

Heavy Flavour at CMS

Linwei Li Peking University, Beijing For CMS Collaboration

全国第十六届重味物理和CP破坏研讨会 HFCPV-2018, 郑州

CMS for Heavy Flavour studies

CMS Integrated Luminosity, pp

- Muon tracking system consists of muon chamber and silicon tracker covers wide rapidity and *p_T* regions
 - Thanks to the highly sensitive trackers, even
 low energy photons can be measured
 accurately using conversions
- Flexible trigger strategy provides a wide variety of study scopes including Higgs, SUSY, and b-physics

Recent results from CMS

Title	Publication
Measurement of production cross sections times branching fraction of $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ in pp collisions at $\sqrt{s} = 7$ TeV at CMS	CMS-PAS-BPH-13-002
Measurement of b hadron lifetime in pp collisions at $\sqrt{s} = 8$ TeV	EPJC 78 (2018) 457
Measurement of quarkonium production cross sections in pp collisons at $\sqrt{s} = 13$ TeV	PLB 780 (2018) 251
Measurement of the Λ_b polarization and angular parameters in $\Lambda_b \rightarrow J/\psi \Lambda$ decays from pp collisions at $\sqrt{s} = 7$ and 8 TeV	PRD 97 (2018) 072010
Search for the X(5568) state decaying into $B_S^0 \pi^{\pm}$ in proton-proton collisions at $\sqrt{s} = 8$ TeV	PRL 120 (2018) 202005
Observation of the $B_{S2}^* \rightarrow B^0 K_S^0$ decay and studies of excited B_S^0 mesons in proton-proton collisions at $\sqrt{s} = 8$ TeV	arXiv: 1809.03578, submitted to EPJC
Observation of the $Z ightarrow \psi l^+ l^-$ decay in pp collisions at $\sqrt{s} = 13$ TeV	PRL 121 (2018) 141801
Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and measurement of their masses	PRL 12 (2018) 09002
Angular analysis of $B^+ \to K^+ \mu^+ \mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV	arXiv: 1806.00636, to appear in PRD
Measurement of angular parameters from the decay $B^0 \rightarrow K^{0*}\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV	PLB 781 (2018) 517

Observation of $\chi_{b1,2}(3P)$ mass split

PRL 121 (2018) 092002

全国第十六届重味物理和CP破坏研讨会

Heavy Flavour at CMS

Observation of $\chi_{b1,2}(3P)$ mass split

• First observation of resolved $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states and their masses measurement through the decay channel

 $\chi_b(3P) \rightarrow \Upsilon(3S)\gamma$

- Using pp data at 13 TeV collected in 2015 + 2016 + 2017, corresponding to integrated luminosities of 2.7, 35.2, and 42.1 fb^{-1} (80 fb^{-1} total)
- Extended unbinned maximum likelihood fit.
- The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ signal peaks are modeled with a double-sides Crystal Ball, and the total yield is 372 ± 36 .

 $M(\chi_{b1}(3P)) = 10\ 513.42 \pm 0.41\ (stat) \pm 0.18\ (syst)\ MeV$ $M(\chi_{b2}(3P)) = 10\ 524.02 \pm 0.57\ (stat) \pm 0.18\ (syst)\ MeV$

PRL 121 (2018) 092002

Observation of $\chi_{b1,2}(3P)$ mass split

- Most of the theoretical predictions give a positive ΔM : 9 < ΔM < 18 MeV. The only exception give $\Delta M = -2$ MeV.
- The measured mass difference between $\chi_{b2}(3P) \chi_{b1}(3P)$ (in MeV):

 $\Delta M = 10.60 \pm 0.64 \text{ (stat)} \pm 0.17 \text{ (syst)}$

全国第十六届重味物理和CP破坏研讨会

Heavy Flavour at CMS

PRL 121 (2018) 092002

Observation of the $Z \rightarrow \psi l^+ l^-$ **decay**

- Only one exclusive leptonic decay channel Z → 4l has been observed apart from the common dilepton final states. Other searches (e.g. Z → γll) only report upper limits so far.
- Theory estimates a branching fraction in the range of (6.7 7.7)× 10⁻⁷.
- Background for $H \rightarrow ZJ/\psi$ decays
- Very clean signature of 4 leptons:
 2 high-p_T leptons
 2 softer from the J/ψ

• First observation of **Z** decaying to a J/ψ meson + a pair of leptons

PRL 121 (2018) 141801

Observation of the $Z \rightarrow \psi l^+ l^-$ decay

Observation of the $Z \rightarrow \psi l^+ l^-$ decay

PRL 121 (2018) 141801

• Branching fraction of $(Z \rightarrow J/\psi l^+ l^-)$, $\mathcal{B}(Z \rightarrow J/\psi l^+ l^-) \sim 8 \times 10^{-7}$, is consistent with the prediction of SM.

