \end{split}$$