Neutral current decays: the $b \rightarrow sll$

- *b* → *sll* is a FCNC transition, only possible at loop level in the SM.
- NP effects can contribute at the loop or tree level.
- Modifying decay rates, angular distributions etc.
- Study b → sll to search for new physics.

PLB 781 (2018) 517

$B^0 \to K^{*0} \mu^+ \mu^-$ angular observables

- Depends on q^2 and three decay angles
- Observables are sensitive to the Wilson coeffs.
- P_5' anomaly

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{32\pi} [\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1-F_L)\sin^2\theta_K \cos^2\theta_L + \frac{1}{4}(1-F_L)\sin^2\theta_K \cos^2\theta_L + S_3\sin^2\theta_K \cos^2\theta_L - F_L\cos^2\theta_K \cos^2\theta_L + S_3\sin^2\theta_K \sin^2\theta_L \cos^2\theta_L + S_5\sin^2\theta_K \sin^2\theta_L \cos^2\theta_L + S_5\sin^2\theta_K \sin^2\theta_L \cos^2\theta_L + S_5\sin^2\theta_K \sin^2\theta_L \cos^2\theta_L + S_5\sin^2\theta_K \sin^2\theta_L \cos^2\theta_L + S_7\sin^2\theta_K \sin^2\theta_L \sin^2\theta_K \sin^2\theta_L \sin^2\theta_L$$

$B^0 \to K^{*0} \mu^+ \mu^-$ angular observables

- Using 20.5 fb^{-1} pp data taken in 2012.
- The events are fit in seven q^2 bins from 1 to 19 GeV^2 , yielding 1397 signal and 1794 background events in total.
- CMS results are consistent with SM and previous measurements

LHCb: *JHEP 02(2016) 104.* SM-DHMV: *JHEP 01 (2013) 048, JHEP 05 (2013) 137* 全国第十六届重味物理和CP破坏研讨会 Belle: Phys. Rev. Lett. 118.111801(2017)

Heavy Flavour at CMS

$B^+ \rightarrow K^+ \mu^+ \mu^-$ angular analysis

- The decay for the process $B^+ \to K^+ \mu^+ \mu^$ can be described by $cos \theta_l$ and $q^2 = M^2_{\mu\mu}$
- Decay rate:

$$\frac{1}{\Gamma} \frac{d\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{d\cos\theta_l} = \frac{3}{4} (1 - F_H) (1 - \cos^2\theta_l) + \frac{1}{2} F_H + \mathcal{A}_{FB} \cos\theta_l$$
$$0 \le F_H \le 3, \ |\mathcal{A}_{FB}| \le \min(1, \ F_H/2)$$

- F_H : a measure of the contribution from (pseudo) scalar and tensor amplitudes to the decay width
- A_{FB} : $\mu^+\mu^-$ forward-backward asymmetry

BEACH 2018

arXiv 1806.00636 to appear in Phys. Rev. D

$B^+ \rightarrow K^+ \mu^+ \mu^-$ angular analysis

• Using 20.5 fb^{-1} pp data taken in 2012.

- The events are fit in seven q^2 bins from 1 to 22 GeV², yielding 2286 signal events in total.
- The measured A_{FB} and F_H show good agreement with the SM predictions within the uncertainty.

全国第十六届重味物理和CP破坏研讨会

Heavy Flavour at CMS

Summary

> CMS is producing high quality HF physics results

- Public: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH
- Observation of $\chi_{b1,2}(3P)$ masses split
- First observation of $Z \rightarrow J/\psi ll$
- Angular analyses of $B^0 \to K^{*0}\mu^+\mu^-$ and $B^+ \to K^+\mu^+\mu^-$: agree with SM predictions

> Many new HF results are released.

- Excellent commissioning and performance
- More to come from Run 2 data